
OOP with Java
Homework 03: Classes and Objects

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Introduction

2 Tasks

OOP with Java Thomas Weise 2/6

w
e
b
s
it
e



Introduction

• We want to practice working with objects and classes

• We use all the stuff we have learned before, including expressions,
if-then-else, loops, static routines from java.util.Math , etc.

• This homework is comprised of two task

• Send me a zip archive named hw03_[your_student_id].zip (where

[your_student_id] is replaced with your student id) with one

answer-folder for each homework task (names hw03-1 and hw03-2 )

OOP with Java Thomas Weise 3/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for

OOP with Java Thomas Weise 4/6



Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle


Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)
2 squares (http://en.wikipedia.org/wiki/Square)

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle
http://en.wikipedia.org/wiki/Square


Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)
2 squares (http://en.wikipedia.org/wiki/Square)
3 regular pentagons (http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons)

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle
http://en.wikipedia.org/wiki/Square
http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons


Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)
2 squares (http://en.wikipedia.org/wiki/Square)
3 regular pentagons (http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons)
4 regular hexagons (http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon)

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle
http://en.wikipedia.org/wiki/Square
http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon


Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)
2 squares (http://en.wikipedia.org/wiki/Square)
3 regular pentagons (http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons)
4 regular hexagons (http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon)

4 Create a Main class which instantiates each of these classes and prints the area of the
corresponding polygons with sideLength 1

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle
http://en.wikipedia.org/wiki/Square
http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon


Task hw03-1: Class Hierarchy I

1 Develop a class hierarchy for convex, simple, regular, equilateral, equiangular polygons (with
sides all having the same length and angles being the same).

2 There should be a base class Polygon :

1 with a member variable double sideLength to hold the side lengths,

2 with a one-parameter constructor taking a corresponding parameter and initializing the above
member variable,

3 with a method int numberOfSides() to return the actual number of sides of the polygon

(returning 0 in this base class, to be overridden by subclasses)

4 with a method double area() returning the inside area of the polygon (returning 0 in this base
class, to be overridden by subclasses)

3 Create suitable sub-classes of Polygon implementing the methods for:

1 equilateral triangles (http://en.wikipedia.org/wiki/Equilateral_triangle)
2 squares (http://en.wikipedia.org/wiki/Square)
3 regular pentagons (http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons)
4 regular hexagons (http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon)

4 Create a Main class which instantiates each of these classes and prints the area of the
corresponding polygons with sideLength 1

5 The answer-folder for this task contains the complete Eclipse project, including source code
(.java) and compiled (.class) file.

OOP with Java Thomas Weise 4/6

http://en.wikipedia.org/wiki/Equilateral_triangle
http://en.wikipedia.org/wiki/Square
http://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
http://en.wikipedia.org/wiki/Hexagon#Regular_hexagon


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

OOP with Java Thomas Weise 5/6



Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

OOP with Java Thomas Weise 5/6



Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

5 Create a Main class which computes and prints the result of
16

3
∗( 2

3
−

10

70
)

63

176

both as fraction and as double (you can

verify your results with tools such as http://www.calculator.net/fraction-calculator.html)

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
http://www.calculator.net/fraction-calculator.html


Task hw03-2: Class Hierarchy II

1 We want to extend the class java.lang.Number by creating a new sub-class for dealing with fractions

2 A fraction is a number like 3
4 , which equals 0.75

3 In other words, a number i
j
where i, j ∈ Z (https://en.wikipedia.org/wiki/Fraction_(mathematics))

4 Create a class named Fraction which:

1 has two member variables of type long named numerator and denominator such that its instances represent

numbers
numerator

denominator

2 has two constructors, one which takes a single number i to represent numerator = i and denominator = 1 and one

which accepts the values of both numerator and denominator

3 both the numerator and denominator shall always be normalized by using the greatest common divisor, i.e.,

gcd( numerator , denominator )
!
= 1 (the constructor must take care of this by dividing both input parameters by their

gcd, which you can compute using, e.g., Euclid’s algorithm
(https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations))

4 if the fraction is negative, the sign is stored in the numerator , i.e., −0.2 be −1

5
, not 1

−5
(the constructor must take

care of this)

5 overrides the inherited methods toString() , doubleValue() , and floatValue() with reasonable behavior

6 overrides the inherited methods intValue() and longValue() to return
⌊

numerator

denominator

⌋

7 implements the instance methods add , sub , mul , div , and mod to return the results of the addition, subtraction,

multiplication, division, and rest of the division of the current number and their one argument of type Fraction

5 Create a Main class which computes and prints the result of
16

3
∗( 2

3
−

10

70
)

63

176

both as fraction and as double (you can

verify your results with tools such as http://www.calculator.net/fraction-calculator.html)

6 The answer-folder for this task contains the complete Eclipse project, including source code (.java) and compiled
(.class) file.

OOP with Java Thomas Weise 5/6

https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations
http://www.calculator.net/fraction-calculator.html


Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 6/6

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Tasks
	Task hw03-1: Class Hierarchy I
	Task hw03-2: Class Hierarchy II

	Presentation End

