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e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

e We need help. Help by a tool. Maven is the tool.
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Maven is maybe the most widely-used project build and dependency
management tool in Java

It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

Maven allows for automatic deployment (which we will not talk about
here)

Eclipse comes with Maven support

Maven does not just define the project dependencies, but also the
complete build process

Everything is versionized, so all builds are 100% reproducible (which
sorts out the infamous “But it works on my machine...")
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then

discuss its basic features
e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location

via Browse... , then click Next
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e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,
and click Next
e We check Create a simple project and choose a suitable location
via Browse... , then click Next
e In the following form, we make the selections shown here (which | will
explain later) and click Finish :
e Group Id: cn.edu.hfuu.iao
e Artifact Id: simple-maven-project
e Version: 0.0.1
e Packaging: jar

e Project name: Simple Maven Project
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location

via Browse... , then click Next

e In the following form, we make the selections shown here (which | will
explain later) and click Finish

e A new Maven project has appeared, which basically is a special Eclipse
Java project with a special folder structure and a file called pom.xml

containing the project (and build) information
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Listing: The contents of the Maven project file pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>simple -maven-project</artifactId>
<version>0.0.1</version>
<name>Simple Maven Project</name>
<description>A simple maven project without any advanced
features.</description>
</project>
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o Creating a Simple Maven Project

e We can now build the project
o right-click the project, choose Run As and then Maven Build
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
e right-click the project, choose Run As and then Maven Build
e Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project

e right-click the project, choose Run As and then Maven Build

e Under Goals: enter clean compile package install (just using
clean install would do the same thing) then Run

e A build process will start which will first download several required

modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
right-click the project, choose Run As and then Maven Build
Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

The generated build artifacts will be in folder target
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o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
e right-click the project, choose Run As and then Maven Build
e Under Goals: enter clean compile package install (just using
clean install would do the same thing) then Run
e A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

e The generated build artifacts will be in folder target

e Let us take a closer look on the stuff we just did

OOP with Java Thomas Weise 5/22



e The group ID identifies the “greater project”




e The group ID identifies the “greater project”

e |t follows Java's package naming convention




e The group ID identifies the “greater project”

e |t follows Java's package naming convention

e It has to at least identify a domain name you control




The group ID identifies the “greater project”

It follows Java's package naming convention

It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn




The group ID identifies the “greater project”

It follows Java's package naming convention

It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn

It might have some additions for “greater projects”




Maven Group IDs %\

e The group ID identifies the “greater project”
e |t follows Java's package naming convention
e It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn

e |t might have some additions for “greater projects”

e For instance, | could have used cn.edu.hfuu.iao.teaching as a group
for all of our teaching projects
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The artifact ID is basically the name of the jar archive we want to
generate without the version

e You can consider it as a specially-formatted specific project name

It is spelled in lower case letters and dashes are used ( - ) to separate
name components

Basically, a group can contain several related projects with artifacts
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e Every project always has a version
e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible

manner, and
e patch version when you make backwards-compatible bug fixes.



http://semver.org/

Semantic Versioning IAO\’

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,

e minor version when you add functionality in a backwards-compatible
manner, and

e patch version when you make backwards-compatible bug fixes.

e Code using a library of version ai.bi.ct will

OOP with Java Thomas Weise 8/22


http://semver.org/

Semantic Versioning %}

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will
e compile exactly the same with library version ail.bi.c2

OOP with Java Thomas Weise 8/22


http://semver.org/

1AQ2

Semantic Versioning §\

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will

e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl

OOP with Java Thomas Weise 8/22


http://semver.org/

1AQ2

Semantic Versioning §\

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will

e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl
e may not compile with library version a2.b2.c2 if al # a2

OOP with Java Thomas Weise 8/22


http://semver.org/

Semantic Versioning §\

1AQ2

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will
e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl
e may not compile with library version a2.b2.c2 if al # a2
e Exception: If your project is still very experimental, you can use
version 0.x.y : For such versions, the rules for minor and patch level
versions can be violated (but you should still try to not to)
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files or images

