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Introduction

• We want to practice working with objects and classes

• We use all the stuff we have learned before, including expressions,
if-then-else, loops, static routines from java.util.Math , etc.

• This homework is comprised of two task

• Send me a zip archive named hw03_[your_student_id].zip (where

[your_student_id] is replaced with your student id) with one

answer-folder for each homework task (names hw03-1 and hw03-2 )
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Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).
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Task hw03-2: Class Hierarchy II
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OOP with Java Thomas Weise 5/6



Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

OOP with Java Thomas Weise 5/6



Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

5 Create a Main class which computes and prints the result of
16

3
∗( 2

3
−

10

70
)

63

176

both as fraction and as double (you can

verify your results with tools such as http://www.calculator.net/fraction-calculator.html)

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
http://www.calculator.net/fraction-calculator.html


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

5 Create a Main class which computes and prints the result of
16

3
∗( 2

3
−

10

70
)

63

176

both as fraction and as double (you can

verify your results with tools such as http://www.calculator.net/fraction-calculator.html)

6 The answer-folder for this task contains the complete Eclipse project, including source code (.java) and compiled
(.class) file.

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
http://www.calculator.net/fraction-calculator.html


Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China
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