
OOP with Java
30. Building with Maven

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Maven Basics

3 Dependencies, Javadoc, Executable, More Infos

4 Maven Build with JUnit Tests

5 Summary

OOP with Java Thomas Weise 2/22

w
e
b
s
it
e

Introduction

• We have learned a lot of ways to structure our code

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

• How do we manage all of that?

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

• How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

• How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

• We need help.

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

• How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

• We need help. Help by a tool.

OOP with Java Thomas Weise 3/22

Introduction

• We have learned a lot of ways to structure our code

• We can divide it into methods, classes, and packages

• We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

• We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

• Projects will naturally end up using a lot of libraries

• As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

• A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

• How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

• We need help. Help by a tool. Maven is the tool.

OOP with Java Thomas Weise 3/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

• Maven allows for automatic deployment (which we will not talk about
here)

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

• Maven allows for automatic deployment (which we will not talk about
here)

• Eclipse comes with Maven support

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

• Maven allows for automatic deployment (which we will not talk about
here)

• Eclipse comes with Maven support

• Maven does not just define the project dependencies, but also the
complete build process

OOP with Java Thomas Weise 4/22

Maven

• Maven is maybe the most widely-used project build and dependency
management tool in Java

• It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

• Maven allows for automatic deployment (which we will not talk about
here)

• Eclipse comes with Maven support

• Maven does not just define the project dependencies, but also the
complete build process

• Everything is versionized, so all builds are 100% reproducible (which
sorts out the infamous “But it works on my machine. . . ”)

OOP with Java Thomas Weise 4/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

• In the following form, we make the selections shown here (which I will
explain later) and click Finish

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

• In the following form, we make the selections shown here (which I will
explain later) and click Finish :

• Group Id: cn.edu.hfuu.iao

• Artifact Id: simple-maven-project

• Version: 0.0.1

• Packaging: jar

• Project name: Simple Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

• In the following form, we make the selections shown here (which I will
explain later) and click Finish

• A new Maven project has appeared, which basically is a special Eclipse
Java project with a special folder structure and a file called pom.xml

containing the project (and build) information

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

Listing: The contents of the Maven project file pom.xml

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >simple -maven -project </artifactId >

<version >0.0.1 </version >

<name>Simple Maven Project </name>

<description >A simple maven project without any advanced

features.</description >

</project >

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

• Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

• Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

• A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

• Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

• A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

• The generated build artifacts will be in folder target

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

• Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

• A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

• The generated build artifacts will be in folder target

• Let us take a closer look on the stuff we just did

OOP with Java Thomas Weise 5/22

Maven Group IDs

• The group ID identifies the “greater project”

OOP with Java Thomas Weise 6/22

Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

OOP with Java Thomas Weise 6/22

Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

• It has to at least identify a domain name you control

OOP with Java Thomas Weise 6/22

Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

• It has to at least identify a domain name you control

• In our case, this is cn.edu.hfuu.iao , because the Institute of Applied

Optimization has domain iao.hfuu.edu.cn

OOP with Java Thomas Weise 6/22

Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

• It has to at least identify a domain name you control

• In our case, this is cn.edu.hfuu.iao , because the Institute of Applied

Optimization has domain iao.hfuu.edu.cn

• It might have some additions for “greater projects”

OOP with Java Thomas Weise 6/22

Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

• It has to at least identify a domain name you control

• In our case, this is cn.edu.hfuu.iao , because the Institute of Applied

Optimization has domain iao.hfuu.edu.cn

• It might have some additions for “greater projects”

• For instance, I could have used cn.edu.hfuu.iao.teaching as a group
for all of our teaching projects

OOP with Java Thomas Weise 6/22

Maven Artifact ID

• The artifact ID is basically the name of the jar archive we want to
generate without the version

OOP with Java Thomas Weise 7/22

Maven Artifact ID

• The artifact ID is basically the name of the jar archive we want to
generate without the version

• You can consider it as a specially-formatted specific project name

OOP with Java Thomas Weise 7/22

Maven Artifact ID

• The artifact ID is basically the name of the jar archive we want to
generate without the version

• You can consider it as a specially-formatted specific project name

• It is spelled in lower case letters and dashes are used (-) to separate
name components

OOP with Java Thomas Weise 7/22

Maven Artifact ID

• The artifact ID is basically the name of the jar archive we want to
generate without the version

• You can consider it as a specially-formatted specific project name

• It is spelled in lower case letters and dashes are used (-) to separate
name components

