
OOP with Java
28. I/O and Streams

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Byte Streams

3 Advanced Byte Streams

4 Character Streams

5 Advanced Character Streams

6 Summary

OOP with Java Thomas Weise 2/24

w
e
b
s
it
e

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

OOP with Java Thomas Weise 3/24

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

OOP with Java Thomas Weise 3/24

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

• Basically, a stream is a sequence of elements of the same type

OOP with Java Thomas Weise 3/24

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

• Basically, a stream is a sequence of elements of the same type

• The elements of a stream are processed exactly in their sequence

OOP with Java Thomas Weise 3/24

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

• Basically, a stream is a sequence of elements of the same type

• The elements of a stream are processed exactly in their sequence

• Streams are either for reading or writing

OOP with Java Thomas Weise 3/24

Introduction

• We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console I/O

• But what are streams?

• Basically, a stream is a sequence of elements of the same type

• The elements of a stream are processed exactly in their sequence

• Streams are either for reading or writing

• Streams are the prefered form of I/O in many scenarios

OOP with Java Thomas Weise 3/24

Basic I/O Streams

• In Java, the two most basic types of I/O streams are

OOP with Java Thomas Weise 4/24

Basic I/O Streams

• In Java, the two most basic types of I/O streams are:
• byte -based streams for raw data I/O

OOP with Java Thomas Weise 4/24

Basic I/O Streams

• In Java, the two most basic types of I/O streams are:
• byte -based streams for raw data I/O

• char -based streams for text I/O

OOP with Java Thomas Weise 4/24

Byte Streams

• A byte stream is a sequence of byte s

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
• the method int read() reading a single byte (0. . . 255), returning -1

if the end of the stream is reached

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
• the method int read() reading a single byte (0. . . 255), returning -1

if the end of the stream is reached
• the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
• the method int read() reading a single byte (0. . . 255), returning -1

if the end of the stream is reached
• the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

• the method int read(byte[] dest, int off, int len) tries to read

up to len bytes at once and store them into dest start at index

off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
• the method int read() reading a single byte (0. . . 255), returning -1

if the end of the stream is reached
• the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

• the method int read(byte[] dest, int off, int len) tries to read

up to len bytes at once and store them into dest start at index

off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

• the method int available() return a number of bytes available right
now (0 does not mean that the stream has ended, more data may
come later)

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
• the method int read() reading a single byte (0. . . 255), returning -1

if the end of the stream is reached
• the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

• the method int read(byte[] dest, int off, int len) tries to read

up to len bytes at once and store them into dest start at index

off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

• the method int available() return a number of bytes available right
now (0 does not mean that the stream has ended, more data may
come later)

• the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

• Byte streams for output are sub-classes of java.io.OutputStream

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

• Byte streams for output are sub-classes of java.io.OutputStream ,

offering, amongst others,
• the method void write(int src) writes a single byte (low-order

eight bits of src)

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

• Byte streams for output are sub-classes of java.io.OutputStream ,

offering, amongst others,
• the method void write(int src) writes a single byte (low-order

eight bits of src)

• the method void write(byte[] src) writes the sequence of bytes

from src

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

• Byte streams for output are sub-classes of java.io.OutputStream ,

offering, amongst others,
• the method void write(int src) writes a single byte (low-order

eight bits of src)

• the method void write(byte[] src) writes the sequence of bytes

from src

• the method void write(byte[] src, int off, int len) writes the

sequence of len bytes from src starting at index off

OOP with Java Thomas Weise 5/24

Byte Streams

• A byte stream is a sequence of byte s

• Byte streams for input are sub-classes of java.io.InputStream

• Byte streams for output are sub-classes of java.io.OutputStream ,

offering, amongst others,
• the method void write(int src) writes a single byte (low-order

eight bits of src)

• the method void write(byte[] src) writes the sequence of bytes

from src

• the method void write(byte[] src, int off, int len) writes the

sequence of len bytes from src starting at index off

• the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 5/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and

System.err offer additional functions for text)

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and

System.err offer additional functions for text)

• There could be implementations of this functionality for TCP/IP
internet connections

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and

System.err offer additional functions for text)

• There could be implementations of this functionality for TCP/IP
internet connections

• There could be output streams writing to a buffer in memory or input
streams reading from a byte array

• . . .

