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• We can create interfaces to specify an API and then cleanly separate
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• How do we manage all of that? How can we achieve that our team
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which is then automatically downloaded and installed during the build
process

• Maven can build your project and generate archives, documentation,
a project website, and other artifacts

• Maven supports unit testing, i.e., allows you to automatically check
whether your code meets certain requirements

• Maven allows for automatic deployment (which we will not talk about
here)

• Eclipse comes with Maven support

• Maven does not just define the project dependencies, but also the
complete build process

• Everything is versionized, so all builds are 100% reproducible (which
sorts out the infamous “But it works on my machine. . . ”)
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creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

• In the following form, we make the selections shown here (which I will
explain later) and click Finish :

• Group Id: cn.edu.hfuu.iao

• Artifact Id: simple-maven-project

• Version: 0.0.1

• Packaging: jar

• Project name: Simple Maven Project
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Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project:
• First, we need to choose New and Other... from the File menu

• In the next dialog, we open folder Maven , choose Maven Project ,

and click Next

• We check Create a simple project and choose a suitable location

via Browse... , then click Next

• In the following form, we make the selections shown here (which I will
explain later) and click Finish

• A new Maven project has appeared, which basically is a special Eclipse
Java project with a special folder structure and a file called pom.xml

containing the project (and build) information
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Creating and Building a Basic Maven Project

Listing: The contents of the Maven project file pom.xml

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0 

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >simple -maven -project </artifactId >

<version >0.0.1 </version >

<name>Simple Maven Project </name>

<description >A simple maven project without any advanced

features.</description >

</project >
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Creating and Building a Basic Maven Project

• Before exploring the advanced features of Maven, let us start by
creating and building a simple and plain Maven project and then
discuss its basic features

• Creating a Simple Maven Project

• We can now build the project
• right-click the project, choose Run As and then Maven Build

• Under Goals: enter clean compile package install (just using

clean install would do the same thing) then Run

• A build process will start which will first download several required
modules, then compile your code (there is no code yet), and then
creates a new jar archive (basically empty due to no code)

• The generated build artifacts will be in folder target

• Let us take a closer look on the stuff we just did
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Maven Group IDs

• The group ID identifies the “greater project”

• It follows Java’s package naming convention

• It has to at least identify a domain name you control

• In our case, this is cn.edu.hfuu.iao , because the Institute of Applied

Optimization has domain iao.hfuu.edu.cn

• It might have some additions for “greater projects”

• For instance, I could have used cn.edu.hfuu.iao.teaching as a group
for all of our teaching projects
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Maven Artifact ID

• The artifact ID is basically the name of the jar archive we want to
generate without the version

• You can consider it as a specially-formatted specific project name

• It is spelled in lower case letters and dashes are used ( - ) to separate
name components

• Basically, a group can contain several related projects with artifacts
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Semantic Versioning

• Every project always has a version

• The versions follow the semantic versioning (http://semver.org/)
standard, i.e., are of the form major.minor.patch version

• Given a version number major.minor.patch , increment the:

• major version when you make incompatible API changes,

• minor version when you add functionality in a backwards-compatible
manner, and

• patch version when you make backwards-compatible bug fixes.

• Code using a library of version a1.b1.c1 will

• compile exactly the same with library version a1.b1.c2

• compile exactly the same with library version a1.b2.c2 if b2 ≥ b1

• may not compile with library version a2.b2.c2 if a1 6= a2

• Exception: If your project is still very experimental, you can use
version 0.x.y : For such versions, the rules for minor and patch level

versions can be violated (but you should still try to not to)
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Maven pom.xml

Listing: The contents of the Maven project file pom.xml

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0 

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >simple -maven -project </artifactId >

<version >0.0.1 </version >

<name>Simple Maven Project </name>

<description >A simple maven project without any advanced

features.</description >

</project >
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clean delete everything in the target folder

validate check whether the project is correct and all necessary info is there
compile compile the source code of the project

test run all tests, e.g., JUnit tests (fails if tests fail)
package create the artifact package (in our case, the jar )

verify run any checks on results of integration tests
install install the package into the local repository (for other builds depending on it)
deploy release into environment