It separates the Java source code files from resources such as text

It separates the actual program source code from the code for unit

testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy
resources resources (text, graphics, ...)
test the test folder: all test sources and resources
java the test java source code / package hierarchy
resources test resources (text, graphics, ...)
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e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,
the basic infos (we use this in our simple project)

infos about the organization developing the project

infos about the involved developers

property definitions to be used in the rest of the pom

e license information
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e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

the basic infos (we use this in our simple project)
infos about the organization developing the project
infos about the involved developers

property definitions to be used in the rest of the pom

license information

infos about SCM, issue management, and the inception year
the dependencies (i.e., the libraries we need)

the build process specification
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Listing: The contents of the Maven project file pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>simple-maven-project</artifactId>
<version>0.0.1</version>
<name>Simple Maven Project</name>
<description>A simple maven project without any advanced
features.</description>
</project>
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e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean
validate
compile
test
package
verify
install
deploy

delete everything in the target folder

check whether the project is correct and all necessary info is there

compile the source code of the project

run all tests, e.g., JUnit tests (fails if tests fail)

create the artifact package (in our case, the jar )

run any checks on results of integration tests

install the package into the local repository (for other builds depending on it)
release into environment

e In Eclipse (or when using the Maven command line tool mva ), you
only need to specify clean together the /ast phase to be executed
and all phases leading up to it are executed
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e Usually, this is an archive containing an executable, source, tests, or
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e The name of an artifact is usually
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artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
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e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType> , wWhere

artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as
e -src for archives containing the source code and resources (not the generated
.class files)
e -—javadoc for archives containing the generated Javadoc documentation
e -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

e Our simple project generated artifact simple-maven-project-0.0.1.jar
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e Let us now create a more advanced Maven project, which

e provides more information about our team and tools,
depends on another library (commons math 3 from Apache),
e produces an executable jar archive, and

e generates Javadoc (in an archive)

e For this purpose, we generate a simple Maven project in exactly the
same way as before, but name the artifact project-with-dependencies




pom.xml

e We then edit the generated pom.xml file to look as follows




The new pom.xml

Listing: The contents of the

<progect sameeriety /e
<oinen von. apache org
//navan. spache .org/xsd/uaven-4.0 N

spsche ore/p01/4.0.0
72001/

04/3.0.0
neep)

<modslversion>s.0.0</modelversion>
<groupld>cn. sdn. hfus. a0¢/ grouple>

Fversion>
rojact vith Dependenciss</nans>
<descriptionsh Naven project with dependencies and

doc. </ description>

<arl>netp://sn0. htus. adu. cn/</url>

paiiea pvimization (140)</nane>
</organization>

<davaopere>

<roles>
Grelearaiec i

<roledeveloper</rcles
</roless

<tinezone>China Tine Zone</timszona>
<aevaloper>

</ovelopare>

<propertses:
<encoding>UTP-8</encoding>

pom.xml after we edit

<inceptionts

£>2017¢/ tnceptiontenr>

<aspondencies>
dependancy>
<groupla>org. apache . connons </groupld>
<artifactld>connons mathd</artifactia>
Cversion>3.6.1¢/veraton>
</aepondoncy>
</dopendoncios>

<plugine>
<plugin>
<groupIasorg. apache gine</grovpie>
<aresfaceldsmaven-conpiler plugin/artifactia>
<vareion>a.1</versions
<contiguration>
<eourcessCjax

versson) </zource>

PR o e e
</contiguration:
<Iplugin>

<plugin

<groupla>org. apacha . naven. plugine</groupld>
Cartifactia>maven-javados -pluginc/areifaceia>

<detectiinks>eruec/ detactiinks

<project - bus: busta

CactectiavatpiLinkoerae < derectiavatpiLink>

Veraions1-a¢/jdk
<propertiers

<nans>0NU GENERAL PUBLIC LICENSE Version 3, 29
June 2007</nane>
oLty /o g arg/Lcanses/gpl-3.0-standalons dend />
caistribsionscapoc/diseributio

<1
<tcemsess

<issushanagoment>
SUriohtipa://giudan o/ homsalieies/Javabsaspies/asues</url>
Corsten i ey

