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e We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O

e But what are streams?
e Basically, a stream is a sequence of elements of the same type
e The elements of a stream are processed exactly in their sequence

e Streams are either for reading or writing

e Streams are the prefered form of I/O in many scenarios
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e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,
offering, amongst others,
e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached
e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached
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up to len bytes at once and store them into dest start at index
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e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached
e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

e the method int read(bytel[] dest, int off, int len) tries to read
up to len bytes at once and store them into dest start at index
off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

e the method int available() return a number of bytes available right

now (0 does not mean that the stream has ended, more data may
come later)

e the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 5/24



o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream




o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src )




o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src )

o the method void write(byte[] src) writes the sequence of bytes
from src




Byte Streams %ﬁ)
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e Byte streams for input are sub-classes of java.io.InputStream
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e The concept of the byte stream base classes InputStream and
OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

e There could be implementations of this functionality for the standard
streams ( System.in is actually this, while System.out and
System.err offer additional functions for text)

e There could be implementations of this functionality for TCP/IP
internet connections

e There could be output streams writing to a buffer in memory or input

streams reading from a byte array
(] -

e What the methods actually do depends on the implementations in the
corresponding subclasses
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The byte stream API has been implemented for basic file 1/0 as
follows:

FileInputStream reads one byte after the other from a file

It offers several constructors, one accepts the path to the file to read
from as String

FileOutputStream writes one byte after the other to a file

It offers several constructors, one accepts the path to the file to
created and written to as String
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e A first implementation of the file copying procedure could look like
this:
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Listing: Copying a file byte-by-byte

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyRawFileBytewise {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args([0])) {
try (final FileOutputStream target = new FileOutputStream(args[1])) {
int readByte;
while ((readByte = source.read()) >= 0) {
target.write (readByte);
¥
}

} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;

¥

¥
}
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Copying Files via Byte Streams %ﬁ)

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
o A first implementation of the file copying procedure could look like
this:
e Copying files byte-by-byte this way means to do a lot of system calls
and is slow

e We could instead allocate a buffer to hold several bytes at once and
use the array-based methods
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Copying Files via Byte Streams %\’

Listing: Copying a file using a b

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyRawFileUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
try (final FileOutputStream target = new FileOutputStream(args[1])) {
byte[] buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write (buffer, 0, readAmount);
¥
¥
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;
}
¥

— }
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java.io.OutputStream S (special ones)

e Based on the previous examples, we can now copy data from stdin
to a file or from a file to stdout or stderr
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Listing: Copying stdin to a file

import java.io.FileOutputStream;
import java.io.IOException;

public class CopyStdInToFileUsingBuffer {

public static void main(Stringl[] args) {
try (final FileOutputStream target = new FileOutputStream(args[0])) {
byte[] buffer = new byte [4096];
int readAmount;

while ((readAmount = System.in.read(buffer)) > 0) {
target.write (buffer, 0, readAmount);
¥
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace () ;
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Listing: Copying a file to stdout

import java.io.FileInputStream;
import java.io.IOException;

public class CopyFileToStdOutUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
byte [l buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
System.out.write (buffer, 0, readAmount);
}
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;
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Listing: Copying a file to stderr

import java.io.FileInputStream;
import java.io.IOException;

public class CopyFileToStdErrUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
byte [l buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
System.err.write (buffer, 0, readAmount);
}
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;
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stdin ( Sytem.in ) is @ java.io.InputStream

stdout ( System.out ) and stderr ( System.err ) are
java.io.OutputStream S (special ones)

Based on the previous examples, we can now copy data from stdin
to a file or from a file to stdout or stderr

Warning: This is just an example, never use byte streams with text
data. ..
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e we can get a copy of this byte array via bytel[] toByteArray()
e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again

® java.io.ByteArrayInputStream iS an InputStream implementation
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® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo(OutputStream)

e we can reset the stream via reset() to use it again
® java.io.ByteArrayInputStream iS an InputStream implementation:

e reads the contents from an byte array passed to its constructor (and
ends when the end of the array is reached)
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® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again
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Byte Array Streams

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again
® java.io.ByteArrayInputStream iS an InputStream implementation:
e reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)
e ByteArrayInputStream(byte[] b) reads from the whole array

e ByteArrayInputStream(byte[] b, int off, int len) reads only in
the 1len bytes starting at offset off
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e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DataInputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

e it additionally offers a method of the form readXXX for reading one
instance of each primitive type

e DataOutputStream is a subclass of OutputStream :

e its constructor takes an OutputStream as parameter to which it will
write

e it additionally offers a method of the form writeXXX for writing one
instance of each primitive type

OOP with Java Thomas Weise 11/24



Using Byte Array and Data Streams

Byte Array Streams an

ata Streams

import java.io.ByteArrayImputStream;
import java.io.ByteArrayOutputStream;
import java.io.DatalmputStream;
import java.io.DataOutputStream;
import java.io.IDException;

public class DatakndByteIOStreams {

public static void main(String[] args) {
byte[] buffer;

try {
try (ByteArrayOutputStream bos = new ByteArrayOutputStream()) {
try ( dos = new (bos)) {
dos.writeLong (0x88_99_aa_bb_cc_dd_ee_ffL);
dos.writeBoolean (true);
dos . writeFloat (2);
dos.writeInt (8192 | 32);

buffer = bos.toByteArray();
}

System.out.print (buffer.length);
System.out.print(':');

for (byte b : buffer) {

System.out.print('y');

System.out.print (Integer.toHexString(b & 0xff));