• In Eclipse (or when using the Maven command line tool mvn ), you
only need to specify clean together the last phase to be executed
and all phases leading up to it are executed
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• An artifact is a result of the build process

• Usually, this is an archive containing an executable, source, tests, or
documentation

• The name of an artifact is usually
artifactID-version[-classifier].<archiveType> , where

artifactID is the id of the project’s main artifiact, e.g., simple-maven-project

version is the version string, e.g., 0.0.1

[-classifier] is an optional classifier for “side-artifacts”, such as
• -src for archives containing the source code and resources (not the generated

.class files)

• -javadoc for archives containing the generated Javadoc documentation

• -tests for generating the compiled tests

archiveType is usually jar , but for web projects it may be stuff like war , aar , ear , which

are all “special” jar archives

• Our simple project generated artifact simple-maven-project-0.0.1.jar
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Maven Project with Dependencies

• Let us now create a more advanced Maven project, which
• provides more information about our team and tools,
• depends on another library (commons math 3 from Apache),
• produces an executable jar archive, and

• generates Javadoc (in an archive)

• For this purpose, we generate a simple Maven project in exactly the
same way as before, but name the artifact project-with-dependencies
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
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The new pom.xml

Listing: The contents of the pom.xml after we edit it

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -dependencies </artifactId >

<version >0.0.1 </version >

<name>Project with Dependencies </name>

<description >A Maven project with dependencies and

more information ,

also generating an executable JAR and

Javadoc.</description >

<url>http://iao.hfuu.edu.cn/</url>

<organization >

<url>http: //iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO)</name>

</organization >

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email>tweise@hfuu.edu.cn</email >

<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>

<organization >Institute of Applied Optimization

(IAO)</organization >

<organizationUrl >http: //iao.hfuu.edu.cn/</organizationUrl >

<roles>

<role>architect </role>

<role>developer </role>

</roles>

<timezone >China Time Zone</timezone >

</developer >

</developers >

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding >

<project.reporting.outputEncoding >${ encoding}</project.reporting.outputEncoding >

<jdk.version >1.8</jdk.version >

</properties >

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29

June 2007</name>

<url>http://www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >

<issueManagement >

<url>https: // github.com/thomasWeise/javaExamples/issues </url>

<system >GitHub </system >

</issueManagement >

<scm>

<connection >scm:git:git@github.com:thomasWeise/javaExamples.git</connection >

<developerConnection >

scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection >

<url>git@github.com:thomasWeise/javaExamples.git</url>

</scm>

<inceptionYear >2017</inceptionYear >

<dependencies >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >

<build >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -javadoc -plugin </artifactId >

<version >2.9.1 </version >

<configuration >

<show>private </show>

<detectLinks >true</detectLinks >

<detectJavaApiLink >true</detectJavaApiLink >

<quiet >true</quiet >

</configuration >

<executions >

<execution >

<id>attach -javadoc </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.3</version >

<configuration >

<includePom >true</includePom >

<includePom >true</includePom >

<useDefaultExcludes >true</useDefaultExcludes >

<useDefaultManifestFile >false </useDefaultManifestFile >

</configuration >

<executions >

<execution >

<id>attach -sources </id>

<goals >

<goal>jar</goal>

</goals >

</execution >

</executions >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -jar -plugin </artifactId >

<version >2.6</version >

<configuration >

<archive >

<manifest >

<addDefaultImplementationEntries />

<addDefaultSpecificationEntries />

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -assembly -plugin </artifactId >

<executions >

<execution >

<goals >

<goal>attached </goal>

</goals >

<phase >package </phase >

<configuration >

<descriptorRefs >

<descriptorRef >jar -with -dependencies </descriptorRef >

</descriptorRefs >

<archive >

<manifest >

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build >

</project >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• OK, thank you, now the details
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
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The new pom.xml

Listing: pom.xml Lines 6–12: Basic Info

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -dependencies </artifactId >

<version >0.0.1 </version >

<name>Project with Dependencies </name>

<description >A Maven project with dependencies and

more information ,

also generating an executable JAR and

Javadoc.</description >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
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The new pom.xml

Listing: pom.xml Lines 15–19: Organization Info

<url>http: //iao.hfuu.edu.cn/</url>

<organization >

<url>http: //iao.hfuu.edu.cn/</url>

<name>Institute of Applied Optimization (IAO)</name>

</organization >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
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The new pom.xml

