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Introduction

• There are many optimization algorithms.

• For solving an optimization problem, we want to use the algorithm most suitable for it.

• What does this mean?

• And how do we find this algorithm?

• Hopefully this lesson will answer these questions.

• As a complement to this lesson, I suggest the report “Benchmarking in Optimization:

Best Practice and Open Issues”3 on Arxiv.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• Clearly, there is (at least) one shortest tour.
• Theory proofs that the time to find this tour may grow exponentially with the number of

cities we want to visit in the worst case.4–8
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• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).
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• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• Of course the quality of that tour will be lower: the tour will be longer than the best one.

very little / fast consumed runtime very much / too (?) long
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• Of course the quality of that tour will be lower.
• Is there something inbetween?
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• Is there something inbetween?
• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible

as fast as possible.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible
as fast as possible.

• Optimization often means to make a trade-off between solution quality and runtime.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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• In optimization, there exist exact and heuristic algorithms.
• Let’s look at the classical Traveling Salesperson Problem (TSP).

• Optimization often means to make a trade-off between solution quality and runtime.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.
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Views on Performance

• Runtime and solution quality in optimization are intertwined and should never be
considered separately.

• Two view9–12:

1. Solution quality reached after a certain runtime
2. Runtime to reach a certain solution quality
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• Runtime and solution quality in optimization are intertwined and should never be
considered separately.

• Two view9–12:

1. Solution quality reached after a certain runtime
2. Runtime to reach a certain solution quality
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What is Runtime?

• What actually is runtime?
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Clock Time as Absolute Runtime

Measure the (absolute) consumed runtime of the algorithm implementation in ms.

• Advantages:
• Results in many works reported in this format
• A quantity that makes physical sense
• Includes all “hidden complexities” of an algorithm implementation

• Disadvantages:
• Strongly machine dependent and inherently incomparable over different machines
• Measurements are only valuable for a few years
• Can be biased by “outside effects,” e.g., OS, scheduling, other processes, I/O, swapping, . . .

• Hardware, software, OS, programming language, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific application. . .

• . . . for research they may be less interesting, while for a specific application they do
matter.
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Function Evaluations: FEs

Measure (count) the number of fully constructed and tested candidate solutions.

• Advantages:
• Results in many works reported in this format (or FEs can be deduced)
• Machine-independent, theory-related measure
• Cannot be influenced by “outside effects”
• In many optimization problems, computing the objective value is the most time consuming

task

• Disadvantages:
• No clear relationship to real runtime
• Does not contain “hidden complexities” of algorithm
• 1 FE: very different costs in different situations!13

• When applying a local search that swaps two cities in each move to the Traveling Salesperson
Problem (TSP), one FE can be done in O(1).

• When applying Ant Colony Optimization instead, each FE takes O(n2).

• Relevant for comparing algorithms, but not so much for the practical application or
comparing implementations.



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs.



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear, for example
• Do you evaluate offspring solutions that are identical to their parents?



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear, for example
• Do you evaluate offspring solutions that are identical to their parents?
• Is a local search involved that refines some or all solutions in the population?



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear, for example
• Do you evaluate offspring solutions that are identical to their parents?
• Is a local search involved that refines some or all solutions in the population?
• In a (µ+ λ)-EA, is the first population of size µ+ λ, λ, or µ?



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear, for example
• Do you evaluate offspring solutions that are identical to their parents?
• Is a local search involved that refines some or all solutions in the population?
• In a (µ+ λ)-EA, is the first population of size µ+ λ, λ, or µ?
• What if the population size changes adaptively?



Do not count generations

• Do not use the number of generations in your EA as time measure! Instead count the
FEs, because:

• The “number of generations” are not really comparable for different population sizes or
with algorithms that do not use populations.

• Often, the mapping between generations and FEs is not clear, for example
• Do you evaluate offspring solutions that are identical to their parents?
• Is a local search involved that refines some or all solutions in the population?
• In a (µ+ λ)-EA, is the first population of size µ+ λ, λ, or µ?
• What if the population size changes adaptively?