• Basically, a group can contain several related projects with artifacts

OOP with Java Thomas Weise 7/22

Semantic Versioning

• Every project always has a version

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

• compile exactly the same with library version a1.b1.c2

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

• compile exactly the same with library version a1.b1.c2

• compile exactly the same with library version a1.b2.c2 if b2 ≥ b1

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

• compile exactly the same with library version a1.b1.c2

• compile exactly the same with library version a1.b2.c2 if b2 ≥ b1

• may not compile with library version a2.b2.c2 if a1 6= a2

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

• compile exactly the same with library version a1.b1.c2

• compile exactly the same with library version a1.b2.c2 if b2 ≥ b1

• may not compile with library version a2.b2.c2 if a1 6= a2

• Exception: If your project is still very experimental, you can use
version 0.x.y : For such versions, the rules for minor and patch level

versions can be violated (but you should still try to not to)

OOP with Java Thomas Weise 8/22

http://semver.org/

Project Structure

• Maven prescribes a special project structure

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code
target generated during build: generated classes and artifacts

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code
target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources
test the test folder: all test sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy

test the test folder: all test sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy
resources resources (text, graphics, . . .)

test the test folder: all test sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy
resources resources (text, graphics, . . .)

test the test folder: all test sources and resources

java the test java source code / package hierarchy

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

• Maven prescribes a special project structure

• It separates the Java source code files from resources such as text
files or images

• It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

• The structure is as follows:

<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy
resources resources (text, graphics, . . .)

test the test folder: all test sources and resources

java the test java source code / package hierarchy
resources test resources (text, graphics, . . .)

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

OOP with Java Thomas Weise 9/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers
• property definitions to be used in the rest of the pom

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers
• property definitions to be used in the rest of the pom

• license information

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers
• property definitions to be used in the rest of the pom

• license information
• infos about SCM, issue management, and the inception year

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers
• property definitions to be used in the rest of the pom

• license information
• infos about SCM, issue management, and the inception year
• the dependencies (i.e., the libraries we need)

OOP with Java Thomas Weise 10/22

Maven pom.xml

• The most important component of a Maven project is the pom.xml

file

• This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attribute1="value1" attribute2=...> ...element contents ...</elementName>

• It contains all the important information about the project, e.g,
• the basic infos (we use this in our simple project)
• infos about the organization developing the project
• infos about the involved developers
• property definitions to be used in the rest of the pom

• license information
• infos about SCM, issue management, and the inception year
• the dependencies (i.e., the libraries we need)
• the build process specification

OOP with Java Thomas Weise 10/22

Maven pom.xml

Listing: The contents of the Maven project file pom.xml

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >simple -maven -project </artifactId >

<version >0.0.1 </version >

<name>Simple Maven Project </name>

<description >A simple maven project without any advanced

features.</description >

</project >

OOP with Java Thomas Weise 10/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)

verify run any checks on results of integration tests

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)

verify run any checks on results of integration tests
install install the package into the local repository (for other builds depending on it)

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)

verify run any checks on results of integration tests
install install the package into the local repository (for other builds depending on it)
deploy release into environment

OOP with Java Thomas Weise 11/22

Maven Build Process and Goals

• The Maven build process is not easy to understand

• The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)

verify run any checks on results of integration tests
install install the package into the local repository (for other builds depending on it)
deploy release into environment

• In Eclipse (or when using the Maven command line tool mvn), you
only need to specify clean together the last phase to be executed
and all phases leading up to it are executed

OOP with Java Thomas Weise 11/22

Maven Artifacts

• An artifact is a result of the build process

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType>

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

• -javadoc for archives containing the generated Javadoc documentation

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

• -javadoc for archives containing the generated Javadoc documentation

• -tests for generating the compiled tests

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

• -javadoc for archives containing the generated Javadoc documentation

• -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

OOP with Java Thomas Weise 12/22

Maven Artifacts

• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

• -javadoc for archives containing the generated Javadoc documentation

• -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

• Our simple project generated artifact simple-maven-project-0.0.1.jar

OOP with Java Thomas Weise 12/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project

OOP with Java Thomas Weise 13/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools

OOP with Java Thomas Weise 13/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools,
• depends on another library (commons math 3 from Apache)

OOP with Java Thomas Weise 13/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools,
• depends on another library (commons math 3 from Apache),
• produces an executable jar archive

OOP with Java Thomas Weise 13/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools,
• depends on another library (commons math 3 from Apache),
• produces an executable jar archive, and

• generates Javadoc (in an archive)

OOP with Java Thomas Weise 13/22

Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools,
• depends on another library (commons math 3 from Apache),
• produces an executable jar archive, and