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

• The concept of the byte stream base classes InputStream and

OutputStream is quite general

• There could be implementations of this functionality to deal with
actual files

• There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and

System.err offer additional functions for text)

• There could be implementations of this functionality for TCP/IP
internet connections

• There could be output streams writing to a buffer in memory or input
streams reading from a byte array

• . . .

• What the methods actually do depends on the implementations in the
corresponding subclasses

OOP with Java Thomas Weise 6/24

Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

OOP with Java Thomas Weise 7/24

Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

• FileInputStream reads one byte after the other from a file

OOP with Java Thomas Weise 7/24

Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

• FileInputStream reads one byte after the other from a file

• It offers several constructors, one accepts the path to the file to read
from as String

OOP with Java Thomas Weise 7/24

Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

• FileInputStream reads one byte after the other from a file

• It offers several constructors, one accepts the path to the file to read
from as String

• FileOutputStream writes one byte after the other to a file

OOP with Java Thomas Weise 7/24

Byte Streams for Files

• The byte stream API has been implemented for basic file I/O as
follows:

• FileInputStream reads one byte after the other from a file

• It offers several constructors, one accepts the path to the file to read
from as String

• FileOutputStream writes one byte after the other to a file

• It offers several constructors, one accepts the path to the file to
created and written to as String

OOP with Java Thomas Weise 7/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

Listing: Copying a file byte-by-byte

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying a raw file byte for byte: slow */

public class CopyRawFileBytewise {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

try (final FileOutputStream target = new FileOutputStream(args [1])) {

int readByte;

while ((readByte = source.read()) >= 0) { // while not end -of-stream

target.write(readByte); // write the byte we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files byte-by-byte this way means to do a lot of system calls
and is slow

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

• We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files byte-by-byte this way means to do a lot of system calls
and is slow

• We could instead allocate a buffer to hold several bytes at once and
use the array-based methods

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams

Listing: Copying a file using a buffer

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying a raw file by using a buffer: faster */

public class CopyRawFileUsingBuffer {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

try (final FileOutputStream target = new FileOutputStream(args [1])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while ((readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the bytes we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}
OOP with Java Thomas Weise 8/24

stdin, stdout, and stderr

• stdin (Sytem.in) is a java.io.InputStream

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

• stdin (Sytem.in) is a java.io.InputStream

• stdout (System.out) and stderr (System.err) are

java.io.OutputStream s (special ones)

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

• stdin (Sytem.in) is a java.io.InputStream

• stdout (System.out) and stderr (System.err) are

java.io.OutputStream s (special ones)

• Based on the previous examples, we can now copy data from stdin

to a file or from a file to stdout or stderr

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

Listing: Copying stdin to a file

import java.io.FileOutputStream;

import java.io.IOException;

/** a class copying all bytes read from stdin to a file by using a buffer:

faster */

public class CopyStdInToFileUsingBuffer {

/** The main routine

* @param args args [0]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileOutputStream target = new FileOutputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while ((readAmount = System.in.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the bytes we just read

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

Listing: Copying a file to stdout

import java.io.FileInputStream;

import java.io.IOException;

/** a class copying a raw file to stdout by using a buffer: faster */

public class CopyFileToStdOutUsingBuffer {

/** The main routine

* @param args args [0]= source file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while ((readAmount = source.read(buffer)) > 0) { // fill buffer

System.out.write(buffer , 0, readAmount); // write the bytes we just read

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

Listing: Copying a file to stderr

import java.io.FileInputStream;

import java.io.IOException;

/** a class copying a raw file to stdout by using a buffer: faster */

public class CopyFileToStdErrUsingBuffer {

/** The main routine

* @param args args [0]= source file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream source = new FileInputStream(args [0])) {

byte[] buffer = new byte [4096]; // a reasonable sized buffer

int readAmount; // the number of bytes actually read

while ((readAmount = source.read(buffer)) > 0) { // fill buffer

System.err.write(buffer , 0, readAmount); // write the bytes we just read

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

• stdin (Sytem.in) is a java.io.InputStream

• stdout (System.out) and stderr (System.err) are

java.io.OutputStream s (special ones)

• Based on the previous examples, we can now copy data from stdin

to a file or from a file to stdout or stderr

• Warning: This is just an example, never use byte streams with text
data. . .

