LR B

HEFEI UNIVERSITY

OOP with Java
28. 1/0 and Streams

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE
http://iao.hfuu.edu.cn

Sk meHKRR /2R
A 5 AR R

)5 ﬁ‘ 1t iﬂf
& Lﬂ RE b

fe &.Lh X 230601

ZFEARATL 2 4% 4% Ki8995

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Byte Streams

® Advanced Byte Streams
@ Character Streams

@ Advanced Character Streams

@ Summary

OOP with Java Thomas Weise

e We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0

e We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O

e But what are streams?

e We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O
e But what are streams?

e Basically, a stream is a sequence of elements of the same type

We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O

But what are streams?

Basically, a stream is a sequence of elements of the same type

The elements of a stream are processed exactly in their sequence

We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O

But what are streams?

Basically, a stream is a sequence of elements of the same type

The elements of a stream are processed exactly in their sequence

Streams are either for reading or writing

e We have learned already a bit about input/output, when using the
standard input, output, and error streams in Lesson 6: Console /0O

e But what are streams?
e Basically, a stream is a sequence of elements of the same type
e The elements of a stream are processed exactly in their sequence

e Streams are either for reading or writing

e Streams are the prefered form of I/O in many scenarios

e In Java, the two most basic types of |/O streams are

e In Java, the two most basic types of |/O streams are:
e byte -based streams for raw data 1/0

e In Java, the two most basic types of |/O streams are:
e byte -based streams for raw data 1/0

e char -based streams for text 1/0

o A byte stream is a sequence of byte s

o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
o the method int read() reading a single byte (0...255), returning -1
if the end of the stream is reached

Byte Streams

e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,
offering, amongst others,

e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached

e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of

bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

OOP with Java Thomas Weise 5/24

Byte Streams

”

>
<

e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,
offering, amongst others,

e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached

e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

e the method int read(bytel[] dest, int off, int len) tries to read

up to len bytes at once and store them into dest start at index

off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 5/24

Byte Streams

”

>
<

e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,
offering, amongst others,
e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached
e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

e the method int read(bytel[] dest, int off, int len) tries to read

up to len bytes at once and store them into dest start at index
off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

e the method int available() return a number of bytes available right
now (0 does not mean that the stream has ended, more data may
come later)

OOP with Java Thomas Weise 5/24

Byte Streams

”

>
<

e A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream ,

offering, amongst others,
e the method int read() reading a single byte (0. ..255), returning -1
if the end of the stream is reached
e the method int read(byte[] dest) tries to read up to dest.length

bytes and store them into dest at once, returns the actual number of
bytes read (may be less, e.g., if end of stream is reached), or -1 if end
of stream already reached

e the method int read(bytel[] dest, int off, int len) tries to read
up to len bytes at once and store them into dest start at index
off ; returns the actual number of bytes read (may be less, e.g., if end
of stream is reached), or -1 if end of stream already reached

e the method int available() return a number of bytes available right

now (0 does not mean that the stream has ended, more data may
come later)

e the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 5/24

o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream

o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src)

o A byte stream is a sequence of byte s

e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src)

o the method void write(byte[] src) writes the sequence of bytes
from src

Byte Streams %ﬁ)

o A byte stream is a sequence of byte s
e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src)

e the method void write(byte[] src) writes the sequence of bytes
from src

e the method void write(byte[] src, int off, int len) writes the

sequence of len bytes from src starting at index off

OOP with Java Thomas Weise 5/24

Byte Streams %ﬁ)

o A byte stream is a sequence of byte s
e Byte streams for input are sub-classes of java.io.InputStream

e Byte streams for output are sub-classes of java.io.OutputStream ,
offering, amongst others,

e the method void write(int src) writes a single byte (low-order
eight bits of src)

e the method void write(byte[] src) writes the sequence of bytes
from src

e the method void write(byte[] src, int off, int len) writes the
sequence of len bytes from src starting at index off

e the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 5/24

e The concept of the byte stream base classes InputStream and
OutputStream is quite general

e The concept of the byte stream base classes InputStream and

OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

e The concept of the byte stream base classes InputStream and

OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

o There could be implementations of this functionality for the standard
streams

e The concept of the byte stream base classes InputStream and

OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

o There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and

System.err offer additional functions for text)

