LR B

HEFEI UNIVERSITY

OOP with Java

30. Building with Maven

Thomas Weise - % &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &/E%

% AR B2

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST %.L X 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline %\’ .

@ Introduction
@ Maven Basics
9 Dependencies, Javadoc, Executable, More Infos

@ Maven Build with JUnit Tests

@ Summary

OOP with Java Thomas Weise 2/22

e We have learned a lot of ways to structure our code

e We have learned a lot of ways to structure our code

e We can divide it into methods, classes, and packages

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an API and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

Introduction %()

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

A library may, in turn, depend on (specific versions) of other libraries

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that?

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

e We need help.

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

e We need help. Help by a tool.

OOP with Java Thomas Weise 3/22

Introduction %\

1AQ

e We have learned a lot of ways to structure our code
e We can divide it into methods, classes, and packages

e We can create interfaces to specify an APl and then cleanly separate
the API implementation from the API usage

e We can put the API specifying interfaces in one library and the
implementation of the API into another library, for instance

e Projects will naturally end up using a lot of libraries

o As software grows, develops, and is maintained, there will be many
versions of these libraries, new versions introducing new features and
fixing bugs

o A library may, in turn, depend on (specific versions) of other libraries,
which then depend on yet other libraries

e How do we manage all of that? How can we achieve that our team
members all work with the same versions of the required libraries?

e We need help. Help by a tool. Maven is the tool.

OOP with Java Thomas Weise 3/22

e Maven is maybe the most widely-used project build and dependency
management tool in Java

e Maven is maybe the most widely-used project build and dependency
management tool in Java

e It allows you to specify which other software your project depends on

e Maven is maybe the most widely-used project build and dependency
management tool in Java

e It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build

process

e Maven is maybe the most widely-used project build and dependency
management tool in Java

e It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

e Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven %()

e Maven is maybe the most widely-used project build and dependency
management tool in Java

e It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

e Maven can build your project and generate archives, documentation,
a project website, and other artifacts

e Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

OOP with Java Thomas Weise 4/22

Maven %D

Maven is maybe the most widely-used project build and dependency
management tool in Java

It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

Maven allows for automatic deployment (which we will not talk about
here)

OOP with Java Thomas Weise 4/22

Maven %()

Maven is maybe the most widely-used project build and dependency
management tool in Java

It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

Maven allows for automatic deployment (which we will not talk about
here)

Eclipse comes with Maven support

OOP with Java Thomas Weise 4/22

Maven %()

Maven is maybe the most widely-used project build and dependency
management tool in Java

It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

Maven allows for automatic deployment (which we will not talk about
here)

Eclipse comes with Maven support

Maven does not just define the project dependencies, but also the
complete build process

OOP with Java Thomas Weise 4/22

Maven %D

Maven is maybe the most widely-used project build and dependency
management tool in Java

It allows you to specify which other software your project depends on,
which is then automatically downloaded and installed during the build
process

Maven can build your project and generate archives, documentation,
a project website, and other artifacts

Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

Maven allows for automatic deployment (which we will not talk about
here)

Eclipse comes with Maven support

Maven does not just define the project dependencies, but also the
complete build process

Everything is versionized, so all builds are 100% reproducible (which
sorts out the infamous “But it works on my machine...")

OOP with Java Thomas Weise 4/22

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

o Creating a Simple Maven Project

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then

discuss its basic features
e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

Creating and Building a Basic Maven Project

javaExamples - Java - Eclipse

javaExamples

w

Golnto

Open in New Window
Show In

Copy

Copy Qualified Name
Paste

Delete

Build Path
Refactor

&1 Import...

1 Export..

& Refresh

Close Project
Assign Working Sets.

Validate
Run As
Debug As

Restore from Local History...

Team
Compare With
Replace With

Configure
Source

Java Project
Proje

Package

Class

Interface

Enum
Annotation
Source Folder
Java Working Set
Folder

File

Untitled Text File
JUnit Test Case
Task

Example.

T other.. . o]

Javadoc [Declaration 47 Search & Console X | =g Progress 3 Debug

isplay at this time.

OOP with Java

Thomas Weise

5/22

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then

discuss its basic features
e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

Select a wizard oL
Create a Maven Project

Wizards:
(I:ype filter texk ™]

i check out Maven Projects From SCM
M Maven Module

@ | <Back | Next> h]‘| cancel | Finish |

Creating and Building a Basic Maven Project %\’

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location

via Browse... , then click Next

OOP with Java Thomas Weise 5/22

New Maven project

Select project name and location ﬁ

Create a simple project (skip archetype selection)

("] Use default Workspace location

Location:

(|vaExarnplesflessuns/!ﬂibuildingiwithﬁmaven,"simpleﬁmavenjruject ~ | | Browse...

("] Add project(s) to working set

Working set: - || More...
» Advanced
@ | <Back || next> ,J | cancel | Finish

Creating and Building a Basic Maven Project %0

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location

via Browse... , then click Next
e In the following form, we make the selections shown here (which | will

explain later) and click Finish

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project

>
<

”

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,
and click Next
e We check Create a simple project and choose a suitable location
via Browse... , then click Next
e In the following form, we make the selections shown here (which | will
explain later) and click Finish :
e Group Id: cn.edu.hfuu.iao
e Artifact Id: simple-maven-project
e Version: 0.0.1
e Packaging: jar

e Project name: Simple Maven Project

OOP with Java Thomas Weise 5/22

New Maven project

Configure project ﬁ

‘Artifact 1
Group Id: [cn.edu.hfuu.ian - |
ArtifactId: [simple—maven-prnje(t - |
Version: 0.0.1 ¥
Packaging: | jar =
Name: [Simple Maven Project -
Description: A simple maven project without anyadvanced features. |
Parent Project
Group Id: [> |
Artifact Id: [v |
Version: ~ \.Browse... Clear |
» Advanced
@ [<Back | wmext> || cancel | | Finish p

Creating and Building a Basic Maven Project

”

>
<

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project:
e First, we need to choose New and Other... from the File menu

e In the next dialog, we open folder Maven , choose Maven Project ,

and click Next
e We check Create a simple project and choose a suitable location

via Browse... , then click Next

e In the following form, we make the selections shown here (which | will
explain later) and click Finish

e A new Maven project has appeared, which basically is a special Eclipse
Java project with a special folder structure and a file called pom.xml

containing the project (and build) information

OOP with Java Thomas Weise 5/22

in~HW@iz

-0~ Q-iWO~iBE

[oudkacen || 5 @&+

12 PackageExp % | TypeHierarc JuJunit = B
e@ « -
» Gy>javaExamples [javaExamples master]
~44> simple-maven-project [javaExamples master]
@ sr¢/main/java
(= src/main/resources
@ srcftest/java
@ src/test/resources
» B JRE System Library [J25E-1.5]
» s> settings
» s
> target
(% .classpath
gitignore
B prnject
[%porm.