PASSR——

</contiguraions
<ia>attach-javadoc</sd>

</plugin>

<plugs
St e oo aptnec/geourta

i hiceTisamren-souses Phagiac/ arci factia>
xm,mm
<contagu

netuaspons trus</aciudepons

<dsveloparconnection>
thonasvaise/savaxanpl

Gurs
<lzen>

truec/sn

<ur n.mmmw.s:m.(/us.u.mmmuam

Jesntigurazions

<plugin>
<groupld>ore. spache.naven. plugins </groupld>
<artifaceld>aaven-jar-plugine/artitactld>
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pom.xml

e We then edit the generated pom.xml file to look as follows
e OK, thank you, now the details




pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)




The new pom.xml %\”

Listing: pom.xml Lines 6-12: Basic Info

<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>project-with-dependencies</artifactId>
<version>0.0.1</version>
<name>Project with Dependencies</name>
<description>A Maven project with dependencies and
more information,
also generating an executable JAR and
Javadoc.</description>
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pom.xml

e We then edit the generated pom.xml file to look as follows

o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project
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Listing: pom.xml Lines 15-19: Organization Info

<url>http://iao.hfuu.edu.cn/</url>
<organization>

<url>http://iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO0)</name>
</organization>
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pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project
e The developers working on the project
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Listing: pom.xml Lines 21-35: Developer Info

<developers>
<developer>
<id>thomasWeise</id>
<name>Thomas Weise</name>
<email>tweise@hfuu.edu.cn</email>
<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>
<organization>Institute of Applied Optimization
(IA0)</organization>
<organizationUrl>http://iao.hfuu.edu.cn/</organizationUrl>
<roles>
<role>architect</role>
<role>developer</role>
</roles>
<timezone>China Time Zone</timezone>
</developer>
</developers>
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pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
Project URL and info about the organization behind project
The developers working on the project
Properties: contents of element <n>contents</n> become available as

${n}




The new pom.xml %\)’

Listing: pom.xml Lines 37—-42: Properties

<properties>
<encoding>UTF-8</encoding>
<project.build.sourceEncoding>${encoding}</project.build.sourceEncoding
<project.reporting.outputEncoding>${encoding}</project.reporting.output
<jdk.version>1.8</jdk.version>

</properties>
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pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project
e The developers working on the project
o Properties: contents of element <n>contents</n> become available as

${n}
Licensing Information: here GPL version 3




The new pom.xml

<licenses>
<license>
<name>GNU GENERAL PUBLIC LICENSE Version 3,
<url>http://www.gnu.org/licenses/gpl-3.0-standalone.html</url>
<distribution>repo</distribution>
</license>
</licenses>

29 June 2007</name>
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pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
Project URL and info about the organization behind project
The developers working on the project
Properties: contents of element <n>contents</n> become available as

${n}
Licensing Information: here GPL version 3
Issue management: where to report errors




The new pom.xml

Listing: pom.xml Lines 52-55: Issue Management

<issueManagement >
<url>https://github.com/thomasWeise/javaExamples/issues</url>
<system>GitHub</system>

</issueManagement>
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The new pom.xml %()

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project

The developers working on the project

Properties: contents of element <n>contents</n> become available as
${n}

Licensing Information: here GPL version 3

e |ssue management: where to report errors

e Software configuration management: here our git repository
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Listing: pom.xml Lines 57—62: Software Configuration Managment

<scm>
<connection>scm:git:git@github.com:thomasWeise/javaExamples.git</connection>
<developerConnection>
scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection>
<url>git@github.com:thomasWeise/javaExamples.git</url>
</scm>
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pom.xml ‘

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start




Listing: pom.xml Lines 64: Inception Year

<inceptionYear>2017</inceptionYear>




The new pom.xml %()

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

e Software configuration management: here our git repository
e Inception year: when did the project start

e Dependencies: Which other libraries does our project need?
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The new pom.xml

Listing: pom.xml Lines 67—73: Dependencies

<dependencies>
<dependency>
<groupld>org.apache.commons</groupIld>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
</dependencies>
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14/22



The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8
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Listing: pom.xml Lines 75-89: Build (1): Compilation

<build>

<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>${jdk.version}</source>
<target>${jdk.version}</target>
<encoding>${encodingl}</encoding>
<showWarnings>true</showWarnings>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>
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e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc
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The new pom.xml