• generates Javadoc (in an archive)

• For this purpose, we generate a simple Maven project in exactly the
same way as before, but name the artifact project-with-dependencies

OOP with Java Thomas Weise 13/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: The contents of the pom.xml after we edit it

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -dependencies </artifactId >

<version >0.0.1 </version >

<name>Project with Dependencies </name>

<description >A Maven project with dependencies and

more information ,

also generating an executable JAR and

Javadoc.</description >

<url>http://iao.hfuu.edu.cn/</url>

<organization >

<url>http: //iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO)</name>

</organization >

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email>tweise@hfuu.edu.cn</email >

<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>

<organization >Institute of Applied Optimization

(IAO)</organization >

<organizationUrl >http: //iao.hfuu.edu.cn/</organizationUrl >

<roles>

<role>architect </role>

<role>developer </role>

</roles>

<timezone >China Time Zone</timezone >

</developer >

</developers >

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding >

<project.reporting.outputEncoding >${ encoding}</project.reporting.outputEncoding >

<jdk.version >1.8</jdk.version >

</properties >

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29

June 2007</name>

<url>http://www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >

<issueManagement >

<url>https: // github.com/thomasWeise/javaExamples/issues </url>

<system >GitHub </system >

</issueManagement >

<scm>

<connection >scm:git:git@github.com:thomasWeise/javaExamples.git</connection >

<developerConnection >

scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection >

<url>git@github.com:thomasWeise/javaExamples.git</url>

</scm>

<inceptionYear >2017</inceptionYear >

<dependencies >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >

<build >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -javadoc -plugin </artifactId >

<version >2.9.1 </version >

<configuration >

<show>private </show>

<detectLinks >true</detectLinks >

<detectJavaApiLink >true</detectJavaApiLink >

<quiet >true</quiet >

</configuration >

<executions >

<execution >

<id>attach -javadoc </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.3</version >

<configuration >

<includePom >true</includePom >

<includePom >true</includePom >

<useDefaultExcludes >true</useDefaultExcludes >

<useDefaultManifestFile >false </useDefaultManifestFile >

</configuration >

<executions >

<execution >

<id>attach -sources </id>

<goals >

<goal>jar</goal>

</goals >

</execution >

</executions >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -jar -plugin </artifactId >

<version >2.6</version >

<configuration >

<archive >

<manifest >

<addDefaultImplementationEntries />

<addDefaultSpecificationEntries />

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -assembly -plugin </artifactId >

<executions >

<execution >

<goals >

<goal>attached </goal>

</goals >

<phase >package </phase >

<configuration >

<descriptorRefs >

<descriptorRef >jar -with -dependencies </descriptorRef >

</descriptorRefs >

<archive >

<manifest >

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build >

</project >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• OK, thank you, now the details

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 6–12: Basic Info

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -dependencies </artifactId >

<version >0.0.1 </version >

<name>Project with Dependencies </name>

<description >A Maven project with dependencies and

more information ,

also generating an executable JAR and

Javadoc.</description >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 15–19: Organization Info

<url>http: //iao.hfuu.edu.cn/</url>

<organization >

<url>http: //iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO)</name>

</organization >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 21–35: Developer Info

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email>tweise@hfuu.edu.cn</email >

<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>

<organization >Institute of Applied Optimization

(IAO)</organization >

<organizationUrl >http: //iao.hfuu.edu.cn/</organizationUrl >

<roles>

<role>architect </role>

<role>developer </role>

</roles>

<timezone >China Time Zone</timezone >

</developer >

</developers >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 37–42: Properties

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding

<project.reporting.outputEncoding >${ encoding}</project.reporting.output

<jdk.version >1.8</jdk.version >

</properties >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 44–50: License

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007</name>

<url>http://www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3
• Issue management: where to report errors

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 52–55: Issue Management

<issueManagement >

<url>https: // github.com/thomasWeise/javaExamples/issues </url>

<system >GitHub </system >

</issueManagement >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 57–62: Software Configuration Managment

<scm>

<connection >scm:git:git@github.com:thomasWeise/javaExamples.git</connection >

<developerConnection >

scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection >

<url>git@github.com:thomasWeise/javaExamples.git</url>

</scm>

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 64: Inception Year

<inceptionYear >2017</inceptionYear >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 67–73: Dependencies

<dependencies >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 75–89: Build (1): Compilation

<build>

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 91–109: Build (2): Javadoc jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -javadoc -plugin </artifactId >