Listing: pom.xml Lines 21–35: Developer Info

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email>tweise@hfuu.edu.cn</email >

<url>http://iao.hfuu.edu.cn/index.php/team/director/</url>

<organization >Institute of Applied Optimization

(IAO)</organization >

<organizationUrl >http: //iao.hfuu.edu.cn/</organizationUrl >

<roles>

<role>architect </role>

<role>developer </role>

</roles>

<timezone >China Time Zone</timezone >

</developer >

</developers >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}
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The new pom.xml

Listing: pom.xml Lines 37–42: Properties

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding

<project.reporting.outputEncoding >${ encoding}</project.reporting.output

<jdk.version >1.8</jdk.version >

</properties >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3
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The new pom.xml

Listing: pom.xml Lines 44–50: License

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007</name>

<url>http://www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3
• Issue management: where to report errors
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The new pom.xml

Listing: pom.xml Lines 52–55: Issue Management

<issueManagement >

<url>https: // github.com/thomasWeise/javaExamples/issues </url>

<system >GitHub </system >

</issueManagement >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties: contents of element <n>contents</n> become available as

${n}

• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository
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The new pom.xml

Listing: pom.xml Lines 57–62: Software Configuration Managment

<scm>

<connection >scm:git:git@github.com:thomasWeise/javaExamples.git</connection >

<developerConnection >

scm:git:git@github.com:thomasWeise/javaExamples.git</developerConnection >

<url>git@github.com:thomasWeise/javaExamples.git</url>

</scm>
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
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The new pom.xml

Listing: pom.xml Lines 64: Inception Year

<inceptionYear >2017</inceptionYear >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
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The new pom.xml

Listing: pom.xml Lines 67–73: Dependencies

<dependencies >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
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The new pom.xml

Listing: pom.xml Lines 75–89: Build (1): Compilation

<build>

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc
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The new pom.xml

Listing: pom.xml Lines 91–109: Build (2): Javadoc jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -javadoc -plugin </artifactId >

<version >2.9.1 </version >

<configuration >

<show>private </show>

<detectLinks >true</detectLinks >

<detectJavaApiLink >true</detectJavaApiLink >

<quiet >true</quiet >

</configuration >

<executions >

<execution >

<id>attach -javadoc </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code
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The new pom.xml

Listing: pom.xml Lines 111–128: Build (3): Sources jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -source -plugin </artifactId >

<version >2.3</version >

<configuration >

<includePom >true</includePom >

<useDefaultExcludes >true</useDefaultExcludes >

<useDefaultManifestFile >false </useDefaultManifestFile >

</configuration >

<executions >

<execution >

<id>attach -sources </id>

<goals>

<goal>jar</goal>

</goals>

</execution >

</executions >

</plugin >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact: an executable jar with main class

cn.edu.hfuu.iao.Main
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The new pom.xml

Listing: pom.xml Lines 131–144: Build (4): (executable) jar

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -jar -plugin </artifactId >

<version >2.6</version >

<configuration >

<archive >

<manifest >

<addDefaultImplementationEntries />

<addDefaultSpecificationEntries />

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</plugin >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact
• Generate an executable jar including all dependencies (here

commons-math3 ) with main class cn.edu.hfuu.iao.Main
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The new pom.xml

Listing: pom.xml Lines 146–172: Build (5): (executable) jar with dependencies

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -assembly -plugin </artifactId >

<executions >

<execution >

<goals>

<goal>attached </goal>

</goals>

<phase>package </phase >

<configuration >

<descriptorRefs >

<descriptorRef >jar -with -dependencies </descriptorRef >

</descriptorRefs >

<archive >

<manifest >

<mainClass >cn.edu.hfuu.iao.Main</mainClass >

</manifest >

</archive >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build>

</project >
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The new pom.xml

• We then edit the generated pom.xml file to look as follows
• Basic Project Information (almost the same as before)
• Project URL and info about the organization behind project
• The developers working on the project
• Properties
• Licensing Information: here GPL version 3
• Issue management: where to report errors
• Software configuration management: here our git repository