Byte Stream Implementations %\’

1AQ

e The concept of the byte stream base classes InputStream and
OutputStream is quite general
e There could be implementations of this functionality to deal with
actual files
e There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and
System.err offer additional functions for text)

e There could be implementations of this functionality for TCP/IP
internet connections

OOP with Java Thomas Weise 6/24

Byte Stream Implementations %

e The concept of the byte stream base classes InputStream and
OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

e There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and
System.err offer additional functions for text)

e There could be implementations of this functionality for TCP/IP
internet connections

e There could be output streams writing to a buffer in memory or input
streams reading from a byte array

OOP with Java Thomas Weise 6/24

Byte Stream Implementations

”

>
<

e The concept of the byte stream base classes InputStream and
OutputStream is quite general

e There could be implementations of this functionality to deal with
actual files

e There could be implementations of this functionality for the standard
streams (System.in is actually this, while System.out and
System.err offer additional functions for text)

e There could be implementations of this functionality for TCP/IP
internet connections

e There could be output streams writing to a buffer in memory or input

streams reading from a byte array
(] -

e What the methods actually do depends on the implementations in the
corresponding subclasses

OOP with Java Thomas Weise 6/24

e The byte stream API has been implemented for basic file /O as
follows:

e The byte stream API has been implemented for basic file /O as
follows:

® FileInputStream reads one byte after the other from a file

e The byte stream API has been implemented for basic file /O as
follows:

® FileInputStream reads one byte after the other from a file

o |t offers several constructors, one accepts the path to the file to read
from as String

The byte stream API has been implemented for basic file 1/0 as
follows:

FileInputStream reads one byte after the other from a file

It offers several constructors, one accepts the path to the file to read
from as String

FileOutputStream writes one byte after the other to a file

The byte stream API has been implemented for basic file 1/0 as
follows:

FileInputStream reads one byte after the other from a file

It offers several constructors, one accepts the path to the file to read
from as String

FileOutputStream writes one byte after the other to a file

It offers several constructors, one accepts the path to the file to
created and written to as String

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

@ the source path to the file to copy

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:
@ the source path to the file to copy
@ the destination path where the file should be copied to

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:
@ the source path to the file to copy
@ the destination path where the file should be copied to

e A first implementation of the file copying procedure could look like
this:

Copying Files via Byte Streams %\’

1AQ

Listing: Copying a file byte-by-byte

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyRawFileBytewise {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args([0])) {
try (final FileOutputStream target = new FileOutputStream(args[1])) {
int readByte;
while ((readByte = source.read()) >= 0) {
target.write (readByte);
¥
}

} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;

¥

¥
}

OOP with Java Thomas Weise 8/24

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
e A first implementation of the file copying procedure could look like
this:

e Copying files byte-by-byte this way means to do a lot of system calls
and is slow

Copying Files via Byte Streams %ﬁ)

e We can use this to write a small program to copy a single file, taking
as command line arguments two paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
o A first implementation of the file copying procedure could look like
this:
e Copying files byte-by-byte this way means to do a lot of system calls
and is slow

e We could instead allocate a buffer to hold several bytes at once and
use the array-based methods

OOP with Java Thomas Weise 8/24

Copying Files via Byte Streams %\’

Listing: Copying a file using a b

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyRawFileUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
try (final FileOutputStream target = new FileOutputStream(args[1])) {
byte[] buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write (buffer, 0, readAmount);
¥
¥
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;
}
¥

