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Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O
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Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

• Basically, a stream is a sequence of elements of the same type

• The elements of a stream are processed exactly in their sequence

• Streams are either for reading or writing

• Streams are the prefered form of I/O in many scenarios
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• In Java, the two most basic types of I/O streams are:
• byte -based streams for raw data I/O

• char -based streams for text I/O
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OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams ( System.in is actually this, while System.out and

System.err offer additional functions for text)

• There could be implementations of this functionality for TCP/IP
internet connections

• There could be output streams writing to a buffer in memory or input
streams reading from a byte array

• . . .

• What the methods actually do depends on the implementations in the
corresponding subclasses
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Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:
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Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

• FileInputStream reads one byte after the other from a file

• It offers several constructors, one accepts the path to the file to read
from as String

• FileOutputStream writes one byte after the other to a file

• It offers several constructors, one accepts the path to the file to
created and written to as String
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Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths
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Copying Files via Byte Streams

Listing: Copying a file byte-by-byte

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying a raw file byte for byte: slow */

public class CopyRawFileBytewise {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

try (final FileOutputStream target = new FileOutputStream(args [1])) {

int readByte;

while (( readByte = source.read()) >= 0) { // while not end -of-stream

target.write(readByte); // write the byte we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files byte-by-byte this way means to do a lot of system calls
and is slow

• We could instead allocate a buffer to hold several bytes at once and
use the array-based methods
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Copying Files via Byte Streams

Listing: Copying a file using a buffer

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying a raw file by using a buffer: faster */

public class CopyRawFileUsingBuffer {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

try (final FileOutputStream target = new FileOutputStream(args [1])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while (( readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the bytes we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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stdin, stdout, and stderr

• stdin ( Sytem.in ) is a java.io.InputStream
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stdin, stdout, and stderr

Listing: Copying stdin to a file

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying all bytes read from stdin to a file by using a buffer:

faster */

public class CopyStdInToFileUsingBuffer {

/** The main routine

* @param args args [0]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileOutputStream target = new FileOutputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while (( readAmount = System.in.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the bytes we just read

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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stdin, stdout, and stderr

Listing: Copying a file to stdout

import java.io.FileInputStream;

import java.io.IOException;

/** a class copying a raw file to stdout by using a buffer: faster */

public class CopyFileToStdOutUsingBuffer {

/** The main routine

* @param args args [0]= source file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while (( readAmount = source.read(buffer)) > 0) { // fill buffer
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}
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stdin, stdout, and stderr

Listing: Copying a file to stderr

import java.io.FileInputStream;

import java.io.IOException;

/** a class copying a raw file to stdout by using a buffer: faster */

public class CopyFileToStdErrUsingBuffer {

/** The main routine

* @param args args [0]= source file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while (( readAmount = source.read(buffer)) > 0) { // fill buffer

System.err.write(buffer , 0, readAmount); // write the bytes we just read

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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stdin, stdout, and stderr

• stdin ( Sytem.in ) is a java.io.InputStream

• stdout ( System.out ) and stderr ( System.err ) are

java.io.OutputStream s (special ones)

• Based on the previous examples, we can now copy data from stdin

to a file or from a file to stdout or stderr

• Warning: This is just an example, never use byte streams with text
data. . .
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• java.io.ByteArrayOutputStream is an OutputStream implementation
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Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

• java.io.ByteArrayInputStream is an InputStream implementation:

• reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)

• ByteArrayInputStream(byte[] b) reads from the whole array

• ByteArrayInputStream(byte[] b, int off, int len) reads only in

the len bytes starting at offset off
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Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream :

• its constructor takes an OutputStream as parameter to which it will

write

OOP with Java Thomas Weise 11/24



Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream :

• its constructor takes an OutputStream as parameter to which it will

write
• it additionally offers a method of the form writeXXX for writing one

instance of each primitive type

OOP with Java Thomas Weise 11/24



Using Byte Array and Data Streams

Listing: Using Byte Array Streams and Data Streams

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

/** a class writing some primitive types to a buffer , printing the buffer , then reading the values again */

public class DataAndByteIOStreams {

/** The main routine

* @param args args [0]= target file */

public static void main(String [] args) { // we use try -with -resource ...

byte[] buffer;

try { // wrap all code in a huge try -catch clause

try (ByteArrayOutputStream bos = new ByteArrayOutputStream ()) {

try (DataOutputStream dos = new DataOutputStream(bos)) {

dos.writeLong (0 x88_99_aa_bb_cc_dd_ee_ffL); // write 64bit long to dos , results in 8 bytes to bos

dos.writeBoolean(true); // write true to dos , results in byte value 1 to bos

dos.writeFloat (2f); // write float 2f to dos , results in 4 bytes (0 x40_00_00_00) to bos

dos.writeInt (8192 | 32); // 8192 | 32 = 0x00002020 to dos , resulting in 4 to bos