• Inception year: when did the project start
• Dependencies: Which other libraries does our project need?
• Compilation process: here using Java ${jdk.version} which was set

to 1.8
• We also want a jar containing the generated Javadoc

• We also want a jar containing all the source code

• Generate the “main” artifact
• Generate an executable jar including all dependencies

• The pom.xml specifies quite a complex build process!
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Main Class

Listing: Our Main class using Dependency

package cn.edu.hfuu.iao;

import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression; // import class from dependency library

/** The main class of our project: it reads data from stdin and returns a linear function fitting to it */

public class Main {

/** read data from a Scanner , return a SimpleRegression instance with the fitting result */

static final SimpleRegression fitLine(final Scanner scanner) {

SimpleRegression regression = new SimpleRegression (); // using commons -math3 's simple regression class

for (;;) { // keep reading double numbers until stdin ends

if (!( scanner.hasNextDouble ())) { break; } // if there is no double number , stop reading

double x = scanner.nextDouble (); // ok , there is one , read it as x coordinate

if (!( scanner.hasNextDouble ())) { break; } // if there is no double number , stop reading

double y = scanner.nextDouble (); // ok , there is one , read it as y coordinate

regression.addData(x, y); // add the new x and y coordinate to the dataset

}

return regression;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(final String [] args) {

System.err.println("Welcome to the linear curve fitting program."); //$NON -NLS -1$

System.err.println("Enter point pairs one pair a line , x and y coordinates separated by space or tab."); //$NON -NLS -1$

System.err.println("Linear curve is fitted when stdin ends or Ctrl -D is pressed."); //$NON -NLS -1$

SimpleRegression regression; // using commons -math3 's simple regression class

try (final Scanner scanner = new Scanner(System.in)) { // using a Scanner in try -with -resource on System.in

regression = fitLine(scanner); // fit the data from the scanner

}

System.out.print("y \u2248 ");//$NON -NLS -1$ // print "y is approximately "

System.out.print(regression.getIntercept ()); // print the y coordinate at x=0

System.out.print(" + x * ");//$NON -NLS -1$ // " + x * "

System.out.print(regression.getSlope ()); // print the slope

System.out.print(" (root mean square error: "); // print RMSE: is 0 if data is linear //$NON -NLS -1$

System.out.print(Math.sqrt(regression.getMeanSquareError ()));

System.out.println(')');

}

}
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Building

• We now can build our project using goals clean install
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• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run
• project-with-dependencies-0.0.1-jar-with-dependencies.jar – an
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• project-with-dependencies-0.0.1-javadoc.jar : the generated
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Building

• We now can build our project using goals clean install

• We find that the target folder now contains several artifacts, namely

• project-with-dependencies-0.0.1.jar – the main, executable jar

of our project; requires commons-math3 in the classpath to run
• project-with-dependencies-0.0.1-jar-with-dependencies.jar – an

executable jar of our project; contains commons-math3, can run

directly
• project-with-dependencies-0.0.1-javadoc.jar : the generated

Javadoc documentation of our project (remember, a jar is basically a

zip archive. . . )

• project-with-dependencies-0.0.1-sources.jar : a jar archive

containing the source code of our project (easy for distribution)
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Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3
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Maven Repositories

• You have maybe noticed that our project depends on Apache
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• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives
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Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

• There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

• Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically
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Maven Repositories

• You have maybe noticed that our project depends on Apache
commons-math3

• But we never downloaded that library, yet it is in the classpath in
Eclipse, and even inside one of our jar archives

• Maven automatically downloaded it for us

• Maven uses repositories:
• A repository is basically a special directory structure based on group

IDs, artifact IDs, and (semantic) versions
• For each such “coordinates”, we can determine a folder where the

jar artifacts (library, source, javadoc) should be located

• There is one central repository in the internet, where organizations can
register themselves and upload their open source artifacts

• Whenever you need one of these public libraries (via your
dependencies), Maven can find it and download it automatically

• There also is a “local” repository on your machine, where dependencies
are cached (and your compiled artifacts are install ed into)
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven
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• For this purpose, we create a new Maven project in Eclipse with an
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Maven and JUnit