— }

OOP with Java Thomas Weise 8/24

e stdin (Sytem.in) is @ java.io.InputStream

e stdin (Sytem.in) is @ java.io.InputStream

e stdout (System.out) and stderr (System.err) are

java.io.OutputStream S (special ones)

e stdin (Sytem.in) is @ java.io.InputStream

e stdout (System.out) and stderr (System.err) are
java.io.OutputStream S (special ones)

e Based on the previous examples, we can now copy data from stdin
to a file or from a file to stdout or stderr

stdin, stdout, and stderr

W

>
<

Listing: Copying stdin to a file

import java.io.FileOutputStream;
import java.io.IOException;

public class CopyStdInToFileUsingBuffer {

public static void main(Stringl[] args) {
try (final FileOutputStream target = new FileOutputStream(args[0])) {
byte[] buffer = new byte [4096];
int readAmount;

while ((readAmount = System.in.read(buffer)) > 0) {
target.write (buffer, 0, readAmount);
¥
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace () ;

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

B>
[/

W

Listing: Copying a file to stdout

import java.io.FileInputStream;
import java.io.IOException;

public class CopyFileToStdOutUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
byte [l buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
System.out.write (buffer, 0, readAmount);
}
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;

OOP with Java Thomas Weise 9/24

stdin, stdout, and stderr

B>
[/

W

Listing: Copying a file to stderr

import java.io.FileInputStream;
import java.io.IOException;

public class CopyFileToStdErrUsingBuffer {

public static void main(Stringl[] args) {
try (final FileInputStream source = new FileInputStream(args[0])) {
byte [l buffer = new byte [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
System.err.write (buffer, 0, readAmount);
}
} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace () ;

OOP with Java Thomas Weise 9/24

stdin (Sytem.in) is @ java.io.InputStream

stdout (System.out) and stderr (System.err) are
java.io.OutputStream S (special ones)

Based on the previous examples, we can now copy data from stdin
to a file or from a file to stdout or stderr

Warning: This is just an example, never use byte streams with text
data. ..

® java.io.ByteArrayOutputStream iS an OutputStream implementation

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as
needed

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as
needed
e we can get a copy of this byte array via bytel[] toByteArray()

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via bytel[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as
needed

e we can get a copy of this byte array via bytel[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via bytel[] toByteArray()
e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again

® java.io.ByteArrayInputStream iS an InputStream implementation

Byte Array Streams %0,

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo(OutputStream)

e we can reset the stream via reset() to use it again
® java.io.ByteArrayInputStream iS an InputStream implementation:

e reads the contents from an byte array passed to its constructor (and
ends when the end of the array is reached)

OOP with Java Thomas Weise 10/24

”

>
<

Byte Array Streams

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again
® java.io.ByteArrayInputStream iS an InputStream implementation:
e reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)
e ByteArrayInputStream(byte[] b) reads from the whole array

OOP with Java Thomas Weise 10/24

”

>
<

Byte Array Streams

® java.io.ByteArrayOutputStream iS an OutputStream implementation:

e it writes the contents to an internal byte array which is re-sized as

needed
e we can get a copy of this byte array via byte[] toByteArray()

e we can write the buffered contents to another output stream via
writeTo (OutputStream)

e we can reset the stream via reset() to use it again
® java.io.ByteArrayInputStream iS an InputStream implementation:
e reads the contents from an byte array passed to its constructor (and

ends when the end of the array is reached)
e ByteArrayInputStream(byte[] b) reads from the whole array

e ByteArrayInputStream(byte[] b, int off, int len) reads only in
the 1len bytes starting at offset off

OOP with Java Thomas Weise 10/24

e What if you want to not just write single byte values, but other

primitive types such as int , double , etc?