OOP with Java Thomas Weise 9/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

• java.io.ByteArrayInputStream is an InputStream implementation

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

• java.io.ByteArrayInputStream is an InputStream implementation:

• reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

• java.io.ByteArrayInputStream is an InputStream implementation:

• reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)

• ByteArrayInputStream(byte[] b) reads from the whole array

OOP with Java Thomas Weise 10/24

Byte Array Streams

• java.io.ByteArrayOutputStream is an OutputStream implementation:

• it writes the contents to an internal byte array which is re-sized as

needed
• we can get a copy of this byte array via byte[] toByteArray()

• we can write the buffered contents to another output stream via
writeTo(OutputStream)

• we can reset the stream via reset() to use it again

• java.io.ByteArrayInputStream is an InputStream implementation:

• reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)

• ByteArrayInputStream(byte[] b) reads from the whole array

• ByteArrayInputStream(byte[] b, int off, int len) reads only in

the len bytes starting at offset off

OOP with Java Thomas Weise 10/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream :

• its constructor takes an OutputStream as parameter to which it will

write

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

• What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

• We need a standardized mapping from these types to raw bytes

• Such a mapping exists (we won’t discuss it here) and is implemented
in the Data*Streams :

• DataInputStream is a subclass of InputStream :

• its constructor takes an InputStream as parameter from which it will

read
• it additionally offers a method of the form readXXX for reading one

instance of each primitive type

• DataOutputStream is a subclass of OutputStream :

• its constructor takes an OutputStream as parameter to which it will

write
• it additionally offers a method of the form writeXXX for writing one

instance of each primitive type

OOP with Java Thomas Weise 11/24

Using Byte Array and Data Streams

Listing: Using Byte Array Streams and Data Streams

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

/** a class writing some primitive types to a buffer , printing the buffer , then reading the values again */

public class DataAndByteIOStreams {

/** The main routine

* @param args args [0]= target file */

public static void main(String [] args) { // we use try -with -resource ...

byte[] buffer;

try { // wrap all code in a huge try -catch clause

try (ByteArrayOutputStream bos = new ByteArrayOutputStream ()) {

try (DataOutputStream dos = new DataOutputStream(bos)) {

dos.writeLong (0 x88_99_aa_bb_cc_dd_ee_ffL); // write 64bit long to dos , results in 8 bytes to bos

dos.writeBoolean(true); // write true to dos , results in byte value 1 to bos

dos.writeFloat (2f); // write float 2f to dos , results in 4 bytes (0 x40_00_00_00) to bos

dos.writeInt (8192 | 32); // 8192 | 32 = 0x00002020 to dos , resulting in 4 to bos

} // automatically close the data output stream

buffer = bos.toByteArray (); // get a copy of the buffer holding all writtendata

} // close the byte array output stream

System.out.print(buffer.length); // how many bytes were written? 8+1+4+4 = 17

System.out.print(':');

for (byte b : buffer) { // fast read -only iteration over buffer

System.out.print(' ');

System.out.print(Integer.toHexString(b & 0xff)); // write hex value of current byte

} // ________long___________ __float_ ___int___

System.out.println (); // 17: 88 99 aa bb cc dd ee ff 1 40 0 0 0 0 0 20 20

// boolean -^

try (ByteArrayInputStream bis = new ByteArrayInputStream(buffer)) { // now we read again from the buffer

try (DataInputStream dis = new DataInputStream(bis)) { // and wrap bis into data input stream