• I suggest to prefer FEs over generations if you want to count algorithm steps.
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• I suggest to always measure both the consumed FEs and the runtime in milliseconds.

• Anyway, with what we have learned, we can rewrite the two views by choosing a time
measure9 11, e.g.:

1. Solution quality reached after a certain number of FEs
2. Milliseconds needed to reach a certain solution quality
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Solution Quality

• Common measure of solution quality: Objective function value of best solution discovered.

• Rewrite the two views9 11:

1. Best objective function value reached after a certain number of milliseconds
2. Number FEs needed to reach a certain objective function value
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2. Number FEs needed to reach a certain objective function value

f

time in ms

vertical cut:

solution quality achieved

within given time

horizontal cut:

time required to achieve given solution quality



Views on Performance

• Which one is the “better” view on performance?

1. Best objective function value reached after a certain number of FEs
2. Number FEs needed to reach a certain objective function value

• This question is still debated in research. . .
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Which view is better?

• Number FEs needed to reach a certain objective function value

• Preferred by, e.g., the BBOB/COCO benchmark suite9:
• Measures the time needed to reach a target function value allows meaningful statements such

as “Algorithm A is two/ten/hundred times faster than Algorithm B in solving this problem.”
• However, there is no interpretable meaning to the fact that Algorithm A reaches a function

value that is two/ten/hundred times smaller than the one reached by Algorithm B.
• “Benchmarking Theory Perspective”

• Sometimes problematic: What if one run does not reach the goal quality?

• Then, alternative measures need to be computed, such as the ERT14 15 or PAR2 and
PAR1016 17.

f

time in ms
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solution quality achieved

within given time

horizontal cut:

time required to achieve given solution quality

this run does not

reach the horizontal

cut (goal quality)
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Which view is better?

• Best objective function value reached after a certain number of FEs

• Preferred by many benchmark suites such as18.

• Practice Perspective: Best results achievable with given time budget wins.

• This perspective maybe less suitable for scientific benchmarking, but surely is useful in
practice.

• “How good is the tour for the TSP that we can find in 5 minutes with our algorithm?”

• Always well-defined, because vertical cuts can always be reached.
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• This also strongly depends on the situation.

• If we can actually always solve the problem to a “natural” goal quality (e.g., to
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Views on Performance

• No official consensus on which view is “better.”

• This also strongly depends on the situation.

• If we can actually always solve the problem to a “natural” goal quality (e.g., to
optimality), then we should prefer the horizontal cut (time-to-target) method.

• If we have clear application requirements specifying a fixed budget, then we should prefer
the fixed-budget approach.

• Otherwise, the best approach may be: Evaluate algorithm according to both methods.11–13

• Maybe cast a net of several horizontal and vertical cuts, to get a better picture. . .
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Determining Target Values

• How to determine the right maximum FEs or target function values?

1. from the constraints of a practical application
2. from studies in literature regarding similar or the same problem
3. from simple or well-known algorithms
4. from experience
5. from prior, small-scale experiments
6. based on known results or well-accepted bounds
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Problem Instances and Randomized Algorithms

• For each optimization problem (like the TSP) there are several instances (e.g., different
sets of cities that need to be visited).

• Some instances will be easy, some will be hard.
• We always must use multiple different problem instances to get reliable results.
• Performance indicators need to be computed for each instance and also summarized over

several instances.

• Special situation: Randomized Algorithms:
• Performance values cannot be given absolute!
• 1 run = 1 application of an optimization algorithm to a problem, runs are independent from

all prior runs.
• Results can be different for each run!
• Executing a randomized algorithm one time does not give reliable information.
• Statistical evaluation over sets of runs necessary.
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• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process.

• Statistical parameters of the distribution can be estimated from a sample.