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the DataxStreams

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DatalnputStream is a subclass of InputStream

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DatalnputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

Reading/Writing Structured Data %\’

1AQ

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DatalnputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

e it additionally offers a method of the form readXXX for reading one
instance of each primitive type

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data %\0\

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DatalnputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

e it additionally offers a method of the form readXXX for reading one
instance of each primitive type

e DataOutputStream is a subclass of OutputStream

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data %\0\

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DatalnputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

e it additionally offers a method of the form readXXX for reading one
instance of each primitive type

e DataOutputStream is a subclass of OutputStream :

e its constructor takes an OutputStream as parameter to which it will
write

OOP with Java Thomas Weise 11/24

Reading/Writing Structured Data

”

>
<

e What if you want to not just write single byte values, but other
primitive types such as int , double , etc?

e We need a standardized mapping from these types to raw bytes

e Such a mapping exists (we won't discuss it here) and is implemented
in the Data*Streams :

e DataInputStream is a subclass of InputStream :

® its constructor takes an InputStream as parameter from which it will
read

e it additionally offers a method of the form readXXX for reading one
instance of each primitive type

e DataOutputStream is a subclass of OutputStream :

e its constructor takes an OutputStream as parameter to which it will
write

e it additionally offers a method of the form writeXXX for writing one
instance of each primitive type

OOP with Java Thomas Weise 11/24

Using Byte Array and Data Streams

Byte Array Streams an

ata Streams

import java.io.ByteArrayImputStream;
import java.io.ByteArrayOutputStream;
import java.io.DatalmputStream;
import java.io.DataOutputStream;
import java.io.IDException;

public class DatakndByteIOStreams {

public static void main(String[] args) {
byte[] buffer;

try {
try (ByteArrayOutputStream bos = new ByteArrayOutputStream()) {
try (dos = new (bos)) {
dos.writeLong (0x88_99_aa_bb_cc_dd_ee_ffL);
dos.writeBoolean (true);
dos . writeFloat (2);
dos.writeInt (8192 | 32);

buffer = bos.toByteArray();
}

System.out.print (buffer.length);
System.out.print(':');

for (byte b : buffer) {

System.out.print('y');

System.out.print (Integer.toHexString(b & 0xff));

}
System.out.println();

try (ByteArrayInputStream bis
try (DatalnputStream dis = new DatalnputStream(bis)) {
System.out.println(Long.toHexString(dis.readLong()));
System.out.println(dis.readBoolean());
System.out.println(dis.readFloat ());
System.out.println(dis.readInt());

new ByteArrayInputStream(buffer)) {

b
b

} catch (IOException error) {
error.printStackTrace () ;
}

3 OOP with Java Thomas Weise 12/24

e There are several more useful implementations of byte-based streams

e There are several more useful implementations of byte-based streams,
e.g.,

® java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered 1/O which makes the single-byte operations faster

e There are several more useful implementations of byte-based streams,
e.g.,

e java.io.BufferedInputStream / java.io.BufferedOutputStream

wrap java.io.InputStream / java.io.OutputStream to provide

buffered 1/O which makes the single-byte operations faster
e java.net.Socket , implementing TCP sockets in Java, provides

java.io.InputStream / java.io.OutputStream to read/write from an
internet connection

More Byte Streams

”

>
<

e There are several more useful implementations of byte-based streams,
e.g.,

® java.io.BufferedInputStream / java.io.BufferedOutputStream
wrap java.io.InputStream / java.io.OutputStream to provide
buffered |/O which makes the single-byte operations faster

e java.net.Socket , implementing TCP sockets in Java, provides
java.io.InputStream / java.io.OutputStream to read/write from an
internet connection

® java.io.ObjectInputStream / java.io.ObjectOutputStream are

similar to the data input/output streams, but additionally allow for
reading/writing whole (serializable) objects

OOP with Java Thomas Weise 13/24

o Different languages have different characters

o Different languages have different characters

e Originally, storage of text data mainly designed for US English

o Different languages have different characters

e Originally, storage of text data mainly designed for US English
e Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1"

o Different languages have different characters

e Originally, storage of text data mainly designed for US English
e Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1"

e Original idea: bytes have different meaning, depending on language

o Different languages have different characters

e Originally, storage of text data mainly designed for US English
o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1"

e Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“d" and "B"...)

o Different languages have different characters
e Originally, storage of text data mainly designed for US English
Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1!

