
OOP with Java
Homework 05: Maven

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Introduction

2 Tasks

OOP with Java Thomas Weise 2/13

w
eb
si
te



Introduction

• We want to practice Maven, Libraries, and JUnit

• This homework is comprised of four tasks for one project

• Send me a zip archive named hw05_[your_student_id].zip (where

[your_student_id] is replaced with your student id) containing the

whole project folder (see later)

OOP with Java Thomas Weise 3/13



Maven, Libraries and JUnit

• Maven is a tool to build Java applications

OOP with Java Thomas Weise 4/13



Maven, Libraries and JUnit

• Maven is a tool to build Java applications

• Java applications are usually built and delivered as jar executable
files

OOP with Java Thomas Weise 4/13



Maven, Libraries and JUnit

• Maven is a tool to build Java applications

• Java applications are usually built and delivered as jar executable
files

• They often use jar libraries as well

OOP with Java Thomas Weise 4/13



Maven, Libraries and JUnit

• Maven is a tool to build Java applications

• Java applications are usually built and delivered as jar executable
files

• They often use jar libraries as well

• Maven can manage the dependencies of a project on external libraries

OOP with Java Thomas Weise 4/13



Maven, Libraries and JUnit

• Maven is a tool to build Java applications

• Java applications are usually built and delivered as jar executable
files

• They often use jar libraries as well

• Maven can manage the dependencies of a project on external libraries

• We want to test this.

OOP with Java Thomas Weise 4/13



General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

• It should produce a pdf file of that name with the text “Hello
World!”

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

• It should produce a pdf file of that name with the text “Hello
World!”

• In order to produce pdf files, we will use the Apache PDFBox 2.0.5

library (https://pdfbox.apache.org/)

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

• It should produce a pdf file of that name with the text “Hello
World!”

• In order to produce pdf files, we will use the Apache PDFBox 2.0.5

library (https://pdfbox.apache.org/)

• PDFBox in turn depends on a set of other libraries (such as Apache
FontBox) with specific versions

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

• It should produce a pdf file of that name with the text “Hello
World!”

• In order to produce pdf files, we will use the Apache PDFBox 2.0.5

library (https://pdfbox.apache.org/)

• PDFBox in turn depends on a set of other libraries (such as Apache
FontBox) with specific versions

• We will therefore use Maven to manage these dependencies and to
automatically link to the libraries for us.

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for Libraries

• We want to make a software which can produce pdf documents

• The software has a main routine which takes a file name as command
line argument.

• It should produce a pdf file of that name with the text “Hello
World!”

• In order to produce pdf files, we will use the Apache PDFBox 2.0.5

library (https://pdfbox.apache.org/)

• PDFBox in turn depends on a set of other libraries (such as Apache
FontBox) with specific versions

• We will therefore use Maven to manage these dependencies and to
automatically link to the libraries for us.

• The Maven assembly plugin can even help us to build a jar of our
application which already and directly contains all these required
libraries, so we do not need to distribute them with our software

OOP with Java Thomas Weise 5/13

https://pdfbox.apache.org/


General Concept: Maven for JUnit

• Since we are using a Maven-based build process, we can also directly
use its JUnit integration

OOP with Java Thomas Weise 6/13



General Concept: Maven for JUnit

• Since we are using a Maven-based build process, we can also directly
use its JUnit integration

• We want to make three simple test cases for our Main class

OOP with Java Thomas Weise 6/13



General Concept: Maven for JUnit

• Since we are using a Maven-based build process, we can also directly
use its JUnit integration

• We want to make three simple test cases for our Main class:

• Check that the static void main(String[] args) method actually

produces an output file

OOP with Java Thomas Weise 6/13



General Concept: Maven for JUnit

• Since we are using a Maven-based build process, we can also directly
use its JUnit integration

• We want to make three simple test cases for our Main class:

• Check that the static void main(String[] args) method actually

produces an output file
• Check whether it throws an NullPointerException if args==null

OOP with Java Thomas Weise 6/13



General Concept: Maven for JUnit

• Since we are using a Maven-based build process, we can also directly
use its JUnit integration

• We want to make three simple test cases for our Main class:

• Check that the static void main(String[] args) method actually

produces an output file
• Check whether it throws an NullPointerException if args==null

• Check whether it throws an IllegalArgumentException if

args.length<1

OOP with Java Thomas Weise 6/13



What to do?