• Example: Dice Throw

• How likely is it to roll a 1, 2, 3, 4, 5, or 6?

based on http://www.freestockphotos.biz/stockphoto/16223
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4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000
10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
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# throws number f(1) f(2) f(3) f(4) f(5) f(6)

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
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Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process.

• Statistical parameters of the distribution can be estimated from a sample.

• Example: Dice Throw

• How likely is it to roll a 1, 2, 3, 4, 5, or 6?

• All statistically determined parameters are just estimates based on measurements.

• The parameters of a random process cannot be measured directly, but only be estimated
from multiple measures.

based on http://www.freestockphotos.biz/stockphoto/16223
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Measures of the Average

• Assume that we have obtained a sample A = (a0, a1, . . . , an−1) of n observations from an
experiment, e.g., we have measured the qualities ai of the best discovered solutions of
n = 101 independent runs of an optimization algorithm.

• We usually want to reduce this set of numbers to a single value which can give us an
impression of what the “average outcome” (or result quality is).

• Three of the most common options for doing so, for estimating the “center” of a
distribution, are to either compute the arithmetic mean, the median, or the geometric
mean.
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a distribution. Its is
computed on data sample A = (a0, a1, . . . , an−1) as the sum of all n elements ai in the
sample data A divided by the total number n of values.

mean(A) =
1

n

n−1
∑

i=0

ai (1)
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Median

Definition (Median)

The median med(A) is the value separating the bigger half from the lower half of a data
sample or distribution. Its estimate is the value right in the middle of a sorted data sample
A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1).

med(A) =

{

an−1

2

if n is odd

1

2

(

an
2
−1 + an

2

)

otherwise
if ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) (2)
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the runs it needs more than 2ms, sometimes even
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OS issues and does not reflect the normal behavior

of the algorithm implementation.



Outliers

• For example, maybe the operating system was updating itself during a run of one of our
algorithms and, thus, took away some of the computation budget.

• In my experiments here, there are sometimes outliers in the time that it takes to create
and evaluate the first candidate solution.

• But outliers are actually important. So I say this right now. I will also say it again later.
But I am afraid that you may tune out during the following example. So remember:
Outliers are important. Anyway. . .
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Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7 and

• mean(B) = 1

19

∑

18

i=0
bi =

10
′
127

19
= 553, while

• med(A) = a9 = 6 and
• med(B) = b9 = 6.

• The median is not affected by the outliers.

• mean(B) = 553 is a value completely different from anything that actually occurs in B. . .
. . . it gives us a completely wrong impression.
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• If you think about it, where could outliers in our experiments come from?
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Figure 17. Left: Scaling of instance hardness with problem size forWalkSAT, approx. optimal noise,

applied to Random-3-SAT test-sets. Right: Functional approximations of median and 0.98 percentile;

the median seems to grow polynomially with n while the 0.98 percentile clearly shows exponential

growth.

(Taken from the paper “Local Search Algorithms for SAT: An Empirical

Evaluation” by Hoos and Stützle, coloring added manually21.)
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effects that could mess up our results!)

• Instead, most likely there could be
• bugs in our code!

• Bugs in our code are the most important number one reason for outliers!
• Yes, also in your code! (Btw: Please use unit tests.)

• Or: bad (but rare) worst-case behaviors of our algorithm!
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• Thus, we may actually want that outliers influence our statistics. . .
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Normalized Data

• Often, our data is somehow normalized.

• The geometric mean is the only meaningful average if we have normalized data!22

• And we very often have normalized data.

• For example, at least half of the papers on the Job Shop Scheduling Problem normalize
the result qualities they obtain on benchmark instances with the Best Known Solutions

(BKS) and then compute the arithmetic mean.
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• maybe we have a bug in our code that only sometimes has an impact or
• our algorithm has a bad worst-case behavior (which is also good to know).
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time we should expect worse results.

• If there are outliers, the value of the arithmetic mean itself may be very different from any
actually observed value, while the median is (almost always) similar to some actual
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Arithmetic Mean vs. Median vs. Geometric Mean

• Most publications report arithmetic mean results, many report median results, almost
none report geometric means.