Original idea: bytes have different meaning, depending on language

GB2312 ! encoding especially for Chinese characters (2B for each
non-ASCII char)

Character Encoding %}

o Different languages have different characters

e Originally, storage of text data mainly designed for US English

o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e GB2312 " encoding especially for Chinese characters (2B for each
non-ASCII char)

e These approaches are insufficient for other languages

OOP with Java Thomas Weise 14/24

Character Encoding %V

o Different languages have different characters

e Originally, storage of text data mainly designed for US English

o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e GB2312 " encoding especially for Chinese characters (2B for each
non-ASCII char)

e These approaches are insufficient for other languages
e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

OOP with Java Thomas Weise 14/24

Character Encoding %}

o Different languages have different characters

e Originally, storage of text data mainly designed for US English

o Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e GB2312 " encoding especially for Chinese characters (2B for each
non-ASCII char)

e These approaches are insufficient for other languages
e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

e Encoded as UTF-7, UTF-8!" (compatible to ASCII), UTF-16, and
UTF-32

OOP with Java Thomas Weise 14/24

Character Encoding

Different languages have different characters

Originally, storage of text data mainly designed for US English
Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1
Original idea: bytes have different meaning, depending on language

GB2312 P encoding especially for Chinese characters (2B for each
non-ASCII char)

These approaches are insufficient for other languages

Universal Coded Character Set (UCS)®! and Unicode [**!
Encoded as UTF-7, UTF-8!" (compatible to ASCII), UTF-16, and
UTF-32

When dealing with text data, we must make sure to use the right
encoding!

OOP with Java Thomas Weise 14/24

e Java provides a stream API for character: a character stream is a
sequence of char s

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

e Java provides a stream API for character: a character stream is a
sequence of char s
e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,
e the method int read() reading a single character, returning -1 if the
end of the stream is reached

Character Streams %()

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,

e the method int read() reading a single character, returning -1 if the
end of the stream is reached

e the method int read(char[] dest) tries to read up to dest.length
characters and store them into dest at once, returns the actual

number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 15/24

Character Streams

”

>
<

e Java provides a stream API for character: a character stream is a
sequence of char s
e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,
e the method int read() reading a single character, returning -1 if the
end of the stream is reached
e the method int read(char[] dest) tries to read up to dest.length
characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached
e the method int read(char[] dest, int off, int len) tries to read

up to len characters at once and store them into dest start at index
off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

OOP with Java Thomas Weise 15/24

Character Streams

>
<

”

e Java provides a stream API for character: a character stream is a
sequence of char s
e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,
e the method int read() reading a single character, returning -1 if the
end of the stream is reached
e the method int read(char[] dest) tries to read up to dest.length
characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached

e the method int read(char[] dest, int off, int len) tries to read
up to len characters at once and store them into dest start at index
off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

e the method boolean ready() return true if characters are ready to

read and read won't block

OOP with Java Thomas Weise 15/24

Character Streams

”

>
<

e Java provides a stream API for character: a character stream is a
sequence of char s
e Character streams for input are sub-classes of java.io.Reader ,
offering, amongst others,
e the method int read() reading a single character, returning -1 if the
end of the stream is reached
e the method int read(char[] dest) tries to read up to dest.length
characters and store them into dest at once, returns the actual
number of characters read (may be less, e.g., if end of stream is
reached), or -1 if end of stream already reached
e the method int read(char[] dest, int off, int len) tries to read
up to len characters at once and store them into dest start at index

off ; returns the actual number of characters read (may be less, e.g.,
if end of stream is reached), or -1 if end of stream already reached

e the method boolean ready() return true if characters are ready to
read and read won't block

e the method void close() _implemented from java.io.Closeable

OOP with Java Thomas Weise 15/24

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

o Character streams for output are sub-classes of java.io.Writer

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

o Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,

o the method void write(int) writes a single character

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

o Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,
o the method void write(int) writes a single character

o the method void write(char[] src) writes the sequence of
characters from src

Character Streams %()