}
System.out.println();

try (ByteArrayInputStream bis
try (DatalnputStream dis = new DatalnputStream(bis)) {
System.out.println(Long.toHexString(dis.readLong()));
System.out.println(dis.readBoolean());
System.out.println(dis.readFloat ());
System.out.println(dis.readInt());

new ByteArrayInputStream(buffer)) {

b
b

} catch (IOException error) {
error.printStackTrace () ;
}
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e There are several more useful implementations of byte-based streams,
e.g.,

® java.io.BufferedInputStream / java.io.BufferedOutputStream
wrap java.io.InputStream / java.io.OutputStream to provide
buffered |/O which makes the single-byte operations faster

e java.net.Socket , implementing TCP sockets in Java, provides
java.io.InputStream / java.io.OutputStream to read/write from an
internet connection

® java.io.ObjectInputStream / java.io.ObjectOutputStream are

similar to the data input/output streams, but additionally allow for
reading/writing whole (serializable) objects
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e Originally, storage of text data mainly designed for US English
o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1"

e Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“d" and "B"...)
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o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1
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Character Encoding %}

o Different languages have different characters

e Originally, storage of text data mainly designed for US English

o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e GB2312 " encoding especially for Chinese characters (2B for each
non-ASCII char)
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Different languages have different characters

Originally, storage of text data mainly designed for US English
Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1
Original idea: bytes have different meaning, depending on language

GB2312 P encoding especially for Chinese characters (2B for each
non-ASCII char)

These approaches are insufficient for other languages

Universal Coded Character Set (UCS)®! and Unicode [**!
Encoded as UTF-7, UTF-8!" (compatible to ASCII), UTF-16, and
UTF-32

When dealing with text data, we must make sure to use the right
encoding!
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e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,
e the method int read() reading a single character, returning -1 if the
end of the stream is reached
e the method int read(char[] dest) tries to read up to dest.length
characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached
e the method int read(char[] dest, int off, int len) tries to read
up to len characters at once and store them into dest start at index

off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

e the method boolean ready() return true if characters are ready to
read and read won't block

e the method void close() _implemented from java.io.Closeable
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e Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,
e the method void write(int) writes a single character

e the method void write(char[] src) writes the sequence of
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e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

e Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,
e the method void write(int) writes a single character

e the method void write(char[] src) writes the sequence of
characters from src

e the method void write(char[] src, int off, int len) writes the
sequence of len characters from src starting at index off
e the method void close() implemented from java.io.Closeable
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e The character stream API has been implemented for basic file I/O as
follows:
e FileReader reads one character after the other from a file:
o It offers several constructors, one accepts the path to the file to read
from as String
e It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly
e FileWriter writes one character after the other to a file

e |t offers several constructors, one accepts the path to the file to created
and written to as String
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e The character stream API has been implemented for basic file I/O as
follows:
e FileReader reads one character after the other from a file:
o It offers several constructors, one accepts the path to the file to read
from as String
e It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly
e FileWriter writes one character after the other to a file
e |t offers several constructors, one accepts the path to the file to created
and written to as String

o It will transform the characters to raw binary data using the system's
default character encoding
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@ the source path to the file to copy
@ the destination path where the file should be copied to

e A first implementation of the file copying procedure could look like
this:




Copying Text Files via Character Streams %\,

Listi Copying a text file character-by-character

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class CopyTextFileCharacterwise {

public static void main(String[] args) {
try (final FileReader source = new FileReader (args[0])) {
try (final FileWriter target = new FileWriter (args[1])) {
int readCharacter;
while ((readCharacter = source.read()) >= 0) {
target.write (readCharacter);
}
&
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace () ;

}
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e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
e A first implementation of the file copying procedure could look like
this:
e Copying files character-by-character this way means to do a lot of
system calls and is slow
e We could instead allocate a buffer to hold several characters at once
and use the array-based methods
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Listing: Copying a text file using a buffer

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class CopyTextFileUsingBuffer {

public static void main(String([] args) {
try (final FileReader source = new FileReader (args[0])) {
try (final FileWriter target = new FileWriter (args[1])) {
char [] buffer = new char [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write(buffer, 0, readAmount) ;
¥
}

} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace ();

}

}
}
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e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

® java.io.OutputStreamWriter :

e writes its data to an java.io.OutputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

e These character streams thus can be used in any situation where we

have byte streams, e.g., to work on stdin/stdout or on
socket-provided streams of a TCP/IP internet connection
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e The code below is fully equivalent to the previous example. ..

Listing: Text File Copying using Character Streams wrapped around Byte Stream

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

public class CopyTextFileUsingBufferAndWrappedStreams {

public static void main(Stringl[] args) {

try (final FileInputStream fis = new FileInputStream(args[0]1)) {
try (final InputStreamReader source = new InputStreamReader (fis)) {

try (final FileOutputStream fos = new FileOutputStream(args([1])) {
try (final OutputStreamWriter target = new OutputStreamWriter (fos)) {

char[] buffer = new char [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write(buffer, 0, readAmount);

}
¥
}
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace ();
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offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a
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e There are several more useful implementations of character-based
streams, e.g.,

e java.io.BufferedReader is wrapped around a java.io.Reader and
offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a
String containing a full line of text from its source (or null if the

end of stream has been reached)
e java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

e java.io.CharArrayReader and java.io.CharArrayWriter are the
character stream equivalent of the byte stream
java.io.ByteArrayInputStream and

java.io.ByteArrayOutputStream
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Summary %()

e We have learned about the concept of streams, sequential sources or
destinations of data

e We have learned that Java offers byte -based streams based on
java.io.InputStream and java.io.OutputStream

e We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

e We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

e We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, ...

e Algorithms working on streams are thus naturally versatile

e Java further makes heavy use of the concept of plugging streams
together, e.g., we would normally hava an java.io.InputStream , wrap
it into a java.io.Reader , which we would then wrap into a
java.io.BufferedReader to be able to read text line-by-line
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