B simmamwm/mml u] =5

1 <oroject sans=hso:mavenapche.ra/FON/ 4.0 Sains s S=e 9 30/ 091/ LSchena- nstance

e
e reriings

S Sorouplaven.eu
3 <artifactIdssimpl n-project</artifactis>

5 <versions6.. h/v:rs)un)

5 <nane>Simple Maven Project</nane>

7 <uesmgmm Sifple maven project without any advanced features.</descriptions
8 </projec:

Overview | d | | i [pom.xml
181 Problems @ Javadoc [¢ Declaration 4 Searci [E Console m} g Progress % Debug

7.
(== Hwilh

No consoles to display at this time.

pom.xml-simple-maven-project

Creating and Building a Basic Maven Project %\’

Listing: The contents of the Maven project file pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>simple -maven-project</artifactId>
<version>0.0.1</version>
<name>Simple Maven Project</name>
<description>A simple maven project without any advanced
features.</description>
</project>

OOP with Java Thomas Weise 5/22

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

o Creating a Simple Maven Project
e We can now build the project

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

o Creating a Simple Maven Project

e We can now build the project
o right-click the project, choose Run As and then Maven Build

Creating and Building a Basic Maven Project

javaExamples - Java - simple-maven-project /pom.xm|

ng aiw AR RO R RSl MR SY- X102 g v Gl ~ % v

= @

2 PackageExp 3% TypeHierarc JuUnit = B | [simplemaven-project/pom.xml 52 =5

<project xuln:

t19://maven. apache. org/PON/4.0. 8" xins:xs3="Rttp:/ /. 3. g/ 2001/ KHLSChena - instance”

rsion>4.0.0</modelversio

Brobptes il hfuu Resclyroniioe

ven-project</artifactiss

o>

>5)'wle Haven n Proje
A EiBALG maten RrOTect WLABU sy SVARCEd reRturs desErpttan

Open in New Window
Open Type Hierarchy
show In

Build Path
Source
Refactor
s Import...
3 Export...

& Refresh

Close Project

Unrelated Projects erview | Dependenci M| pom.xml,
ign Working Sets...
o oo oo lon + search G Console 52 5y Progress 15 Debug =
RunAs g lJavaApplPt
Debug As icatio A=k

Validate

Restore from Local History
Maven

Team

OOP with Java Thomas Weise 5/22

1AQ

Creating and Building a Basic Maven Project %\’

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
e right-click the project, choose Run As and then Maven Build
e Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

OOP with Java Thomas Weise 5/22

Configu

Edit configuration and launch.

)

Name: (simpleﬁmaven}rﬂje(t

1 Main " mi JRE| & Refresh| &7 Source| B Environment| & Common|

Base directory:

(S{project_luc:simple«mavenﬂpruj ect}

| workspace... | \'Filesystem....\ | variables...

)
J

Goals: r—(lean compile package install

Profiles: [

User settings: [/home/meise/.mzlsettings.xml

qurkspa:e...J LFile swtem...J | variables..

)
]
)

" Offline "] update Snapshots
(") Debug Output "1 Skip Tests [~] Non-recursive
("1 Resolve Workspace artifacts

E Threads

Parameter Name Value

Apply |

Creating and Building a Basic Maven Project %\

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project

e right-click the project, choose Run As and then Maven Build

e Under Goals: enter clean compile package install (just using
clean install would do the same thing) then Run

e A build process will start which will first download several required

modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

OOP with Java Thomas Weise 5/22

Creating and Building a Basic Maven Project %\

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
right-click the project, choose Run As and then Maven Build
Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

The generated build artifacts will be in folder target

OOP with Java Thomas Weise 5/22

roject

pom.xml - Eclipse

-0 -Q-iBE-IOE S

(vances | @ @32

12 PackageExp %X | TypeHierarc JuJunit = B | [simple-maven-project/pom.xml 52 =8

@
» Gy > javaExamples [javaExamples master]
~44> simple-maven-project [javaExamples master]
@ sr/main/java
 sr/main/resources
@ src/test/java
@ src/test/resources
» @ JRE System Library [J2SE-1.5]
» o> settings
»esrc
~Etarget
» > maven-archiver

% classpath
gitignore
1% -project
& pom.xml

= <project ulns="nttp://maven. apache.org/POU/4.0.0" xalns:xsi="http:/ . 3. 00/ 2001/ XHLS chena- instance" :
“andelVors Lon-4.6. oc/modetieraion
SaiETdcs adu hfun, Tasc/arasatic

en-project</artifactlds

Project</nane>
Ple maven project without any advanced Teatures.</descriptions

| pom.xml
2 Problems @ Javadoc & Declaration < Search & Console 5 \:epmgress 45 Debug =8

Ex% AEe@B vo8-0-
/2 (Fehu , 2017, 6:04:3

] ey efee

<terminated> simple_maven_project [Maven Build],

INFO] Copying 0 resource

NFO
INFQ) . maven-compiler-plugin:3. Liconpile (default conpile) @ simple-maven-project ---
INFO] Nothing to conpile - all classes are up to

hFO

INFO] --- maven- resources-plut

igin:2. @
RG] “Using platforn encoding (UTF-B actually) to copy Tiltered resources. i.c. build 1o platforn dependent!
INFO] Copying O resource
o

NFO Ter-plugin:3.1:t. ite) @ oject ---
TR0 Hoining 1o compiie ALl ciasies are i o date
o

INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ simple-maven-projec
ok e A ot L it s
o

INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ simple-maven-project ---

INFO] --- maven-install-plugin:2.4:install (default-install) @ simple-maven-project ---
https://re

h 1.1.7,
h 1.1.7/1
.

1.6,
INFO] Installing ‘progranming/j 7AE Laiaing with movenrsinsle maven
INFO] Installing i i building with s naven

INFO] Total time: 21.034 s
INFO] Finished at: 2017-02-13T06:04:57+05:00
INFO] Final Memory: 15M/296M

I ject-0.0.1.jar

Creating and Building a Basic Maven Project %\

o Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

e Creating a Simple Maven Project

e We can now build the project
e right-click the project, choose Run As and then Maven Build
e Under Goals: enter clean compile package install (just using
clean install would do the same thing) then Run
e A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

e The generated build artifacts will be in folder target

e Let us take a closer look on the stuff we just did

OOP with Java Thomas Weise 5/22

e The group ID identifies the “greater project”

e The group ID identifies the “greater project”

e |t follows Java's package naming convention

e The group ID identifies the “greater project”

e |t follows Java's package naming convention

e It has to at least identify a domain name you control

The group ID identifies the “greater project”

It follows Java's package naming convention

It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn

The group ID identifies the “greater project”

It follows Java's package naming convention

It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn

It might have some additions for “greater projects”