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

e Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,
e the method void write(int) writes a single character

e the method void write(char[] src) writes the sequence of
characters from src

e the method void write(char[] src, int off, int len) writes the

sequence of len characters from src starting at index off

OOP with Java Thomas Weise 15/24

Character Streams %0,

e Java provides a stream API for character: a character stream is a
sequence of char s

e Character streams for input are sub-classes of java.io.Reader

e Character streams for output are sub-classes of java.io.Writer ,
offering, amongst others,
e the method void write(int) writes a single character

e the method void write(char[] src) writes the sequence of
characters from src

e the method void write(char[] src, int off, int len) writes the
sequence of len characters from src starting at index off
e the method void close() implemented from java.io.Closeable

OOP with Java Thomas Weise 15/24

e The character stream API has been implemented for basic file /O as
follows:

e The character stream API has been implemented for basic file /O as
follows:

e FileReader reads one character after the other from a file

e The character stream API has been implemented for basic file /O as
follows:
e FileReader reads one character after the other from a file:

o |t offers several constructors, one accepts the path to the file to read
from as String

e The character stream API has been implemented for basic file /O as
follows:

e FileReader reads one character after the other from a file:

o |t offers several constructors, one accepts the path to the file to read
from as String

o |t assumes that the file is in the system’'s default character encoding
and decodes the binary data read from the file accordingly

e The character stream API has been implemented for basic file /O as
follows:

e FileReader reads one character after the other from a file:
o |t offers several constructors, one accepts the path to the file to read
from as String
o |t assumes that the file is in the system’'s default character encoding
and decodes the binary data read from the file accordingly

e TFileWriter writes one character after the other to a file

Character Streams for Files %0,

e The character stream API has been implemented for basic file I/O as
follows:
e FileReader reads one character after the other from a file:
o It offers several constructors, one accepts the path to the file to read
from as String
e It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly
e FileWriter writes one character after the other to a file

e |t offers several constructors, one accepts the path to the file to created
and written to as String

OOP with Java Thomas Weise 16/24

Character Streams for Files

”

>
<

e The character stream API has been implemented for basic file I/O as
follows:
e FileReader reads one character after the other from a file:
o It offers several constructors, one accepts the path to the file to read
from as String
e It assumes that the file is in the system’s default character encoding
and decodes the binary data read from the file accordingly
e FileWriter writes one character after the other to a file
e |t offers several constructors, one accepts the path to the file to created
and written to as String

o It will transform the characters to raw binary data using the system's
default character encoding

OOP with Java Thomas Weise 16/24

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to

e A first implementation of the file copying procedure could look like
this:

Copying Text Files via Character Streams %\,

Listi Copying a text file character-by-character

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class CopyTextFileCharacterwise {

public static void main(String[] args) {
try (final FileReader source = new FileReader (args[0])) {
try (final FileWriter target = new FileWriter (args[1])) {
int readCharacter;
while ((readCharacter = source.read()) >= 0) {
target.write (readCharacter);
}
&
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace () ;

}

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams %\’

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
e A first implementation of the file copying procedure could look like
this:
e Copying files character-by-character this way means to do a lot of
system calls and is slow

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams %c)

e We can use this to write a small program to copy a single text file in
the system’s default encoding, taking as command line arguments two
paths:

@ the source path to the file to copy
@ the destination path where the file should be copied to
e A first implementation of the file copying procedure could look like
this:
e Copying files character-by-character this way means to do a lot of
system calls and is slow
e We could instead allocate a buffer to hold several characters at once
and use the array-based methods

OOP with Java Thomas Weise 17/24

Copying Text Files via Character Streams %\’

1AQ

Listing: Copying a text file using a buffer

import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;

public class CopyTextFileUsingBuffer {

public static void main(String([] args) {
try (final FileReader source = new FileReader (args[0])) {
try (final FileWriter target = new FileWriter (args[1])) {
char [] buffer = new char [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write(buffer, 0, readAmount) ;
¥
}

} catch (IOException error) {
System.out.println("Copying has failed.");
error.printStackTrace ();