System.out.println(Long.toHexString(dis.readLong ())); // read the long

System.out.println(dis.readBoolean ()); // read the boolean

System.out.println(dis.readFloat ()); // read the float

System.out.println(dis.readInt ()); // read the int

} // automatically close dis

} // automatically close bis

} catch (IOException error) { // if something failed (that should really not happen here) ...

error.printStackTrace (); // ... print the stack trace

}

}

} OOP with Java Thomas Weise 12/24

More Byte Streams

• There are several more useful implementations of byte-based streams

OOP with Java Thomas Weise 13/24

More Byte Streams

• There are several more useful implementations of byte-based streams,
e.g.,

• java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered I/O which makes the single-byte operations faster

OOP with Java Thomas Weise 13/24

More Byte Streams

• There are several more useful implementations of byte-based streams,
e.g.,

• java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered I/O which makes the single-byte operations faster
• java.net.Socket , implementing TCP sockets in Java, provides

java.io.InputStream / java.io.OutputStream to read/write from an

internet connection

OOP with Java Thomas Weise 13/24

More Byte Streams

• There are several more useful implementations of byte-based streams,
e.g.,

• java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered I/O which makes the single-byte operations faster
• java.net.Socket , implementing TCP sockets in Java, provides

java.io.InputStream / java.io.OutputStream to read/write from an

internet connection
• java.io.ObjectInputStream / java.io.ObjectOutputStream are

similar to the data input/output streams, but additionally allow for
reading/writing whole (serializable) objects

OOP with Java Thomas Weise 13/24

Character Encoding

• Different languages have different characters

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“ä” and “ß”. . .)

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

• These approaches are insufficient for other languages

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

• Encoded as UTF-7, UTF-8 [7] (compatible to ASCII), UTF-16, and
UTF-32

OOP with Java Thomas Weise 14/24

Character Encoding

• Different languages have different characters

• Originally, storage of text data mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non-ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

• Encoded as UTF-7, UTF-8 [7] (compatible to ASCII), UTF-16, and
UTF-32

• When dealing with text data, we must make sure to use the right
encoding!

OOP with Java Thomas Weise 14/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader ,

offering, amongst others,
• the method int read() reading a single character, returning -1 if the

end of the stream is reached

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader ,

offering, amongst others,
• the method int read() reading a single character, returning -1 if the

end of the stream is reached
• the method int read(char[] dest) tries to read up to dest.length

characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader ,

offering, amongst others,
• the method int read() reading a single character, returning -1 if the

end of the stream is reached
• the method int read(char[] dest) tries to read up to dest.length

characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

• the method int read(char[] dest, int off, int len) tries to read

up to len characters at once and store them into dest start at index

off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader ,

offering, amongst others,
• the method int read() reading a single character, returning -1 if the

end of the stream is reached
• the method int read(char[] dest) tries to read up to dest.length

characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

• the method int read(char[] dest, int off, int len) tries to read

up to len characters at once and store them into dest start at index

off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

• the method boolean ready() return true if characters are ready to

read and read won’t block

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader ,

offering, amongst others,
• the method int read() reading a single character, returning -1 if the

end of the stream is reached
• the method int read(char[] dest) tries to read up to dest.length

characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

• the method int read(char[] dest, int off, int len) tries to read

up to len characters at once and store them into dest start at index

off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

• the method boolean ready() return true if characters are ready to

read and read won’t block

• the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

• Character streams for output are sub-classes of java.io.Writer

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

• Character streams for output are sub-classes of java.io.Writer ,

offering, amongst others,
• the method void write(int) writes a single character

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

• Character streams for output are sub-classes of java.io.Writer ,

offering, amongst others,
• the method void write(int) writes a single character

• the method void write(char[] src) writes the sequence of
characters from src

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

• Character streams for output are sub-classes of java.io.Writer ,

offering, amongst others,
• the method void write(int) writes a single character

• the method void write(char[] src) writes the sequence of
characters from src

• the method void write(char[] src, int off, int len) writes the

sequence of len characters from src starting at index off

OOP with Java Thomas Weise 15/24

Character Streams

• Java provides a stream API for character: a character stream is a
sequence of char s