} // automatically close the data output stream

buffer = bos.toByteArray (); // get a copy of the buffer holding all writtendata

} // close the byte array output stream

System.out.print(buffer.length); // how many bytes were written? 8+1+4+4 = 17

System.out.print(':');

for (byte b : buffer) { // fast read -only iteration over buffer

System.out.print(' ');

System.out.print(Integer.toHexString(b & 0xff)); // write hex value of current byte

} // ________long___________ __float_ ___int___

System.out.println (); // 17: 88 99 aa bb cc dd ee ff 1 40 0 0 0 0 0 20 20

// boolean -^

try (ByteArrayInputStream bis = new ByteArrayInputStream(buffer)) { // now we read again from the buffer

try (DataInputStream dis = new DataInputStream(bis)) { // and wrap bis into data input stream

System.out.println(Long.toHexString(dis.readLong ())); // read the long

System.out.println(dis.readBoolean ()); // read the boolean

System.out.println(dis.readFloat ()); // read the float

System.out.println(dis.readInt ()); // read the int

} // automatically close dis

} // automatically close bis

} catch (IOException error) { // if something failed (that should really not happen here) ...

error.printStackTrace (); // ... print the stack trace

}

}
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More Byte Streams

• There are several more useful implementations of byte-based streams,
e.g.,

• java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered I/O which makes the single-byte operations faster
• java.net.Socket , implementing TCP sockets in Java, provides

java.io.InputStream / java.io.OutputStream to read/write from an

internet connection
• java.io.ObjectInputStream / java.io.ObjectOutputStream are

similar to the data input/output streams, but additionally allow for
reading/writing whole (serializable) objects
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• Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“ä” and “ß”. . . )
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Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

• Encoded as UTF-7, UTF-8 [7] (compatible to ASCII), UTF-16, and
UTF-32

• When dealing with text data, we must make sure to use the right
encoding!
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sequence of char s
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Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

• It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly

• FileWriter writes one character after the other to a file
• It offers several constructors, one accepts the path to the file to created

and written to as String

• It will transform the characters to raw binary data using the system’s
default character encoding
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Copying Text Files via Character Streams

Listing: Copying a text file character-by-character

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

/** a class copying a text file character by character: slow */

public class CopyTextFileCharacterwise {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileReader source = new FileReader(args [0])) {

try (final FileWriter target = new FileWriter(args [1])) {

int readCharacter;

while (( readCharacter = source.read()) >= 0) { // while not end -of-stream

target.write(readCharacter); // write the character we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files character-by-character this way means to do a lot of
system calls and is slow

• We could instead allocate a buffer to hold several characters at once
and use the array-based methods
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Copying Text Files via Character Streams

Listing: Copying a text file using a buffer

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

/** a class copying a text file by using a buffer: faster */

public class CopyTextFileUsingBuffer {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileReader source = new FileReader(args [0])) {

try (final FileWriter target = new FileWriter(args [1])) {

char[] buffer = new char [4096]; // a reasonable sized buffer

int readAmount; // the number of characters actually read

while (( readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the characters we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• java.io.OutputStreamWriter :

• writes its data to an java.io.OutputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• These character streams thus can be used in any situation where we
have byte streams, e.g., to work on stdin/stdout or on
socket-provided streams of a TCP/IP internet connection
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Character Streams wrapped around Byte Streams

• The code below is fully equivalent to the previous example. . .
Listing: Text File Copying using Character Streams wrapped around Byte Streams

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

/** a class copying a text file by using character streams wrapped around byte streams */

public class CopyTextFileUsingBufferAndWrappedStreams {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream fis = new FileInputStream(args [0])) {

try (final InputStreamReader source = new InputStreamReader(fis)) {

try (final FileOutputStream fos = new FileOutputStream(args [1])) {

try (final OutputStreamWriter target = new OutputStreamWriter(fos)) {

char[] buffer = new char [4096]; // a reasonable sized buffer

int readAmount; // the number of characters actually read

while (( readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the characters we just read

}

}

}

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
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streams

OOP with Java Thomas Weise 20/24



Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)

OOP with Java Thomas Weise 20/24



Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)
• java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

OOP with Java Thomas Weise 20/24



Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)
• java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

• java.io.CharArrayReader and java.io.CharArrayWriter are the

character stream equivalent of the byte stream
java.io.ByteArrayInputStream and

java.io.ByteArrayOutputStream
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Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

OOP with Java Thomas Weise 21/24



Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

OOP with Java Thomas Weise 21/24



Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

OOP with Java Thomas Weise 21/24



Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

OOP with Java Thomas Weise 21/24



Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

OOP with Java Thomas Weise 21/24



Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream
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java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

• Algorithms working on streams are thus naturally versatile
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• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

• Algorithms working on streams are thus naturally versatile
• Java further makes heavy use of the concept of plugging streams
together, e.g., we would normally hava an java.io.InputStream , wrap

it into a java.io.Reader , which we would then wrap into a

java.io.BufferedReader to be able to read text line-by-line
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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