• Luckily, most of this has already been prepared

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

• the JUnit test cases are already there, in folder src/test/java and

package cn.edu.hfuu.iao as class MainTest

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

• the JUnit test cases are already there, in folder src/test/java and

package cn.edu.hfuu.iao as class MainTest

• But several things are missing

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

• the JUnit test cases are already there, in folder src/test/java and

package cn.edu.hfuu.iao as class MainTest

• But several things are missing:
• The Maven pom.xml file lacks the dependency on the PDFBox library,

so it cannot compile

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

• the JUnit test cases are already there, in folder src/test/java and

package cn.edu.hfuu.iao as class MainTest

• But several things are missing:
• The Maven pom.xml file lacks the dependency on the PDFBox library,

so it cannot compile
• Some of the JUnit test cases may fail and the cn.edu.hfuu.iao.Main

class may need to be adapted so that all tests pass

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



What to do?

• Luckily, most of this has already been prepared:
• an Eclipse Maven project has already been created
• a Maven pom.xml file exists with some basic settings

• the Main class exists in folder src/main/java and package

cn.edu.hfuu.iao

• the JUnit test cases are already there, in folder src/test/java and

package cn.edu.hfuu.iao as class MainTest

• But several things are missing:
• The Maven pom.xml file lacks the dependency on the PDFBox library,

so it cannot compile
• Some of the JUnit test cases may fail and the cn.edu.hfuu.iao.Main

class may need to be adapted so that all tests pass
• After this is done, you can build the executable containing all the

dependencies. . .

The answer to this homework is a zip archive of the complete project

folder after completing task hw05-4
OOP with Java Thomas Weise 7/13



Setup

1 Extract the archive hw05_sources.zip from the website

OOP with Java Thomas Weise 8/13



Setup

1 Extract the archive hw05_sources.zip from the website

2 Import the extracted project into Eclipse

OOP with Java Thomas Weise 8/13



Setup

1 Extract the archive hw05_sources.zip from the website

2 Import the extracted project into Eclipse

3 You will get lots of compiler errors: Ignore them until Task hw05-2.

OOP with Java Thomas Weise 8/13



Task hw05-1: Adding Developer Information

1 Add your developer information to the Maven pom.xml file, similar
to what we discussed in the lectures

OOP with Java Thomas Weise 9/13



Task hw05-1: Adding Developer Information

1 Add your developer information to the Maven pom.xml file, similar
to what we discussed in the lectures

2 The answer to this question is the updated pom.xml file.

OOP with Java Thomas Weise 9/13



Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

3 The following page provides the dependency information as given below

Listing: pom.xml The PDFBox Dependency Information

<groupId >org.apache.pdfbox </groupId >

<artifactId >pdfbox </artifactId >

<version >2.0.5 </version >

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

3 The following page provides the dependency information as given below

4 Insert this information as dependency into the Maven pom.xml file

Listing: pom.xml The PDFBox Dependency Information

<groupId >org.apache.pdfbox </groupId >

<artifactId >pdfbox </artifactId >

<version >2.0.5 </version >

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

3 The following page provides the dependency information as given below

4 Insert this information as dependency into the Maven pom.xml file

5 Then click on the project, select “Maven” and then “Update Project. . . ”

Listing: pom.xml The PDFBox Dependency Information

<groupId >org.apache.pdfbox </groupId >

<artifactId >pdfbox </artifactId >

<version >2.0.5 </version >

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

3 The following page provides the dependency information as given below

4 Insert this information as dependency into the Maven pom.xml file

5 Then click on the project, select “Maven” and then “Update Project. . . ”

6 The compiler errors should now disappear

Listing: pom.xml The PDFBox Dependency Information

<groupId >org.apache.pdfbox </groupId >

<artifactId >pdfbox </artifactId >

<version >2.0.5 </version >

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-2: Adding Dependency

1 In order to use Apache PDFBox 2.0.5 library, include its dependency information at the
right position into the Maven pom.xml file

2 The newest library version can be found at
https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox, where we
select 2.0.5

3 The following page provides the dependency information as given below

4 Insert this information as dependency into the Maven pom.xml file

5 Then click on the project, select “Maven” and then “Update Project. . . ”

6 The compiler errors should now disappear

7 The answer to this question is the updated pom.xml file (which includes also the answer to

hw05-1).