Listing: pom.xml Lines 5–11: Basic Info

<modelVersion >4.0.0 </modelVersion >

<groupId >cn.edu.hfuu.iao</groupId >

<artifactId >project -with -tests </artifactId >

<version >0.0.1 </version >

<name>Project with Tests </name>

<description >A project similar to "Project with 

Dependencies",

but now also performing JUnit tests.</description >
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:
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artifact called project-with-tests in the same way as before
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven
• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:
• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit , but different from the

commons-math3 dependency, it gets scope “test”, since it is only
needed during compilation and testing and not part of the final
application (or “jar-with-dependencies”-jar)
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Maven and JUnit

Listing: pom.xml Lines 66–78: Added Test-time Dependency on JUnit

<dependencies >

<dependency >

<groupId >junit</groupId >

<artifactId >junit </artifactId >

<version >4.11</version >

<scope>test</scope >

</dependency >

<dependency >

<groupId >org.apache.commons </groupId >

<artifactId >commons -math3 </artifactId >

<version >3.6.1</version >

</dependency >

</dependencies >
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us
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Maven and JUnit

Listing: pom.xml Lines 173–177: Using surefire Plugin (runs tests)

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -surefire -plugin </artifactId >

<version >2.18</version >

</plugin >
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven
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Maven and JUnit

Listing: pom.xml Lines 182–195: Using surefire Plugin Report HTML

<reporting >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -project -info -reports -plugin </artifactId >

<version >2.7</version >

</plugin >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -surefire -report -plugin </artifactId >

<version >2.18</version >

</plugin >

</plugins >

</reporting >
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Maven and JUnit

• We now want to investigate the JUnit integration in Maven

• For this purpose, we create a new Maven project in Eclipse with an
artifact called project-with-tests in the same way as before

• We can basically copy everything from project-with-dependencies

into the new project, even the Maven pom.xml

• We make the following changes to the Maven pom.xml file:

• We adapt the basic project information to fit to the new project name
• We add a dependency on JUnit

• We use the surefire plugin in the build process while will execute
the JUnit tests for us

• We can also generate a nice HTML report about the whole project and
the test results, for this purpose we invoke the site goal when

building and add a set of reporting plugins the the pom.xml

• In the next step, we can add a JUnit test and place it into the same
package as the real code, just in the src/test/java hierarchy
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Test for our Main Class

Listing: The JUnit test of our Main class

package cn.edu.hfuu.iao;

import java.io.StringReader;

import java.util.Scanner;

import org.apache.commons.math3.stat.regression.SimpleRegression;

import org.junit.Assert;

import org.junit.Test;

/** The unit test for our line -fitting main routine */

public class MainTest {

/** test whether (0,0) and (1,1) will fit to y=0+x*1 */

@Test

public void testFitting0011ResultsIn01 () {

SimpleRegression regression;

try (final StringReader sr = new StringReader("0 0\n1 1")) {//$NON -NLS -1$

try (final Scanner scanner = new Scanner(sr)) {

regression = Main.fitLine(scanner);

}

}

Assert.assertEquals (0d, regression.getIntercept (), 1e-10d);

Assert.assertEquals (1d, regression.getSlope (), 1e-10d);

}

}
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Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site
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Building the New Project

• We can now build the new project by invoking Maven with the goals
clean test install site

• The build will compile our code, run our tests, complete successful,
and the same artifacts as last time are generated

• There will also be one interesting new artifact, a folder called site

• It contains a documentation of our project and the surefire test report

• We click on index.html inside this folder
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Summary

• We have learned about creating and building projects with Maven

• Maven is the most widely used build tool in the Java world

• Maven allows us to specify the “coordinates”, i.e., a group ID, an artifact ID, and a
version, which uniquely identify one exact version of our project

• It allows us to specify other projects we depend upon by using their coordinates

• It allows us to define a complete build process, where each plugin executed is again
specified by its coordinate

• It can find and download many open source libraries from the internet automatically
for us (based on the coordinates in the dependency information)

• Maven also automatically resolves the dependencies of our dependencies recursively
for us

• Maven builds and project configurations are thus 100% reproducible

• It can generate all kinds of artifacts for us, including Javadoc, jars, source code jars,
and a HTML page describing our project

• It allows us to specify meta-data about our project, such as an URL and developer
information
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China
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