}

}
}

OOP with Java Thomas Weise 17/24

e The most basic character stream implementations directly wrap a
byte stream

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

® java.io.OutputStreamWriter

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

® java.io.OutputStreamWriter :

o writes its data to an java.io.OutputStream passed to it in its
constructor

Character Streams wrapping Byte Streams %0

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

® java.io.OutputStreamWriter :

e writes its data to an java.io.OutputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

OOP with Java Thomas Weise 18/24

Character Streams wrapping Byte Streams

”

>
<

e The most basic character stream implementations directly wrap a
byte stream

® java.io.InputStreamReader :

e reads its data from an java.io.InputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

® java.io.OutputStreamWriter :

e writes its data to an java.io.OutputStream passed to it in its
constructor

e as optional second parameter, the name of a text encoding can be
provided (otherwise, the system's default encoding is used)

e These character streams thus can be used in any situation where we

have byte streams, e.g., to work on stdin/stdout or on
socket-provided streams of a TCP/IP internet connection

OOP with Java Thomas Weise 18/24

Character Streams wrapped around Byte Streams N

e The code below is fully equivalent to the previous example. ..

Listing: Text File Copying using Character Streams wrapped around Byte Stream

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;

public class CopyTextFileUsingBufferAndWrappedStreams {

public static void main(Stringl[] args) {

try (final FileInputStream fis = new FileInputStream(args[0]1)) {
try (final InputStreamReader source = new InputStreamReader (fis)) {

try (final FileOutputStream fos = new FileOutputStream(args([1])) {
try (final OutputStreamWriter target = new OutputStreamWriter (fos)) {

char[] buffer = new char [4096];
int readAmount;

while ((readAmount = source.read(buffer)) > 0) {
target.write(buffer, 0, readAmount);

}
¥
}
} catch (IOException error) {
System.out.println("Copying has,failed.");
error.printStackTrace ();

OOP with Java Thomas Weise 19/24

e There are several more useful implementations of character-based
streams

e There are several more useful implementations of character-based
streams, e.g.,
e java.io.BufferedReader is wrapped around a java.io.Reader and
offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the

end of stream has been reached)

Advanced Character Streams %0,

e There are several more useful implementations of character-based
streams, e.g.,

e java.io.BufferedReader is wrapped around a java.io.Reader and
offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a

String containing a full line of text from its source (or null if the
end of stream has been reached)

e java.io.BufferedWriter is wrapped around a java.io.Writer
offers buffered writing and the method newLine() which starts a new
line in the text output

OOP with Java Thomas Weise 20/24

Advanced Character Streams

”

>
<

e There are several more useful implementations of character-based
streams, e.g.,

e java.io.BufferedReader is wrapped around a java.io.Reader and
offers not just faster, buffered reading, but also the ability to read a
complete line of text via the method String readLine() returning a
String containing a full line of text from its source (or null if the

end of stream has been reached)
e java.io.BufferedWriter is wrapped around a java.io.Writer

offers buffered writing and the method newLine() which starts a new
line in the text output

e java.io.CharArrayReader and java.io.CharArrayWriter are the
character stream equivalent of the byte stream
java.io.ByteArrayInputStream and

java.io.ByteArrayOutputStream

OOP with Java Thomas Weise 20/24

e We have learned about the concept of streams, sequential sources or
destinations of data

e We have learned about the concept of streams, sequential sources or
destinations of data
e We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

e We have learned about the concept of streams, sequential sources or
destinations of data
e We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream
e We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based /O

Summary %ﬁ)

e We have learned about the concept of streams, sequential sources or
destinations of data

e We have learned that Java offers byte -based streams based on
java.io.InputStream and java.io.OutputStream

e We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

e We have learned that Java offers character-based streams based on

java.io.Reader and java.io.Writer

OOP with Java Thomas Weise 21/24

Summary %ﬁ)

We have learned about the concept of streams, sequential sources or
destinations of data

We have learned that Java offers byte -based streams based on
java.io.InputStream and java.io.OutputStream

We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, ...