• The median is more robust against outliers compared to the arithmetic mean, however, in
normal application scenarios, there are very few acceptable reasons for outliers.

• We therefore want to know both the arithmetic mean and the median.

• Often, our data is implicitly or explicitly normalized, e.g.,
• if we divide result qualities by results of well-known heuristics or “Best-Known Solutions” or
• if we normalize the runtime using another algorithm as standard.

• Then, the arithmetic mean and median can be very misleading and the geometric mean
must be computed.

• I think: On raw data, compute all three measures of average, and pay special attention to
the one looking the worst. On normalized data, compute the geometric mean, but also
consider the arithmetic mean and median if and only if they make your algorithm look

worse.
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Measures of the Spread

• The average gives us a good impression about the central value or location of a
distribution.

• It does not tell us much about the range of the data.

• We do not know whether the data we have measured is very similar to the median or
whether it may differ very much from the mean.

• An average alone is not very meaningful – if we known nothing about the range of the
data.

• We can therefore compute a measure of dispersion, i.e., a value that tells us whether the
observations are stretched and spread far or squeezed tight around the center.
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Definition (Variance)

The variance is the expectation of the squared deviation of a random variable from its mean.
The variance var(A) of a data sample A = (a0, a1, . . . , an−1) with n observations can be
estimated as:

var(A) =
1

n− 1

n−1
∑

i=0

(ai −mean(A))2



Standard Deviation

Definition (Standard Deviation)

The statistical estimate sd(A) of the standard deviation of a data
sample A = (a0, a1, . . . , an−1) with n observations is the square root of the estimated
variance var(A).

sd(A) =
√

var(A)
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Standard Deviation

• Small standard deviations indicate that the observations tend to be similar to the mean.

• Large standard deviations indicate that they tend to be far from the mean.

• Small standard deviations in optimization results and runtime indicate that the algorithm
is reliable.

• Large standard deviations indicate unreliable algorithms, but may also offer a potential
that could be exploited: Given enough time, we can restart algorithms several times and
expect to get different (and thus sometimes better) solutions.
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Definition (Quantile)

The q-quantiles are the cut points that divide a sorted data sample A = (a0, a1, . . . , an−1)
where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) into q-equally sized parts. quantilekq be the kth q-quantile,
with k ∈ 1 . . . (q − 1), i.e., there are q − 1 of the q-quantiles.

h = (n− 1)k
q

quantilekq (A) =

{

ah if h is integer
a⌊h⌋ + (h− ⌊h⌋) ∗

(

a⌊h⌋+1 − a⌊h⌋
)

otherwise

• Quantiles are a generalized form of the median.

• The quantile21(A) is the median of A

• 4-quantiles are called quartiles.

• We often consider percentiles or write things like “98% quantile” or “0.98 percentile” or
“98% percentile” meaning quantile98100.
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• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10′008)

var(A) =
1

19− 1

19
∑

i=1

(ai −mean(A))2 =
198

18
= 11

var(B) =
1

19− 1

19
∑

i=1

(bi −mean(B))2 =
94′763′306

18
≈ 5′264′628

sd(A) =
√
varA =

√
11 ≈ 3.3

sd(B) =
√
varB =

√

94′763′306

18
≈ 2294

• Being based on the arithmetic mean, the variance and standard deviation are heavily
influenced by outliers – with all pros and cons coming with that. . .
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Quantiles: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10’008)

quantile14(A) = quantile14(B) = 4.5

quantile34(A) = quantile34(B) = 9

• Being generalizations of the median, the quantiles are little influenced by outliers – with
all pros and cons coming with that. . .
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Further Example

• The implicit assumption that mean± sd is a meaningful range is not always true!