Maven Group IDs %\

e The group ID identifies the “greater project”
e |t follows Java's package naming convention
e It has to at least identify a domain name you control

e In our case, this is cn.edu.hfuu.iao , because the Institute of Applied
Optimization has domain iao.hfuu.edu.cn

e |t might have some additions for “greater projects”

e For instance, | could have used cn.edu.hfuu.iao.teaching as a group
for all of our teaching projects

OOP with Java Thomas Weise 6/22

e The artifact ID is basically the name of the jar archive we want to
generate without the version

e The artifact ID is basically the name of the jar archive we want to
generate without the version

e You can consider it as a specially-formatted specific project name

e The artifact ID is basically the name of the jar archive we want to
generate without the version

e You can consider it as a specially-formatted specific project name

e It is spelled in lower case letters and dashes are used (-) to separate
name components

The artifact ID is basically the name of the jar archive we want to
generate without the version

e You can consider it as a specially-formatted specific project name

It is spelled in lower case letters and dashes are used (-) to separate
name components

Basically, a group can contain several related projects with artifacts

e Every project always has a version

http://semver.org/

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard

http://semver.org/

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

http://semver.org/

e Every project always has a version
e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the

http://semver.org/

e Every project always has a version
e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,

http://semver.org/

e Every project always has a version
e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible

manner

http://semver.org/

e Every project always has a version
e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible

manner, and
e patch version when you make backwards-compatible bug fixes.

http://semver.org/

Semantic Versioning IAO\’

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,

e minor version when you add functionality in a backwards-compatible
manner, and

e patch version when you make backwards-compatible bug fixes.

e Code using a library of version ai.bi.ct will

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning %}

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will
e compile exactly the same with library version ail.bi.c2

OOP with Java Thomas Weise 8/22

http://semver.org/

1AQ2

Semantic Versioning §\

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will

e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl

OOP with Java Thomas Weise 8/22

http://semver.org/

1AQ2

Semantic Versioning §\

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will

e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl
e may not compile with library version a2.b2.c2 if al # a2

OOP with Java Thomas Weise 8/22

http://semver.org/

Semantic Versioning §\

1AQ2

e Every project always has a version

e The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

e Given a version number major.minor.patch , increment the:

e major version when you make incompatible API changes,
e minor version when you add functionality in a backwards-compatible
manner, and
e patch version when you make backwards-compatible bug fixes.
e Code using a library of version ai.bi.ct will
e compile exactly the same with library version ail.bi.c2
e compile exactly the same with library version a1.b2.c2 if b2 > bl
e may not compile with library version a2.b2.c2 if al # a2
e Exception: If your project is still very experimental, you can use
version 0.x.y : For such versions, the rules for minor and patch level
versions can be violated (but you should still try to not to)

OOP with Java Thomas Weise 8/22

http://semver.org/

e Maven prescribes a special project structure

e Maven prescribes a special project structure

o |t separates the Java source code files from resources such as text
files or images

e Maven prescribes a special project structure

o |t separates the Java source code files from resources such as text
files or images

o |t separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

e Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows

Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder

Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code

Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder

src the folder for all source code
target generated during build: generated classes and artifacts

e Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code
target generated during build: generated classes and artifacts
pom.xml the project settings

Project Structure %()

e Maven prescribes a special project structure
e It separates the Java source code files from resources such as text
files or images

o It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

e The structure is as follows:
<root> the project root folder
src the folder for all source code
main the main folder: all program/library sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure %()

e Maven prescribes a special project structure
e It separates the Java source code files from resources such as text
files or images

o It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

e The structure is as follows:
<root> the project root folder
src the folder for all source code
main the main folder: all program/library sources and resources
test the test folder: all test sources and resources
target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure %()

e Maven prescribes a special project structure
e It separates the Java source code files from resources such as text
files or images

o It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

e The structure is as follows:
<root> the project root folder

src the folder for all source code

main the main folder: all program/library sources and resources
java the java source code / package hierarchy

test the test folder: all test sources and resources

target generated during build: generated classes and artifacts

pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure %0,

e Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code
main the main folder: all program/library sources and resources
java the java source code / package hierarchy
resources resources (text, graphics, ...)
test the test folder: all test sources and resources

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure %0,

e Maven prescribes a special project structure

It separates the Java source code files from resources such as text
files or images

It separates the actual program source code from the code for unit
testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code
main the main folder: all program/library sources and resources
java the java source code / package hierarchy
resources resources (text, graphics, ...)
test the test folder: all test sources and resources
java the test java source code / package hierarchy

target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise 9/22

Project Structure

e Maven prescribes a special project structure

files or images

It separates the Java source code files from resources such as text

It separates the actual program source code from the code for unit

testing (similar to what we did in Lesson 27: Testing with JUnit)

The structure is as follows:

<root> the project root folder
src the folder for all source code

main the main folder: all program/library sources and resources

java the java source code / package hierarchy
resources resources (text, graphics, ...)
test the test folder: all test sources and resources
java the test java source code / package hierarchy
resources test resources (text, graphics, ...)
target generated during build: generated classes and artifacts
pom.xml the project settings

OOP with Java Thomas Weise

9/22

{2 PackageExp 2 |2 TypeHierarc JuJuUnit = O

~

~#3 > simple-maven-project [javaExamples master]

#®src/main/fjava
#src/main/resources
#src/test/java
= src/test/resources

» B\ JRE System Library [J25E-1.5]

¥ 3 >.settings

ye=src

~=target
* &=maven-archiver
¥ = maven-status

P simple-maven-project-0.0.1.jar
[% .classpath R
[.gitignore
[% .project
[pom.xml

e The most important component of a Maven project is the pom.xml
file

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e It contains all the important information about the project

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>
e It contains all the important information about the project, e.g,
e the basic infos (we use this in our simple project)

Maven pom. xml %()

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

e the basic infos (we use this in our simple project)
e infos about the organization developing the project

OOP with Java Thomas Weise 10/22

Maven pom. xml

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

e the basic infos (we use this in our simple project)
e infos about the organization developing the project
e infos about the involved developers

OOP with Java Thomas Weise 10/22

Maven pom. xml

>
<

”

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes

a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,
o the basic infos (we use this in our simple project)

e infos about the organization developing the project
e infos about the involved developers

e property definitions to be used in the rest of the pom

OOP with Java Thomas Weise 10/22

Maven pom. xml

>
<

”

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of

<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,
the basic infos (we use this in our simple project)

infos about the organization developing the project

infos about the involved developers

property definitions to be used in the rest of the pom

e license information

OOP with Java Thomas Weise 10/22

Maven pom. xml

”

>
<

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

the basic infos (we use this in our simple project)

infos about the organization developing the project

infos about the involved developers

property definitions to be used in the rest of the pom

license information

e infos about SCM, issue management, and the inception year

OOP with Java Thomas Weise 10/22

Maven pom.xml

”