Listing: pom.xml Lines 91-10

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.9.1</version>
<configuration>
<show>private</show>
<detectLinks>true</detectLinks>
<detectJavaApilink>true</detectJavaApilink>
<quiet>true</quiet>
</configuration>
<executions>
<execution>
<id>attach-javadoc</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
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e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code
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The new pom.xml

Listing: pom.xml Lines 111-128: Build (3): Sources jar

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>2.3</version>
<configuration>
<includePom>true</includePom>
<useDefaultExcludes>true</useDefaultExcludes>
<useDefaultManifestFile>false</useDefaultManifestFile>
</configuration>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
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e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code
Generate the “main” artifact: an executable jar with main class

cn.edu.hfuu.iao.Main
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The new pom.xml

Listing: pom.xml Lines 131-144: Build (4): (executable) jar

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.6</version>
<configuration>
<archive>
<manifest>
<addDefaultImplementationEntries />
<addDefaultSpecificationEntries />
<mainClass>cn.edu.hfuu.iao.Main</mainClass>
</manifest>
</archive>
</configuration>
</plugin>

OOP with Java Thomas Weise
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e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code

Generate the “main” artifact
Generate an executable jar including all dependencies (here

commons-math3 ) with main class cn.edu.hfuu.iao.Main
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The new pom.xml %\”

Listing: pom i i ble) jar with de

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>attached</goal>
</goals>
<phase>package</phase>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>cn.edu.hfuu.iao.Main</mainClass>
</manifest>
</archive>
</configuration>
</execution>
</executions>
</plugin>

</plugins>
</build>

</project>
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e We then edit the generated pom.xml file to look as follows

e The

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code

Generate the “main” artifact
Generate an executable jar including all dependencies

pom.xml specifies quite a complex build process!
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Main Class

Listing: Our Main class using Dependency

package cn.edu.hfuu.iao;

import java.util.Scannmer;

import org.apache.commons.math3.stat.regression.SinpleRegression;

public class Main {

static final SimpleRegression fitLine(final Scanner scanmer) {
= new SimpleRegression();

SimpleRegression regression =
for (;)
if (!(scanner.hasNextDouble())) { break; }
double x = scamner.nextDouble();
if (I(scanner.hasNextDouble())) { break; }
double y = scamner.nextDouble();
regression.addData(x, y);

return regression;

blic static final void main(final String[] args) {
System.err.printin("Welcome,to the linear curve fitting,program.");
System.err.println("Enter point, pairs,one pair,auline, x,and,yucoordinates separated, by,space orytab

pul

System.err.println("Linear curve,is,fitted, when,stdin,ends or Ctrl-D is pressed.")

SimpleRegression regression;
try (final Scammer scanner = new Scamner(System.in)) {

regression = fitLine(scamner);

System.out.print ("y,\u2248,");
System.out.print (regression.getIntercept());
System.out.print (", rux.u") ;
System.out.print (regression.getSlope());

System.out.print (", (root, mean,square error:
System.out.print (Math.sqrt(regression.getMeanSquareError ()));

System.out.println(')');
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e We now can build our project using goals clean install
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e We find that the target folder now contains several artifacts, namely

e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run




e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely

e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run
® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an

executable jar of our project; contains commons-math3, can run
directly
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e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely
e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run
® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an
executable jar of our project; contains commons-math3, can run
directly
e project-with-dependencies-0.0.1-javadoc.jar : the generated
Javadoc documentation of our project (remember, a jar is basically a
zip archive...)
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e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely
e project-with-dependencies-0.0.1.jar — the main, executable jar

of our project; requires commons-math3 in the classpath to run

® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an
executable jar of our project; contains commons-math3, can run
directly

e project-with-dependencies-0.0.1-javadoc.jar : the generated

Javadoc documentation of our project (remember, a jar is basically a
zip archive...)
e project-with-dependencies-0.0.1-sources.jar : a jar archive

containing the source code of our project (easy for distribution)
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e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us

e Maven uses repositories:

o A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
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e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us

e Maven uses repositories.