• Such a shape is possible in optimization:
• The global optimum marks a lower bound for the possible objective values.
• A good algorithm often returns results which are close-to-optimal.
• There may be a long tail of few but significantly worse runs.
• A statement such as “For this TSP instance, our algorithm can find tours for with a length

of 100± 120 km.” makes little sense. . .
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Introduction

• We can now, e.g., perform 20 runs each with two different optimization algorithms on one
problem instance and compute the medians of a performance indicator.

• Likely, they will be different.

• For one of the two algorithms, the results will be better.

• What does this mean?

• It means that one of the two algorithms is better with a certain probability

• If we say “A is better than B,” we have a certain probability p to be wrong.

• The statement “A is better than B” makes only sense if we can give an upper bound α
for the error probability p!
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Statistical Tests

• Compare two data samples A = (a1, a2, . . .) and B = (b1, b2, . . .) and

• get a result (e.g., “The median of A is bigger than the median of B”) together with an
error probability p that the conclusion is wrong.

• If p is less than a significance level (upper bound) α, we can accept the conclusion.

• Otherwise, the observation is not significant and must be ignored.

• But how can we arrive at such statements? How can we even estimate a probability to be
wrong?

• Disclaimer: I am not a mathematician. What follows are simplified explanations of
concepts.
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Example for Underlying Idea

• Coin flip game: We flip a coin. If it is heads, I give you 1 RMB, if it is tails, you give me
1 RMB.

• We play 160 times.

• I win 128 times. You win 32 times.

• Did I cheat? Is my coin “fixed?” (i.e., is your chance to win 6= 0.5)

• Assumption: I cheat. (alternative hypothesis H1)

• It is impossible to compute my winning probability if I cheated. . .

• Counter-Assumption: I did not cheat. (null hypothesis H0)

• How likely is it that I win at least 128 times if I did not cheat?

• (What we will do right now is called binomial test.)
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• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:
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• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
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Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not cheat?

• If the coin was an ideal coin, the chance that I win at least 128 out of 160 times is
about 4 · 10−15.

• If you claim that I cheat, your chance to be wrong is about 4 · 10−15.

• Thus, if we cannot accept a chance p to be wrong higher than a significance level
α = 1%, we can still say:

The observation is significant, I did likely cheat.
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mean(A) =
39

6
= 6.5

mean(B) =
16

4
= 4

• It looks like algorithm B may produce the smaller objective values.

• But is this assumption justified based on the data we have?

• Is the difference between mean(A) and mean(B) significant at a threshold of α = 2%?



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the same algorithm (as
A ≡ B).



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the same algorithm (as
A ≡ B).

• The division into the two sets would only be artificial, an artifact of our experimental
design.



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the same algorithm (as
A ≡ B).

• The division into the two sets would only be artificial, an artifact of our experimental
design.

• Instead of having two data samples, we only have one, namely the union set O with 10
elements:



A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference did just happen by
chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the same algorithm (as
A ≡ B).

• The division into the two sets would only be artificial, an artifact of our experimental
design.

• Instead of having two data samples, we only have one, namely the union set O with 10
elements:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• Use a program to test the combinations

/** an example class enumerating all combinations */

public class EnumerateAtLeastAsExtremeScenarios {

public static void main(String [] args) {

int meanLowerOrEqualTo4 = 0; // how often did we find a mean <= 4

int totalCombinations = 0; // total number of tested combinations

for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10

for (int j = (i - 1); j > 0; j--) { // we can conveniently iterate

for (int k = (j - 1); k > 0; k--) { // over all 4-element combos

for (int l = (k - 1); l > 0; l--) { // with 4 such nested loops

if (((i + j + k + l) / 4.0) <= 4) { // check for the extreme cases

meanLowerOrEqualTo4 ++; } // count the extreme case

totalCombinations ++; // add up combos , to verify

} } } }

System.out.println(meanLowerOrEqualTo4 + " " + totalCombinations);

}

}
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O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• There are 27 such combinations with a mean of less or equal 4.