Listing: pom.xml The PDFBox Dependency Information

<groupId >org.apache.pdfbox </groupId >

<artifactId >pdfbox </artifactId >

<version >2.0.5 </version >

OOP with Java Thomas Weise 10/13

https://mvnrepository.com/artifact/org.apache.pdfbox/pdfbox


Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

3 If a test fails, investigate why it fails (read JavaDoc of test methods,
compare to code in Main class)

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

3 If a test fails, investigate why it fails (read JavaDoc of test methods,
compare to code in Main class)

4 Fix the main method in class Main

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

3 If a test fails, investigate why it fails (read JavaDoc of test methods,
compare to code in Main class)

4 Fix the main method in class Main

5 Run the JUnit tests again. If everything works: OK, if not: start
again at step 1.

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

3 If a test fails, investigate why it fails (read JavaDoc of test methods,
compare to code in Main class)

4 Fix the main method in class Main

5 Run the JUnit tests again. If everything works: OK, if not: start
again at step 1.

6 The answer to this question is the updated Main.java file and a text
file with the list of tailing test cases

OOP with Java Thomas Weise 11/13



Task hw05-3: Running JUnit Tests

1 Then right click the class cn.edu.hfuu.iao.MainTest in folder
src/test/java and select “Run as. . . ” and then “JUnit test”.

2 Notice whether any of the tests fail: write down all failing test cases

3 If a test fails, investigate why it fails (read JavaDoc of test methods,
compare to code in Main class)

4 Fix the main method in class Main

5 Run the JUnit tests again. If everything works: OK, if not: start
again at step 1.

6 The answer to this question is the updated Main.java file and a text
file with the list of tailing test cases

7 Do not worry much about lots of console output, PDFBox is very
verbose and might do things such as initializing font caches and so
on. You can ignore all of this, even Exceptions printed to the console.
The only thing that matters is JUnit output.

OOP with Java Thomas Weise 11/13



Task hw05-4: Performing Maven Build

1 Now everything is done and we can finally perform a Maven build.

OOP with Java Thomas Weise 12/13



Task hw05-4: Performing Maven Build

1 Now everything is done and we can finally perform a Maven build.

2 Inside Eclipse, run the project as Maven build with the goals
clean test install package

OOP with Java Thomas Weise 12/13



Task hw05-4: Performing Maven Build

1 Now everything is done and we can finally perform a Maven build.

2 Inside Eclipse, run the project as Maven build with the goals
clean test install package

3 You will find a new folder called target , containing a file called

hw05-task-0.0.1-jar-with-dependencies.jar

OOP with Java Thomas Weise 12/13



Task hw05-4: Performing Maven Build

1 Now everything is done and we can finally perform a Maven build.

2 Inside Eclipse, run the project as Maven build with the goals
clean test install package

3 You will find a new folder called target , containing a file called

hw05-task-0.0.1-jar-with-dependencies.jar

4 This is the stand-alone executable version of our PDF generator. It
includes all dependencies.

OOP with Java Thomas Weise 12/13



Task hw05-4: Performing Maven Build

1 Now everything is done and we can finally perform a Maven build.

2 Inside Eclipse, run the project as Maven build with the goals
clean test install package

3 You will find a new folder called target , containing a file called

hw05-task-0.0.1-jar-with-dependencies.jar

4 This is the stand-alone executable version of our PDF generator. It
includes all dependencies.

5 The file hw05-task-0.0.1-jar-with-dependencies.jar is the answer to
this task.

OOP with Java Thomas Weise 12/13



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 13/13

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Maven, Libraries and JUnit
	General Concept: Maven for Libraries
	General Concept: Maven for JUnit
	What to do?

	Tasks
	Setup
	Task hw05-1: Adding Developer Information
	Task hw05-2: Adding Dependency
	Task hw05-3: Running JUnit Tests
	Task hw05-4: Performing Maven Build

	Presentation End