>
<

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

the basic infos (we use this in our simple project)

infos about the organization developing the project

infos about the involved developers

property definitions to be used in the rest of the pom

license information

infos about SCM, issue management, and the inception year
e the dependencies (i.e., the libraries we need)

OOP with Java Thomas Weise 10/22

Maven pom.xml

”

>
<

e The most important component of a Maven project is the pom.xml
file

e This file is in the (much more general!) XML format, which prescribes
a hierarchical structure of elements and attributes in the form of
<elementName attributel="valuel" attribute2=...> ...element contents ...</elementName>

e |t contains all the important information about the project, e.g,

the basic infos (we use this in our simple project)
infos about the organization developing the project
infos about the involved developers

property definitions to be used in the rest of the pom

license information

infos about SCM, issue management, and the inception year
the dependencies (i.e., the libraries we need)

the build process specification

OOP with Java Thomas Weise 10/22

Maven pom. xml %\)’

Listing: The contents of the Maven project file pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>simple-maven-project</artifactId>
<version>0.0.1</version>
<name>Simple Maven Project</name>
<description>A simple maven project without any advanced
features.</description>
</project>

OOP with Java Thomas Weise 10/22

e The Maven build process is not easy to understand

e The Maven build process is not easy to understand

e The build process consists of phases

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean delete everything in the target folder

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean delete everything in the target folder
validate check whether the project is correct and all necessary info is there

e The Maven build process is not easy to understand
e The build process consists of phases, such as

clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean delete everything in the target folder
validate check whether the project is correct and all necessary info is there
compile compile the source code of the project
test run all tests, e.g., JUnit tests (fails if tests fail)

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean
validate
compile
test
package

delete everything in the target folder

check whether the project is correct and all necessary info is there
compile the source code of the project

run all tests, e.g., JUnit tests (fails if tests fail)

create the artifact package (in our case, the jar)

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean delete everything in the target folder
validate check whether the project is correct and all necessary info is there
compile compile the source code of the project
test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar)
verify run any checks on results of integration tests

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean
validate
compile
test
package
verify
install

delete everything in the target folder

check whether the project is correct and all necessary info is there

compile the source code of the project

run all tests, e.g., JUnit tests (fails if tests fail)

create the artifact package (in our case, the jar)

run any checks on results of integration tests

install the package into the local repository (for other builds depending on it)

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean
validate
compile
test
package

verify
install
deploy

delete everything in the target folder

check whether the project is correct and all necessary info is there
compile the source code of the project

run all tests, e.g., JUnit tests (fails if tests fail)

create the artifact package (in our case, the jar)

run any checks on results of integration tests

install the package into the local repository (for other builds depending on it)
release into environment

Maven Build Process and Goals

W

e The Maven build process is not easy to understand

e The build process consists of phases, such as

clean
validate
compile
test
package
verify
install
deploy

delete everything in the target folder

check whether the project is correct and all necessary info is there

compile the source code of the project

run all tests, e.g., JUnit tests (fails if tests fail)

create the artifact package (in our case, the jar)

run any checks on results of integration tests

install the package into the local repository (for other builds depending on it)
release into environment

e In Eclipse (or when using the Maven command line tool mva), you
only need to specify clean together the /ast phase to be executed
and all phases leading up to it are executed

OOP with Java Thomas Weise 11/22

e An artifact is a result of the build process

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType>

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , wWhere

artifactlD is the id of the project's main artifiact, e.g., simple-maven-project

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , wWhere

artifactlD is the id of the project's main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , wWhere

artifactlD is the id of the project's main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , wWhere

artifactlD is the id of the project's main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as

e -src for archives containing the source code and resources (not the generated

.class files)

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType> , wWhere

artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as
e -src for archives containing the source code and resources (not the generated

.class files)

e -javadoc for archives containing the generated Javadoc documentation

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType> , wWhere

artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as
e -src for archives containing the source code and resources (not the generated
.class files)
e -javadoc for archives containing the generated Javadoc documentation

e -tests for generating the compiled tests

Maven Artifacts %\’

1AQ

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType> , wWhere

artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as
e -src for archives containing the source code and resources (not the generated
.class files)
e -—javadoc for archives containing the generated Javadoc documentation
e -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

OOP with Java Thomas Weise 12/22

Maven Artifacts %o»

e An artifact is a result of the build process

e Usually, this is an archive containing an executable, source, tests, or
documentation

e The name of an artifact is usually

artifactID-version[-classifier].<archiveType> , wWhere

artifactID is the id of the project's main artifiact, e.g., simple-maven-project
version is the version string, e.g., 0.0.1
[-classifier] is an optional classifier for “side-artifacts”, such as
e -src for archives containing the source code and resources (not the generated
.class files)
e -—javadoc for archives containing the generated Javadoc documentation
e -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

e Our simple project generated artifact simple-maven-project-0.0.1.jar

OOP with Java Thomas Weise 12/22

e Let us now create a more advanced Maven project

e Let us now create a more advanced Maven project, which
e provides more information about our team and tools

e Let us now create a more advanced Maven project, which

e provides more information about our team and tools,
e depends on another library (commons math 3 from Apache)

e Let us now create a more advanced Maven project, which
e provides more information about our team and tools,
e depends on another library (commons math 3 from Apache),
e produces an executable jar archive

e Let us now create a more advanced Maven project, which
provides more information about our team and tools,
depends on another library (commons math 3 from Apache),
produces an executable jar archive, and

generates Javadoc (in an archive)

e Let us now create a more advanced Maven project, which

e provides more information about our team and tools,
depends on another library (commons math 3 from Apache),
e produces an executable jar archive, and

e generates Javadoc (in an archive)

e For this purpose, we generate a simple Maven project in exactly the
same way as before, but name the artifact project-with-dependencies

pom.xml

e We then edit the generated pom.xml file to look as follows

The new pom.xml

Listing: The contents of the

<progect sameeriety /e
<oinen von. apache org
//navan. spache .org/xsd/uaven-4.0 N

spsche ore/p01/4.0.0
72001/

04/3.0.0
neep)

<modslversion>s.0.0</modelversion>
<groupld>cn. sdn. hfus. a0¢/ grouple>

Fversion>
rojact vith Dependenciss</nans>
<descriptionsh Naven project with dependencies and

doc. </ description>

<arl>netp://sn0. htus. adu. cn/</url>

paiiea pvimization (140)</nane>
</organization>

<davaopere>

<roles>
Grelearaiec i

<roledeveloper</rcles
</roless

<tinezone>China Tine Zone</timszona>
<aevaloper>

</ovelopare>

<propertses:
<encoding>UTP-8</encoding>

pom.xml after we edit

<inceptionts

£>2017¢/ tnceptiontenr>

<aspondencies>
dependancy>
<groupla>org. apache . connons </groupld>
<artifactld>connons mathd</artifactia>
Cversion>3.6.1¢/veraton>
</aepondoncy>
</dopendoncios>