• The probability p to observe a situation at least as extreme as A and B under H0 is thus:

p =
#cases C : mean(c) ≤ mean(b)

#all cases
=

27

210
=

9

70
≈ 0.1286
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• Extreme cases into the other direction are the same, because if mean(B) ≤ 4 then
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• Extreme cases into the other direction are the same, because if mean(B) ≤ 4 then
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• So – of course – we could have also done the test the other way around with the same
result!
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• The probability p to observe a constallation at least as extreme as A or B under H0 is
thus:

p =
#cases C : mean(c) ≤ mean(b)

#all cases
=

27

210
=

9

70
≈ 0.1286

• If we claim that A and B are from distributions with different means. . .

• . . . we are wrong with probability p ≈ 0.13

• At a significance level of α = 2%, the means of A and B are not significantly different!
(2% < 0.13)

• Actually: This here is an example for an Randomization Test23 24.

• The method here is only feasible for small sample sets, real tests are more sophisticated
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A fair warning

• There are many algorithms and even more configuration parameters.

• All kinds of algorithm modules and parameters have some kind of impact on the
performance.

• If I have two different algorithms A and B, logic dictates that their performance is also
different.

• But is this difference usually significant?

• From the viewpoint of statistics: Probably yes.

• If I just conduct enough runs, maybe thousands, or millions, than even a difference of
0.001% in performance will pass a test as significant.

• To be practically significant, the measured difference of results should be statistically
significant already with few runs, say, 11 or 21, not just with ≥ 100 runs.
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• Statistical tests are more elegant mathematical approaches than the example shown
before. In order to work, they have preconditions, they make certain assumptions.

• There are two types of tests:
1. Parametric Tests

• Assume that the data samples follow a certain distribution
• Examples25: t-test (assumes normal distribution)
• The distribution of the data we measure is unknown. . .
• . . . and usually not normal nor symmetric (see the further quantiles/stddev plot example).
• The condition for using such tests often cannot be met (known distribution)
• Parametric tests should usually not be used here!
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Statistical Tests: Types

• Statistical tests are more elegant mathematical approaches than the example shown
before. In order to work, they have preconditions, they make certain assumptions.

• There are two types of tests:

1. Parametric Tests
2. Non-Parametric Tests

• Make few assumption about the distribution from which the data was sampled.
• Examples2: the Wilcoxon rank sum test with continuity correction (also called

Mann-Whitney U test26–29), Fisher’s Exact Test30, the Sign Test27 31, the Randomization Test23 24,
and Wilcoxon’s Signed Rank Test32.

• These tests are more robust (less assumptions)
• This usually is the kind of test we want to use.
• They work similar to the previous test example, but with larger sample sizes
• Often, the most suitable test is the Mann-Whitney U test.
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Compare N ≥ 2 Algorithms

• For comparing N ≥ 2 algorithms, we can compare any two algorithms with each other

• N Algorithms ⇒ k = N(N − 1)/2 statistical tests

• k tests and each with error proability α =⇒ total probability E to make error
E = 1− ((1− α)k)

• Correction needed: Bonferroni correction33: Use α′ = α/k as significance level instead of
α, then the overall probability E to make an error will remain E ≤ α.



Compare N ≥ 2 Algorithms

N: number of comparisons

=0.01

P[error| ]

k : number of comparisons

=0.01

P[error| ]
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The question of termination

• Literature usually reports tuples “(instance, result, runtime)”

• Problem: Papers often use different termination criteria

• Anytime Algorithms34: Always have approximate solution, refine it iteratively

• One measure point per run or instance does not tell the whole story!

• Using statistical tests cannot solve this issue (still: at one point in time).

• We should have the “whole performance curves!” . . . ideally mean or median curves over
several runs!
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New Algorithms and Problems

• There are many papers that introduce two things at the same time: a new optimization
problem and a new algorithm. I think this is not a good idea.

• If we introduce a new optimization algorithm, we should test it on well-known,
well-established benchmark problems. For such problems, results from other well-known
and well-established algorithms exist – so we can compare our algorithm to them and
investigate its performance objectively.