OOP with Java Thomas Weise 21/24

Summary %ﬁ)

We have learned about the concept of streams, sequential sources or
destinations of data
We have learned that Java offers byte -based streams based on

java.io.InputStream and java.io.OutputStream

We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, ...

Algorithms working on streams are thus naturally versatile

OOP with Java Thomas Weise 21/24

Summary %()

e We have learned about the concept of streams, sequential sources or
destinations of data

e We have learned that Java offers byte -based streams based on
java.io.InputStream and java.io.OutputStream

e We have learned that text is actually a very complicated thing to deal
with and we cannot handle it just with byte -based I/O

e We have learned that Java offers character-based streams based on
java.io.Reader and java.io.Writer

e We have seen that the concept of streams can be implemented with
many different source and destination types, e.g., files, standard
streams, memory buffers, internet connections, ...

e Algorithms working on streams are thus naturally versatile

e Java further makes heavy use of the concept of plugging streams
together, e.g., we would normally hava an java.io.InputStream , wrap
it into a java.io.Reader , which we would then wrap into a
java.io.BufferedReader to be able to read text line-by-line

OOP with Java Thomas Weise 21/24

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography | %{)’

1. ISO/IEC 8859-1 — Final Text of DIS 8859-1, 8-bit Single-Byte Coded Graphic Character Sets — Part 1: Latin Alphabet No.1,
volume ISO/IEC 8859-1:1997 (E). Geneva, Switzerland: International Organization for Standardization (ISO), February 12,
1998. URL http://std.dkuug.dk/jtcl/sc2/wg3/docs/n411.pdf.

2. Ken Lunde. CJKV Information Processing. Sebastopol, CA, USA: O'Reilly & Associates, Inc., 1999. ISBN 0-596-51447-6
and 1-56592-224-7. URL http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf.

3. Information Technology — Universal Coded Character Set (UCS) (ISO/IEC 10646:2011). Geneva, Switzerland: International
Organization for Standardization (ISO), 2011.

4. USA: The Unicode Consortium Mountain View, CA and Julie D. Allen. The Unicode Standard, Version 5.0. Reading, MA,
USA: Addison-Wesley Professional, fifth edition, 2007. ISBN 0-321-48091-0 and 978-0-321-48091-0. URL
http://books.google.de/books?id=Yn1UAAAAMAAJ.

5. The unicode consortium, 2011. URL http://www.unicode.org/.

6. Jukka K. Korpela. Unicode Explained. Internationalize Documents, Programs, and Web Sites. Sebastopol, CA, USA:
O'Reilly Media, Inc., June 28, 2006. ISBN 059610121X and 9780596101213. URL
http://books.google.de/books?id=PcWU2yxc8WKC.

7. Francois Yergeau. STD 63: UTF-8, A Transformation Format of ISO 10646, volume 3629 of Request for Comments (RFC).
Network Working Group, November 2003. URL https://tools.ietf.org/html/rfc3629.

OOP with Java Thomas Weise 24/24

http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf
http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf
http://books.google.de/books?id=Yn1UAAAAMAAJ
http://www.unicode.org/
http://books.google.de/books?id=PcWU2yxc8WkC
https://tools.ietf.org/html/rfc3629

	Outline
	Introduction
	Introduction
	Basic I/O Streams

	Byte Streams
	Byte Streams
	Byte Stream Implementations
	Byte Streams for Files
	Copying Files via Byte Streams
	stdin, stdout, and stderr

	Advanced Byte Streams
	Byte Array Streams
	Reading/Writing Structured Data
	Using Byte Array and Data Streams
	More Byte Streams

	Character Streams
	Character Encoding
	Character Streams
	Character Streams for Files
	Copying Text Files via Character Streams
	Character Streams wrapping Byte Streams
	Character Streams wrapped around Byte Streams

	Advanced Character Streams
	Advanced Character Streams

	Summary
	Summary

	Presentation End
	Bibliography