<plugine>
<plugin>
<groupIasorg. apache gine</grovpie>
<aresfaceldsmaven-conpiler plugin/artifactia>
<vareion>a.1</versions
<contiguration>
<eourcessCjax

versson) </zource>

PR o e e
</contiguration:
<Iplugin>

<plugin

<groupla>org. apacha . naven. plugine</groupld>
Cartifactia>maven-javados -pluginc/areifaceia>

<detectiinks>eruec/ detactiinks

<project - bus: busta

CactectiavatpiLinkoerae < derectiavatpiLink>

Veraions1-a¢/jdk
<propertiers

<nans>0NU GENERAL PUBLIC LICENSE Version 3, 29
June 2007</nane>
oLty /o g arg/Lcanses/gpl-3.0-standalons dend />
caistribsionscapoc/diseributio

<1
<tcemsess

<issushanagoment>
SUriohtipa://giudan o/ homsalieies/Javabsaspies/asues</url>
Corsten i ey

PASSR——

</contiguraions
<ia>attach-javadoc</sd>

</plugin>

<plugs
St e oo aptnec/geourta

i hiceTisamren-souses Phagiac/ arci factia>
xm,mm
<contagu

netuaspons trus</aciudepons

<dsveloparconnection>
thonasvaise/savaxanpl

Gurs
<lzen>

truec/sn

<ur n.mmmw.s:m.(/us.u.mmmuam

Jesntigurazions

<plugin>
<groupld>ore. spache.naven. plugins </groupld>
<artifaceld>aaven-jar-plugine/artitactld>
<rersion>2.6</version>
<contiguration>

<addDetaulcinplenentationtacrios />
<addbetaulcSpeciticationtariss />
01 180 Hain </

</contiguration>
<prugin>

<plugin>
<groupld>org. spache. naven. plugins </groupld>
<artifacela>naven-assesbly plugin</areifaceid>
<goal>actached</gonl>
</goate>
<phase>packege</phase>
<Contigurations
<dsscriptorhota>

</aeseriptorhetes
<arcnive
<omnitast>
<RatnClase>cn. edu heus.fao Hain</sainClase>
<manitosts

</contiguration>
<Jexacution>
Jexcationss
</plugin>

Ipsgine
</puina

<progece>

OOP with Java

Thomas Weise

14/22

pom.xml

e We then edit the generated pom.xml file to look as follows
e OK, thank you, now the details

pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)

The new pom.xml %\”

Listing: pom.xml Lines 6-12: Basic Info

<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupId>
<artifactId>project-with-dependencies</artifactId>
<version>0.0.1</version>
<name>Project with Dependencies</name>
<description>A Maven project with dependencies and
more information,
also generating an executable JAR and
Javadoc.</description>

OOP with Java Thomas Weise 14/22

pom.xml

e We then edit the generated pom.xml file to look as follows

o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project

The new pom.xml %\)’

Listing: pom.xml Lines 15-19: Organization Info

<url>http://iao.hfuu.edu.cn/</url>
<organization>

<url>http://iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO0)</name>
</organization>

OOP with Java Thomas Weise 14/22

pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project
e The developers working on the project

The new pom.xml %\”

Listing: pom.xml Lines 21-35: Developer Info

<developers>
<developer>
<id>thomasWeise</id>
<name>Thomas Weise</name>
<email>tweise@hfuu.edu.cn</email>
<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>
<organization>Institute of Applied Optimization
(IA0)</organization>
<organizationUrl>http://iao.hfuu.edu.cn/</organizationUrl>
<roles>
<role>architect</role>
<role>developer</role>
</roles>
<timezone>China Time Zone</timezone>
</developer>
</developers>

OOP with Java Thomas Weise 14/22

pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
Project URL and info about the organization behind project
The developers working on the project
Properties: contents of element <n>contents</n> become available as

${n}

The new pom.xml %\)’

Listing: pom.xml Lines 37—-42: Properties

<properties>
<encoding>UTF-8</encoding>
<project.build.sourceEncoding>${encoding}</project.build.sourceEncoding
<project.reporting.outputEncoding>${encoding}</project.reporting.output
<jdk.version>1.8</jdk.version>

</properties>

OOP with Java Thomas Weise 14/22

pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
e Project URL and info about the organization behind project
e The developers working on the project
o Properties: contents of element <n>contents</n> become available as

${n}
Licensing Information: here GPL version 3

The new pom.xml

<licenses>
<license>
<name>GNU GENERAL PUBLIC LICENSE Version 3,
<url>http://www.gnu.org/licenses/gpl-3.0-standalone.html</url>
<distribution>repo</distribution>
</license>
</licenses>

29 June 2007</name>

OOP with Java Thomas Weise

14/22

pom.xml

e We then edit the generated pom.xml file to look as follows
o Basic Project Information (almost the same as before)
Project URL and info about the organization behind project
The developers working on the project
Properties: contents of element <n>contents</n> become available as

${n}
Licensing Information: here GPL version 3
Issue management: where to report errors

The new pom.xml

Listing: pom.xml Lines 52-55: Issue Management

<issueManagement >
<url>https://github.com/thomasWeise/javaExamples/issues</url>
<system>GitHub</system>

</issueManagement>

OOP with Java Thomas Weise 14/22

The new pom.xml %()

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project

The developers working on the project

Properties: contents of element <n>contents</n> become available as
${n}

Licensing Information: here GPL version 3

e |ssue management: where to report errors

e Software configuration management: here our git repository

OOP with Java Thomas Weise 14/22

The new pom.xml %\)’

Listing: pom.xml Lines 57—62: Software Configuration Managment

<scm>
<connection>scm:git:git@github.com:thomasWeise/javaExamples.git</connection>
<developerConnection>
scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection>
<url>git@github.com:thomasWeise/javaExamples.git</url>
</scm>

OOP with Java Thomas Weise 14/22

pom.xml ‘

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Listing: pom.xml Lines 64: Inception Year

<inceptionYear>2017</inceptionYear>

The new pom.xml %()

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

e Software configuration management: here our git repository
e Inception year: when did the project start

e Dependencies: Which other libraries does our project need?