• Character streams for input are sub-classes of java.io.Reader

• Character streams for output are sub-classes of java.io.Writer ,

offering, amongst others,
• the method void write(int) writes a single character

• the method void write(char[] src) writes the sequence of
characters from src

• the method void write(char[] src, int off, int len) writes the

sequence of len characters from src starting at index off

• the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 15/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

• It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

• It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly

• FileWriter writes one character after the other to a file

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

• It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly

• FileWriter writes one character after the other to a file
• It offers several constructors, one accepts the path to the file to created

and written to as String

OOP with Java Thomas Weise 16/24

Character Streams for Files

• The character stream API has been implemented for basic file I/O as
follows:

• FileReader reads one character after the other from a file:
• It offers several constructors, one accepts the path to the file to read

from as String

• It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly

• FileWriter writes one character after the other to a file
• It offers several constructors, one accepts the path to the file to created

and written to as String

• It will transform the characters to raw binary data using the system’s
default character encoding

OOP with Java Thomas Weise 16/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

Listing: Copying a text file character-by-character

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

/** a class copying a text file character by character: slow */

public class CopyTextFileCharacterwise {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileReader source = new FileReader(args [0])) {

try (final FileWriter target = new FileWriter(args [1])) {

int readCharacter;

while ((readCharacter = source.read()) >= 0) { // while not end -of-stream

target.write(readCharacter); // write the character we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files character-by-character this way means to do a lot of
system calls and is slow

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

• We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

1 the source path to the file to copy
2 the destination path where the file should be copied to

• A first implementation of the file copying procedure could look like
this:

• Copying files character-by-character this way means to do a lot of
system calls and is slow

• We could instead allocate a buffer to hold several characters at once
and use the array-based methods

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams

Listing: Copying a text file using a buffer

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

/** a class copying a text file by using a buffer: faster */

public class CopyTextFileUsingBuffer {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileReader source = new FileReader(args [0])) {

try (final FileWriter target = new FileWriter(args [1])) {

char[] buffer = new char [4096]; // a reasonable sized buffer

int readAmount; // the number of characters actually read

while ((readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the characters we just read

}

} // closes target , the "}" in the next line closes source

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 17/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• java.io.OutputStreamWriter

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• java.io.OutputStreamWriter :

• writes its data to an java.io.OutputStream passed to it in its
constructor

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• java.io.OutputStreamWriter :

• writes its data to an java.io.OutputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

• The most basic character stream implementations directly wrap a
byte stream

• java.io.InputStreamReader :

• reads its data from an java.io.InputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• java.io.OutputStreamWriter :

• writes its data to an java.io.OutputStream passed to it in its
constructor

• as optional second parameter, the name of a text encoding can be
provided (otherwise, the system’s default encoding is used)

• These character streams thus can be used in any situation where we
have byte streams, e.g., to work on stdin/stdout or on
socket-provided streams of a TCP/IP internet connection

OOP with Java Thomas Weise 18/24

Character Streams wrapped around Byte Streams

• The code below is fully equivalent to the previous example. . .
Listing: Text File Copying using Character Streams wrapped around Byte Streams

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

/** a class copying a text file by using character streams wrapped around byte streams */

public class CopyTextFileUsingBufferAndWrappedStreams {

/** The main routine

* @param args args [0]= source file , args [1]= target file */

public static void main(String [] args) { // we use try -with -resource ...

try (final FileInputStream fis = new FileInputStream(args [0])) {

try (final InputStreamReader source = new InputStreamReader(fis)) {

try (final FileOutputStream fos = new FileOutputStream(args [1])) {

try (final OutputStreamWriter target = new OutputStreamWriter(fos)) {

char[] buffer = new char [4096]; // a reasonable sized buffer

int readAmount; // the number of characters actually read

while ((readAmount = source.read(buffer)) > 0) { // fill buffer

target.write(buffer , 0, readAmount); // write the characters we just read

}

}

}

}

} catch (IOException error) { // IOExceptions are checked exceptions

System.out.println("Copying has failed."); //$NON -NLS -1$

error.printStackTrace (); // print stack trace

}

}

}

OOP with Java Thomas Weise 19/24

Advanced Character Streams

• There are several more useful implementations of character-based
streams

OOP with Java Thomas Weise 20/24

Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)