• If we introduce a new optimization problem, we should apply well-known and
well-established algorithms to it. This way we get proper baseline results and can
understand whether the problem is hard for the state-of-the-art and/or how far this
state-of-the-art allows us to go.

• If we have two “moving parts” at the same time, it is hard to understand whether an
algorithm is good and whether a problem is hard.

• If you have an own new algorithm on a new problem and use other algorithms for
comparision, you might be tempted to just use the most basic configurations of these
algorithms. Then your algorithm might look good, while it actually is not.

• Know the standard benchmark instances for your field!



Reproducibility

• Your experiments should be well-documented and reproducible.



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

• If your experiments are time-consuming, also make sure to properly store all your results
in human- and machine-readable form (ideally in a CSV format).



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

• If your experiments are time-consuming, also make sure to properly store all your results
in human- and machine-readable form (ideally in a CSV format).

• You should make an archive such that a) I can directly run the same experiments that you
did and b) also have all the data and tools to create the same statistics and figures.



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

• If your experiments are time-consuming, also make sure to properly store all your results
in human- and machine-readable form (ideally in a CSV format).

• You should make an archive such that a) I can directly run the same experiments that you
did and b) also have all the data and tools to create the same statistics and figures.

• But what if someone finds an error in work?



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

• If your experiments are time-consuming, also make sure to properly store all your results
in human- and machine-readable form (ideally in a CSV format).

• You should make an archive such that a) I can directly run the same experiments that you
did and b) also have all the data and tools to create the same statistics and figures.

• But what if someone finds an error in work?

• That is OK.



Reproducibility

• Your experiments should be well-documented and reproducible.

• In the ideal case, someone else can run your code and get the same results.

• For this purpose, you should make your code available, e.g., put it on GitHub or
zenodo.org.

• If your experiments are time-consuming, also make sure to properly store all your results
in human- and machine-readable form (ideally in a CSV format).

• You should make an archive such that a) I can directly run the same experiments that you
did and b) also have all the data and tools to create the same statistics and figures.

• But what if someone finds an error in work?

• That is OK.

• Better they find it in your code that you voluntarily provided than after going through
significant re-implementation effort. . .
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What are typical bad / cheating behavior in research on optimization?

• Cherry-Picking:
• On a benchmark instance, many runs are conducted with different random seeds. But only

the 10 with the best results are reported. This can be prevented by generating the sequence
of random seeds with a deterministic algorithm and reporting both.

• Only the benchmark instances where the algorithm performs well are chosen. Be wary of
statements such as “We now present the results of our algorithm on 10 of the TSPLib
instances.” (TSPLib has more than 100. . . )

• Weak algorithms are chosen for comparison. Comparison must always be done with the
state-of-the-art on the specific problem at hand. Be wary of statements such as “We
compare our algorithm with the standard Genetic Algorithm.” (because the SGA is usually
not the state-of-the-art)
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Cheating

What are typical bad / cheating behavior in research on optimization?

• Cherry-Picking

• Sometimes, results may be straight up fabricated.

• Misleading statistics are reported

• Uneven configuration effort.

• Incomparable results are reported.

• Misleading significance in test results (high α, many runs, no corrections).

Reproducibility prevents cheating and misunderstandings!
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Summary

• The optimization algorithms we consider in this lecture are randomized.

• Comparing them must be done in a statistical way using data from multiple runs

• Two views on performance:

1. best result after fixed number of FEs/runtime
2. number of FEs/runtime needed to get certain result

• For every single algorithm/configuration, compute:

1. arithmetic and geometric mean and median of key performance indicators
2. quartiles or top/bottom 1% quantile to get a feeling for the usual range of values
3. don’t trust just arithmetic mean or standard deviation alone
4. geometric mean if the data is normalized

• Use non-parametric statistical tests with corrections for multiple comparisons.

• Do not only collect one data sample per run, try to plot progress curves.

• Use well-known benchmarks, provide your source code!



谢谢
Thank you
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