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 67—73: Dependencies

<dependencies>
<dependency>
<groupld>org.apache.commons</groupIld>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
</dependencies>

OOP with Java Thomas Weise

14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

OOP with Java Thomas Weise 14/22

The new pom.xml %\”

Listing: pom.xml Lines 75-89: Build (1): Compilation

<build>

<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>${jdk.version}</source>
<target>${jdk.version}</target>
<encoding>${encodingl}</encoding>
<showWarnings>true</showWarnings>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>

OOP with Java Thomas Weise 14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 91-10

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.9.1</version>
<configuration>
<show>private</show>
<detectLinks>true</detectLinks>
<detectJavaApilink>true</detectJavaApilink>
<quiet>true</quiet>
</configuration>
<executions>
<execution>
<id>attach-javadoc</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>

OOP with Java Thomas Weise 14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 111-128: Build (3): Sources jar

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<version>2.3</version>
<configuration>
<includePom>true</includePom>
<useDefaultExcludes>true</useDefaultExcludes>
<useDefaultManifestFile>false</useDefaultManifestFile>
</configuration>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>

OOP with Java Thomas Weise 14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code
Generate the “main” artifact: an executable jar with main class

cn.edu.hfuu.iao.Main

OOP with Java Thomas Weise 14/22

The new pom.xml

Listing: pom.xml Lines 131-144: Build (4): (executable) jar

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.6</version>
<configuration>
<archive>
<manifest>
<addDefaultImplementationEntries />
<addDefaultSpecificationEntries />
<mainClass>cn.edu.hfuu.iao.Main</mainClass>
</manifest>
</archive>
</configuration>
</plugin>

OOP with Java Thomas Weise

14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code

Generate the “main” artifact
Generate an executable jar including all dependencies (here

commons-math3) with main class cn.edu.hfuu.iao.Main

OOP with Java Thomas Weise 14/22

The new pom.xml %\”

Listing: pom i i ble) jar with de

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>attached</goal>
</goals>
<phase>package</phase>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>cn.edu.hfuu.iao.Main</mainClass>
</manifest>
</archive>
</configuration>
</execution>
</executions>
</plugin>

</plugins>
</build>

</project>

OOP with Java Thomas Weise 14/22

The new pom.xml

”

>
<

e We then edit the generated pom.xml file to look as follows

e The

Basic Project Information (almost the same as before)

Project URL and info about the organization behind project
The developers working on the project

Properties

Licensing Information: here GPL version 3

Issue management: where to report errors

Software configuration management: here our git repository
Inception year: when did the project start

Dependencies: Which other libraries does our project need?
Compilation process: here using Java ${jdk.version} which was set
to 1.8

We also want a jar containing the generated Javadoc

We also want a jar containing all the source code

Generate the “main” artifact
Generate an executable jar including all dependencies

pom.xml specifies quite a complex build process!

OOP with Java Thomas Weise 14/22

Main Class

Listing: Our Main class using Dependency

package cn.edu.hfuu.iao;

import java.util.Scannmer;

import org.apache.commons.math3.stat.regression.SinpleRegression;

public class Main {

static final SimpleRegression fitLine(final Scanner scanmer) {
= new SimpleRegression();

SimpleRegression regression =
for (;)
if (!(scanner.hasNextDouble())) { break; }
double x = scamner.nextDouble();
if (I(scanner.hasNextDouble())) { break; }
double y = scamner.nextDouble();
regression.addData(x, y);

return regression;

blic static final void main(final String[] args) {
System.err.printin("Welcome,to the linear curve fitting,program.");
System.err.println("Enter point, pairs,one pair,auline, x,and,yucoordinates separated, by,space orytab

pul

System.err.println("Linear curve,is,fitted, when,stdin,ends or Ctrl-D is pressed.")

SimpleRegression regression;
try (final Scammer scanner = new Scamner(System.in)) {

regression = fitLine(scamner);

System.out.print ("y,\u2248,");
System.out.print (regression.getIntercept());
System.out.print (", rux.u") ;
System.out.print (regression.getSlope());

System.out.print (", (root, mean,square error:
System.out.print (Math.sqrt(regression.getMeanSquareError ()));

System.out.println(')');

OOP with Java Thomas Weise 15/22

e We now can build our project using goals clean install

dependencies/pom.xml - Eclipse
BRip-0-QA-i@O-ridE A il orD
Quick Access .|£ @& %

iD-H@{=

[2 Package Explorer 2 | Type Hierarchy Ju Junit = IB project-with-dependencies/pom.xml 3 I [package-info.java [31 main.java = 0
< || =8 <addDefaultInplenentationEntries />
B @ & 139 <addDefaultSpecificationEntries />
~&> project:with-dependencies [javaExamples master] 5id Pl il
o S 142 </archives
(% > src/main/java S </configuration>
~# > an.edu.hfuu, | i d D d Hierarchy|Effective POM | pom.xml|
I#] problems @ Javadoc [Declaration ' Search [EI Console & ‘ =g Progress 4 Debug = O
[src/main/resources
@ sroftest/java X% HbEEE = E w5
@ srcftest/resources minated> project with d fencies (2) | Just/lib/jvm/java-8: /bin/j
» & JRE System Library [Javase-1.8] \g:;:g"gugrr:;u::::mng %o copy filtered resources.
» & Maven Dependencies

» G settings <= BaVER oG TEr pLuliEd TR CORGITE (detaute vertCinatie) g profect Uit dephasncles -

Nothing to compile - all classes are up ©
V>
s src --- maven-surefire-plugin:2.12.4:test (default-test) @ project-with-dependencies ---
~(=target
» (= apidocs --- maven-jar-plugini2.6:jar (default-jar) @ project-with-dependencies -
Building jar: /home/tweise/local/progranming/java/]avaExanples/Lessons/30 building with mavens
Earchive-tmp

» =generated-sources

» =javadoc-bundle-options
» &=maven-archiver

» =maven-status

--- maven-javadec-plugl
Building jar:

(attach-javadoc) @ project-with-dependencies ---
/home/tueise/local/progranming/java/javatxanples/lessons/30 building with maven/

>>> maven-source-plugin:2.

tjar (attach-sources) > gemerate-sources @ project-with-dependencie

<<< maven-source-plugin:2.3:jar (attach-sources} < generate-sources @ project-with-dependencie
B project-with-dependencies-0.0. 1jar-with-dependencies.jar

P project-with-dependen avadoc.jar
EJprojectwith-dependen: -sources.jar
EJproject-with-dependen:
B .(lasspath I

-- maven-source-plugini2.3:jar (attach-sources) @ project-with-dependencies -
Building jar: /home/tweise/local/progranming/java/javacxanples/lessons,/30 building with maven/

-- maven-assembly-plugin:2.2-beta-5:attached (default) @ project-with-dependencies --
8uilding jar: /home, tueise,local/progranming/java/javaExanples/ essons,/ 30 building with maven/

--- maven-install-plugin:2.4:install (default-install) @ project-with-dependencies ---

Installing /home/tweise/local/progranming/java/javaExanples/1essons/36_building with maven/prc
Installing /home/tweise/local/progranning/java/javaExanples/lessons/38 building with maven/prc
Installing /home/tweise/local/progranning/java/javaExanples/lessons/38_building with maven/prc
Installing /home/tweise/local/progranning/java/javaExanples/lessons/30 building with maven/prc
Installing /home/tweise/local/progranning/java/javaExanples/lessons/38 building with maven/pro

% .pn:uect
|__bs pom.xml
4items selected

e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts

e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely

e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run

e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely

e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run
® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an

executable jar of our project; contains commons-math3, can run
directly

Building

>
<

”

e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely
e project-with-dependencies-0.0.1.jar — the main, executable jar
of our project; requires commons-math3 in the classpath to run
® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an
executable jar of our project; contains commons-math3, can run
directly
e project-with-dependencies-0.0.1-javadoc.jar : the generated
Javadoc documentation of our project (remember, a jar is basically a
zip archive...)