e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions

e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
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e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts
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e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts
e Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically
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e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts
e Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically
e There also is a “local” repository on your machine, where dependencies
are cached (and your compiled artifacts are install ed into)
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We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file
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e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
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Maven and JUnit

Listing: pom.xml Lines 5-11: Basic Info

<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupIld>

<artifactId>project-with-tests</artifactId>

<version>0.0.1</version>

<name>Project with Tests</name>

<description>A project similar to
Dependencies",

"Projectywith

but now also performing JUnit tests.</description>

OOP with Java Thomas Weise
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e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit
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e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name

e We add a dependency on JUnit , but different from the
commons-math3 dependency, it gets scope “test”
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Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”, since it is only
needed during compilation and testing
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e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit , but different from the
commons-math3 dependency, it gets scope “test”, since it is only

needed during compilation and testing and not part of the final
application (or “jar-with-dependencies”-jar)
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Maven and JUnit %0,

Listing: pom.xml Lines 66—78: Added Test-time Dependency on JUnit

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupld>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
</dependencies>
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e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us
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Maven and JUnit

Listing: pom.xml Lines 173-177: Using surefire Plugin (runs tests)

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18</version>

</plugin>
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e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us

We can also generate a nice HTML report about the whole project and
the test results
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e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name

e We add a dependency on JUnit

e We use the surefire plugin in the build process while will execute
the JUnit tests for us

e We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when
building and add a set of reporting plugins the the pom.xml

OOP with Java Thomas Weise 18/22



Maven and JUnit %\’

Listing: pom.xml Lines 182-195: Using surefire Plugin Report HTML

<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-project-info-reports-plugin</artifactId>
<version>2.7</version>
</plugin>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-report-plugin</artifactId>
<version>2.18</version>
</plugin>
</plugins>
</reporting>
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Maven

and JUnit %\

e We

For

now want to investigate the JUnit integration in Maven

this purpose, we create a new Maven project in Eclipse with an

artifact called project-with-tests in the same way as before

We

can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

e We

make the following changes to the Maven pom.xm1 file:

We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us

We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when
building and add a set of reporting plugins the the pom.xml

e In the next step, we can add a JUnit test and place it into the same
package as the real code, just in the src/test/java hierarchy
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Test for our Main Class §

Listin e JUnit test of our Main cla

package cn.edu.hfuu.iao;

import java.io.StringReader;
import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression;
import org.junit.Assert;
import org.junit.Test;

public class MainTest {

@Test
public void testFitting0011ResultsIn01() {
SimpleRegression regression;

try (final StringReader sr = new StringReader ("0,0\ni1,1")) {
try (final Scanner scanner = new Scanner(sr)) {
regression = Main.fitLine(scanner);

}

Assert.assertEquals (0d, regression.getIntercept(), 1le-10d);
Assert.assertEquals (1d, regression.getSlope(), 1e-10d);
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e We can now build the new project by invoking Maven with the goals

clean test install site
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e The build will compile our code
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e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated




e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

e There will also be one interesting new artifact, a folder called site
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e We can now build the new project by invoking Maven with the goals

clean test install site

The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

There will also be one interesting new artifact, a folder called site

It contains a documentation of our project and the surefire test report




Building the New Project %\’

e We can now build the new project by invoking Maven with the goals

clean test install site

The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

There will also be one interesting new artifact, a folder called site

It contains a documentation of our project and the surefire test report

We click on index.html inside this folder
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Building the New Project
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Summary

W

>
<

e We have learned about creating and building projects with Maven
e Maven is the most widely used build tool in the Java world

e Maven allows us to specify the “coordinates”, i.e., a group ID, an artifact ID, and a
version, which uniquely identify one exact version of our project

o |t allows us to specify other projects we depend upon by using their coordinates

o It allows us to define a complete build process, where each plugin executed is again
specified by its coordinate

e |t can find and download many open source libraries from the internet automatically
for us (based on the coordinates in the dependency information)

e Maven also automatically resolves the dependencies of our dependencies recursively
for us

e Maven builds and project configurations are thus 100% reproducible

o |t can generate all kinds of artifacts for us, including Javadoc, jars, source code jars,
and a HTML page describing our project

o |t allows us to specify meta-data about our project, such as an URL and developer
information
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