<version >2.9.1 </version >

<configuration >

<show>private </show>

<detectLinks >true</detectLinks >

<detectJavaApiLink >true</detectJavaApiLink >

<quiet >true</quiet >

</configuration >

<executions >

<execution >

<id>attach -javadoc </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 111–128: Build (3): Sources jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.3</version >

<configuration >

<includePom >true</includePom >

<useDefaultExcludes >true</useDefaultExcludes >

<useDefaultManifestFile >false </useDefaultManifestFile >

</configuration >

<executions >

<execution >

<id>attach -sources </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact: an executable jar with main class

cn.edu.hfuu.iao.Main

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 131–144: Build (4): (executable) jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -jar -plugin </artifactId >

<version >2.6</version >

<configuration >

<archive >

<manifest >

<addDefaultImplementationEntries />

<addDefaultSpecificationEntries />

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</plugin >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact
• Generate an executable jar including all dependencies (here

commons-math3) with main class cn.edu.hfuu.iao.Main

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 146–172: Build (5): (executable) jar with dependencies

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -assembly -plugin </artifactId >

<executions >

<execution >

<goals>

<goal>attached </goal>

</goals>

<phase>package </phase >

<configuration >

<descriptorRefs >

<descriptorRef >jar -with -dependencies </descriptorRef >

</descriptorRefs >

<archive >

<manifest >

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build>

</project >

OOP with Java Thomas Weise 14/22

The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact
• Generate an executable jar including all dependencies

• The pom.xml specifies quite a complex build process!

OOP with Java Thomas Weise 14/22

Main Class

Listing: Our Main class using Dependency

package cn.edu.hfuu.iao;

import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression; // import class from dependency library

/** The main class of our project: it reads data from stdin and returns a linear function fitting to it */

public class Main {

/** read data from a Scanner , return a SimpleRegression instance with the fitting result */

static final SimpleRegression fitLine(final Scanner scanner) {

SimpleRegression regression = new SimpleRegression (); // using commons -math3 's simple regression class

for (;;) { // keep reading double numbers until stdin ends

if (!(scanner.hasNextDouble ())) { break; } // if there is no double number , stop reading

double x = scanner.nextDouble (); // ok , there is one , read it as x coordinate

if (!(scanner.hasNextDouble ())) { break; } // if there is no double number , stop reading

double y = scanner.nextDouble (); // ok , there is one , read it as y coordinate

regression.addData(x, y); // add the new x and y coordinate to the dataset

}

return regression;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(final String [] args) {

System.err.println("Welcome to the linear curve fitting program."); //$NON -NLS -1$

System.err.println("Enter point pairs one pair a line , x and y coordinates separated by space or tab."); //$NON -NLS -1$

System.err.println("Linear curve is fitted when stdin ends or Ctrl -D is pressed."); //$NON -NLS -1$

SimpleRegression regression; // using commons -math3 's simple regression class

try (final Scanner scanner = new Scanner(System.in)) { // using a Scanner in try -with -resource on System.in

regression = fitLine(scanner); // fit the data from the scanner

}

System.out.print("y \u2248 ");//$NON -NLS -1$ // print "y is approximately "

System.out.print(regression.getIntercept ()); // print the y coordinate at x=0

System.out.print(" + x * ");//$NON -NLS -1$ // " + x * "

System.out.print(regression.getSlope ()); // print the slope

System.out.print(" (root mean square error: "); // print RMSE: is 0 if data is linear //$NON -NLS -1$

System.out.print(Math.sqrt(regression.getMeanSquareError ()));

System.out.println(')');

}

}

OOP with Java Thomas Weise 15/22

Building

• We now can build our project using goals clean install

OOP with Java Thomas Weise 16/22

Building

OOP with Java Thomas Weise 16/22

Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts

OOP with Java Thomas Weise 16/22

Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run

OOP with Java Thomas Weise 16/22

Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run
• project-with-dependencies-0.0.1-jar-with-dependencies.jar – an

executable jar of our project; contains commons-math3, can run

directly

OOP with Java Thomas Weise 16/22

Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run
• project-with-dependencies-0.0.1-jar-with-dependencies.jar – an

executable jar of our project; contains commons-math3, can run

directly
• project-with-dependencies-0.0.1-javadoc.jar : the generated

Javadoc documentation of our project (remember, a jar is basically a

zip archive. . .)

OOP with Java Thomas Weise 16/22

Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run
• project-with-dependencies-0.0.1-jar-with-dependencies.jar – an

executable jar of our project; contains commons-math3, can run

directly
• project-with-dependencies-0.0.1-javadoc.jar : the generated

Javadoc documentation of our project (remember, a jar is basically a

zip archive. . .)