OOP with Java Thomas Weise 16/22

Building

”

>
<

e We now can build our project using goals clean install
e We find that the target folder now contains several artifacts, namely
e project-with-dependencies-0.0.1.jar — the main, executable jar

of our project; requires commons-math3 in the classpath to run

® project-with-dependencies-0.0.1-jar-with-dependencies.jar — an
executable jar of our project; contains commons-math3, can run
directly

e project-with-dependencies-0.0.1-javadoc.jar : the generated

Javadoc documentation of our project (remember, a jar is basically a
zip archive...)
e project-with-dependencies-0.0.1-sources.jar : a jar archive

containing the source code of our project (easy for distribution)

OOP with Java Thomas Weise 16/22

e You have maybe noticed that our project depends on Apache
commons-math3

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us

e Maven uses repositories:

o A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions

Maven Repositories §\

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us

e Maven uses repositories.

e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions

e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located

OOP with Java Thomas Weise 17/22

Maven Repositories

”

>
<

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

OOP with Java Thomas Weise 17/22

Maven Repositories

”

>
<

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts
e Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically

OOP with Java Thomas Weise 17/22

Maven Repositories

”

>
<

e You have maybe noticed that our project depends on Apache
commons-math3

e But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

e Maven automatically downloaded it for us
e Maven uses repositories.
e A repository is basically a special directory structure based on group
IDs, artifact IDs, and (semantic) versions
e For each such “coordinates”, we can determine a folder where the
jar artifacts (library, source, javadoc) should be located
e There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts
e Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically
e There also is a “local” repository on your machine, where dependencies
are cached (and your compiled artifacts are install ed into)

OOP with Java Thomas Weise 17/22

e We now want to investigate the JUnit integration in Maven

e We now want to investigate the JUnit integration in Maven

e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

e We now want to investigate the JUnit integration in Maven

e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

e We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file

Maven and JUnit %ﬁ)

e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 5-11: Basic Info

<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu.hfuu.iao</groupIld>

<artifactId>project-with-tests</artifactId>

<version>0.0.1</version>

<name>Project with Tests</name>

<description>A project similar to
Dependencies",

"Projectywith

but now also performing JUnit tests.</description>

OOP with Java Thomas Weise

18/22

Maven and JUnit %\

e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name

e We add a dependency on JUnit , but different from the
commons-math3 dependency, it gets scope “test”

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”, since it is only
needed during compilation and testing

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven
e For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before
e We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
e We make the following changes to the Maven pom.xm1 file:
e We adapt the basic project information to fit to the new project name
e We add a dependency on JUnit , but different from the
commons-math3 dependency, it gets scope “test”, since it is only

needed during compilation and testing and not part of the final
application (or “jar-with-dependencies”-jar)

OOP with Java Thomas Weise 18/22

Maven and JUnit %0,

Listing: pom.xml Lines 66—78: Added Test-time Dependency on JUnit

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.11</version>
<scope>test</scope>
</dependency>
<dependency>
<groupld>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
</dependencies>

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us

OOP with Java Thomas Weise 18/22

Maven and JUnit

Listing: pom.xml Lines 173-177: Using surefire Plugin (runs tests)

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18</version>

</plugin>

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml
o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us

We can also generate a nice HTML report about the whole project and
the test results

OOP with Java Thomas Weise 18/22

Maven and JUnit %\

1AQ

e We now want to investigate the JUnit integration in Maven

For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

We can basically copy everything from project-with-dependencies
into the new project, even the Maven pom.xml

o We make the following changes to the Maven pom.xm1 file:

e We adapt the basic project information to fit to the new project name

e We add a dependency on JUnit

e We use the surefire plugin in the build process while will execute
the JUnit tests for us

e We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when
building and add a set of reporting plugins the the pom.xml

OOP with Java Thomas Weise 18/22

Maven and JUnit %\’

Listing: pom.xml Lines 182-195: Using surefire Plugin Report HTML

<reporting>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-project-info-reports-plugin</artifactId>
<version>2.7</version>
</plugin>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-report-plugin</artifactId>
<version>2.18</version>
</plugin>
</plugins>
</reporting>

OOP with Java Thomas Weise 18/22

Maven

and JUnit %\

e We

For

now want to investigate the JUnit integration in Maven

this purpose, we create a new Maven project in Eclipse with an

artifact called project-with-tests in the same way as before

We

can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

e We

make the following changes to the Maven pom.xm1 file:

We adapt the basic project information to fit to the new project name
We add a dependency on JUnit

We use the surefire plugin in the build process while will execute
the JUnit tests for us

We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when
building and add a set of reporting plugins the the pom.xml

e In the next step, we can add a JUnit test and place it into the same
package as the real code, just in the src/test/java hierarchy

OOP with Java Thomas Weise 18/22

Test for our Main Class §

Listin e JUnit test of our Main cla

package cn.edu.hfuu.iao;

import java.io.StringReader;
import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression;
import org.junit.Assert;
import org.junit.Test;

public class MainTest {

@Test
public void testFitting0011ResultsIn01() {
SimpleRegression regression;

try (final StringReader sr = new StringReader ("0,0\ni1,1")) {
try (final Scanner scanner = new Scanner(sr)) {
regression = Main.fitLine(scanner);

}

Assert.assertEquals (0d, regression.getIntercept(), 1le-10d);
Assert.assertEquals (1d, regression.getSlope(), 1e-10d);

OOP with Java Thomas Weise 19/22

e We can now build the new project by invoking Maven with the goals

clean test install site

e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code

e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests

e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests, complete successful

e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

e We can now build the new project by invoking Maven with the goals

clean test install site

e The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

e There will also be one interesting new artifact, a folder called site

Quick Access

s @

12 Package Explore 52 |} Type Hierarchy gif Junit = B
a@| ¢
~2> project_with_tests [javaExamples master]
~ &> src/main/java
~ & >cn.edu.hfuu.iao

» [Main java
» [} package-info java
@ src/main/resources

5 project_with.tests/pom.xml 52 =5
tor Lot
152 R
i S eatsstsaR
i W i
= Sk e timeniitenes
1500 bt it
160 e iroteres
i Hrorheros »
Sty i] pom.xml
0 Problems @ Javadoc @ Declaration 47 Search I Console 5% | g Progress 45 Debug =g

~ %> srftest/java
~ > cn.edu.hfuu.izo
» [} MainTest java

X% B

- with_tests (2) [Maven Build] jdk

@ src/test/resources
» &, JRE System Library [Javase-1.8]
» 8 Maven Dependencies.