OOP with Java Thomas Weise 20/24

Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)
• java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

OOP with Java Thomas Weise 20/24

Advanced Character Streams

• There are several more useful implementations of character-based
streams, e.g.,

• java.io.BufferedReader is wrapped around a java.io.Reader and

offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)
• java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

• java.io.CharArrayReader and java.io.CharArrayWriter are the

character stream equivalent of the byte stream
java.io.ByteArrayInputStream and

java.io.ByteArrayOutputStream

OOP with Java Thomas Weise 20/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

• Algorithms working on streams are thus naturally versatile

OOP with Java Thomas Weise 21/24

Summary

• We have learned about the concept of streams, sequential sources or
destinations of data

• We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

• We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

• We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

• We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, . . .

• Algorithms working on streams are thus naturally versatile
• Java further makes heavy use of the concept of plugging streams
together, e.g., we would normally hava an java.io.InputStream , wrap

it into a java.io.Reader , which we would then wrap into a

java.io.BufferedReader to be able to read text line-by-line

OOP with Java Thomas Weise 21/24

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 22/24

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

OOP with Java Thomas Weise 23/24

Bibliography I

1. ISO/IEC 8859-1 – Final Text of DIS 8859-1, 8-bit Single-Byte Coded Graphic Character Sets – Part 1: Latin Alphabet No.1,
volume ISO/IEC 8859-1:1997 (E). Geneva, Switzerland: International Organization for Standardization (ISO), February 12,
1998. URL http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf.

2. Ken Lunde. CJKV Information Processing. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1999. ISBN 0-596-51447-6
and 1-56592-224-7. URL http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf.

3. Information Technology – Universal Coded Character Set (UCS) (ISO/IEC 10646:2011). Geneva, Switzerland: International
Organization for Standardization (ISO), 2011.

4. USA: The Unicode Consortium Mountain View, CA and Julie D. Allen. The Unicode Standard, Version 5.0. Reading, MA,
USA: Addison-Wesley Professional, fifth edition, 2007. ISBN 0-321-48091-0 and 978-0-321-48091-0. URL
http://books.google.de/books?id=Yn1UAAAAMAAJ.

5. The unicode consortium, 2011. URL http://www.unicode.org/.
6. Jukka K. Korpela. Unicode Explained. Internationalize Documents, Programs, and Web Sites. Sebastopol, CA, USA:

O’Reilly Media, Inc., June 28, 2006. ISBN 059610121X and 9780596101213. URL
http://books.google.de/books?id=PcWU2yxc8WkC.

7. François Yergeau. STD 63: UTF-8, A Transformation Format of ISO 10646, volume 3629 of Request for Comments (RFC).
Network Working Group, November 2003. URL https://tools.ietf.org/html/rfc3629.

OOP with Java Thomas Weise 24/24

http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf
http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf
http://books.google.de/books?id=Yn1UAAAAMAAJ
http://www.unicode.org/
http://books.google.de/books?id=PcWU2yxc8WkC
https://tools.ietf.org/html/rfc3629

	Outline
	Introduction
	Introduction
	Basic I/O Streams

	Byte Streams
	Byte Streams
	Byte Stream Implementations
	Byte Streams for Files
	Copying Files via Byte Streams
	stdin, stdout, and stderr

	Advanced Byte Streams
	Byte Array Streams
	Reading/Writing Structured Data
	Using Byte Array and Data Streams
	More Byte Streams

	Character Streams
	Character Encoding
	Character Streams
	Character Streams for Files
	Copying Text Files via Character Streams
	Character Streams wrapping Byte Streams
	Character Streams wrapped around Byte Streams

	Advanced Character Streams
	Advanced Character Streams

	Summary
	Summary

	Presentation End
	Bibliography