• project-with-dependencies-0.0.1-sources.jar : a jar archive

containing the source code of our project (easy for distribution)

OOP with Java Thomas Weise 16/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

• There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

• There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

• Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically

OOP with Java Thomas Weise 17/22

Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

• There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

• Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically

• There also is a “local” repository on your machine, where dependencies
are cached (and your compiled artifacts are install ed into)

OOP with Java Thomas Weise 17/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 5–11: Basic Info

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -tests </artifactId >

<version >0.0.1 </version >

<name>Project with Tests </name>

<description >A project similar to "Project with

Dependencies",

but now also performing JUnit tests.</description >

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven
• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:
• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven
• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:
• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”, since it is only
needed during compilation and testing

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven
• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:
• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”, since it is only
needed during compilation and testing and not part of the final
application (or “jar-with-dependencies”-jar)

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 66–78: Added Test-time Dependency on JUnit

<dependencies >

<dependency >

<groupId >junit</groupId >

<artifactId >junit </artifactId >

<version >4.11</version >

<scope>test</scope >

</dependency >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 173–177: Using surefire Plugin (runs tests)

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -surefire -plugin </artifactId >

<version >2.18</version >

</plugin >

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us

• We can also generate a nice HTML report about the whole project and
the test results

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us

• We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when

building and add a set of reporting plugins the the pom.xml

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 182–195: Using surefire Plugin Report HTML

<reporting >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -project -info -reports -plugin </artifactId >

<version >2.7</version >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -surefire -report -plugin </artifactId >

<version >2.18</version >

</plugin >

</plugins >

</reporting >

OOP with Java Thomas Weise 18/22

Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us

• We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when

building and add a set of reporting plugins the the pom.xml

• In the next step, we can add a JUnit test and place it into the same
package as the real code, just in the src/test/java hierarchy

OOP with Java Thomas Weise 18/22

Test for our Main Class

Listing: The JUnit test of our Main class

package cn.edu.hfuu.iao;

import java.io.StringReader;

import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression;

import org.junit.Assert;

import org.junit.Test;

/** The unit test for our line -fitting main routine */

public class MainTest {

/** test whether (0,0) and (1,1) will fit to y=0+x*1 */

@Test

public void testFitting0011ResultsIn01 () {

SimpleRegression regression;

try (final StringReader sr = new StringReader("0 0\n1 1")) {//$NON -NLS -1$

try (final Scanner scanner = new Scanner(sr)) {

regression = Main.fitLine(scanner);

}

}

Assert.assertEquals (0d, regression.getIntercept (), 1e-10d);

Assert.assertEquals (1d, regression.getSlope (), 1e-10d);

}

}

OOP with Java Thomas Weise 19/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

• There will also be one interesting new artifact, a folder called site

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

• There will also be one interesting new artifact, a folder called site

• It contains a documentation of our project and the surefire test report

OOP with Java Thomas Weise 20/22

Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

• There will also be one interesting new artifact, a folder called site

• It contains a documentation of our project and the surefire test report

• We click on index.html inside this folder

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Building the New Project

OOP with Java Thomas Weise 20/22

Summary

• We have learned about creating and building projects with Maven

• Maven is the most widely used build tool in the Java world

• Maven allows us to specify the “coordinates”, i.e., a group ID, an artifact ID, and a
version, which uniquely identify one exact version of our project

• It allows us to specify other projects we depend upon by using their coordinates

• It allows us to define a complete build process, where each plugin executed is again
specified by its coordinate

• It can find and download many open source libraries from the internet automatically
for us (based on the coordinates in the dependency information)

• Maven also automatically resolves the dependencies of our dependencies recursively
for us

• Maven builds and project configurations are thus 100% reproducible

• It can generate all kinds of artifacts for us, including Javadoc, jars, source code jars,
and a HTML page describing our project

• It allows us to specify meta-data about our project, such as an URL and developer
information

OOP with Java Thomas Weise 21/22

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 22/22

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Maven

	Maven Basics
	Creating and Building a Basic Maven Project
	Maven Group IDs
	Maven Artifact ID
	Semantic Versioning
	Project Structure
	Maven pom.xml
	Maven Build Process and Goals
	Maven Artifacts

	Dependencies, Javadoc, Executable, More Infos
	Maven Project with Dependencies
	The new pom.xml
	Main Class
	Building
	Maven Repositories

	Maven Build with JUnit Tests
	Maven and JUnit
	Test for our Main Class
	Building the New Project

	Summary
	Summary

	Presentation End