» G > settings

* & generated-sources

» = generated-test-sources
» & javadoc-bundle-options
» & maven-archiver

¥ > maven-status

» surefirreports

ith

[2iproj 0.1
[&fproject-with-tests-0.0.1javadoc jar
&) project-with-tests-0.0.1-sources.jar
[# project-with-tests-0.0.1.jar

1% .classpath

Skipped "Surefire Report report, file

INFO
™ maven-project-info- reports-p;

cpor

P® 22-0-

(Feb 13,2017,2

Sureliiershact WAl et eatyextste Tor e ool LN eeraon

s L, 3/

12 maven

Generating "Distribution Management
Generating *Dependency Informati
Generating "Source Repository
Generating "Mailing Lists"

--- maven-project-info-reports-plugin:2.7

he tine Tine Zone: for the devetoper
TNFO) ‘Generating. "project Sumsary t
INFO] Generating *Dependencies® repo maven-projeci-info. repor is-plugin:2.
INFO] Senerating "Surefire Report maven-surefire-report-plugin:2. 1
GT tnabie to Tocate Test Source XRef to Link to - DISABLED

repor /en-project-info- reports-plugis

02:19

.gitignore 20174 sz lzTM 56:29+08:00
% .project INFO] Final H:mury a7M/62
TnFo
& pom.xml

b .7/m
https://re h “7/ma
NFO Project License” report ven-project-info-reports-plugin:2.7
INF0) Generating “Project Tean maven-project-info-reports-plugini2.7
Zone ' Chin: “Thomas Weise' is

not a recognised tine zone, u
2]

site-project_with_tests/target

e We can now build the new project by invoking Maven with the goals

clean test install site

The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

There will also be one interesting new artifact, a folder called site

It contains a documentation of our project and the surefire test report

Building the New Project %\’

e We can now build the new project by invoking Maven with the goals

clean test install site

The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

There will also be one interesting new artifact, a folder called site

It contains a documentation of our project and the surefire test report

We click on index.html inside this folder

OOP with Java Thomas Weise 20/22

Building the New Project

project with _tests target site

@ Recent C = E
1 Home J ‘
€ss images di dencies.html di dency-info.
[Desktop html
@ Trash
@ Network ——
distribution- index. Gl
[@ computer management.html Open With
& opPO 2 Cut
) Copy
[l Seafile license.html
MoveTo...
B connecttoserver Copy To.

/ Make Link

Rename
project-info.html &

Move to Trash

surefire-report. team-lis|
“index.html” selected (5.5 kB)

Properties

OOP with Java Thomas Weise 20/22

ith Tests - About - Mozilla Firefox

Project with Tests - About x

& @ | file:///home/tweise/local/pr ing/j | @ ||Q search B8 » =
Project with Tests
s L 2

Proj
< Project Information
About

'About Project with Tests

A project similar to "Project with Dependencies”, but now also performing
JUnit tests.

Plugin
Distributicn Management
Dependency Information
Source Repository
Mailing Lists

Issue Tracking
Continuous Integration
Project Plug

.0
» Project Repogs
Ly

Copyright @ 2017 Institute of Applied Optimization (1A0). Al Rights Reserved.

Files///h /tweise/local/prog ing/java/j ...ject_with_tests/target/site/projectreports.html |

ozilla Firefox

Project with Tests - Ge...

€ @ | file:///home/tweise/local/pr ingfjan | & ||Q search B » =E

with Tests

Project

entation

D ‘Generated Reports |

~ Project Reports
Surefire Report

3

This document provides an overview of the various reports that are
by Maven @ . Each report is briefly described

below.

‘ Overview |

[ocument —TJoescripuon ——— —

Surefire Igpnrt;. Report on the test results of the project,

Copyright @ 2017 Institutz of Appliea Optimization (1A0). All Rights Reserved.

local, ing/java/ji ...ject_with_tests/target/site/surefire-report.html |

files/// / /localfprog| 9/javalj

Project with

Project with Tests-Sur...

| €& @ file:///home/tweise/local/pr ing/j | @ ||Q search B » =E
Project Documentation -
Y= surefire Report \

‘Summary \

[Summary] [Package List] [Test Cases]

[Tests | Success Rate
L o o o Twow Joows |

Note: failures are anticipated and checked for with assertions while
errors are unanticipated.

‘P’ackage List ‘
[Summary] [Package List] [Test Cases]
0 | s

| file:///home/tweise/loc...t.html#cn.edu.hfuu.iao

Project with

Project with Tests-Sur...

| €& @ file:///home/tweise/local/pr ing/j | @ ||Q search B » =E

Note: package statistics are not computed recursively, they only sum up
all of its testsuites numbers.

l cn.edu.hfuu.iao ‘

Test Cases |

[Summary] [Package List] [Test Cases]

| MainTest |

Files///h /tweise/local/prog ing/java/j efire-report.html#cn.edu.hfuu.iaoMainTest |

Summary

W

>
<

e We have learned about creating and building projects with Maven
e Maven is the most widely used build tool in the Java world

e Maven allows us to specify the “coordinates”, i.e., a group ID, an artifact ID, and a
version, which uniquely identify one exact version of our project

o |t allows us to specify other projects we depend upon by using their coordinates

o It allows us to define a complete build process, where each plugin executed is again
specified by its coordinate

e |t can find and download many open source libraries from the internet automatically
for us (based on the coordinates in the dependency information)

e Maven also automatically resolves the dependencies of our dependencies recursively
for us

e Maven builds and project configurations are thus 100% reproducible

o |t can generate all kinds of artifacts for us, including Javadoc, jars, source code jars,
and a HTML page describing our project

o |t allows us to specify meta-data about our project, such as an URL and developer
information

OOP with Java Thomas Weise 21/22

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Maven

	Maven Basics
	Creating and Building a Basic Maven Project
	Maven Group IDs
	Maven Artifact ID
	Semantic Versioning
	Project Structure
	Maven pom.xml
	Maven Build Process and Goals
	Maven Artifacts

	Dependencies, Javadoc, Executable, More Infos
	Maven Project with Dependencies
	The new pom.xml
	Main Class
	Building
	Maven Repositories

	Maven Build with JUnit Tests
	Maven and JUnit
	Test for our Main Class
	Building the New Project

	Summary
	Summary

	Presentation End

