LR B

HEFEI UNIVERSITY

OOP with Java

27. Testing with JUnit

Thomas Weise - 7 &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | & /2% mit#K R /@2

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST &K 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ JUnit in Eclipse

® Basic JUnit Tests

@ Expecting Exceptions

@ Test-Driven Development

@ Summary

OOP with Java Thomas Weise

e We have already learned quite a few things that we can do to make
sure that our code works correctly

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

o debugging in Lesson 13: Debugging

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

o debugging in Lesson 13: Debugging
e dividing code into different methods which are smaller and thus easier
to understand

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including
o debugging in Lesson 13: Debugging
e dividing code into different methods which are smaller and thus easier
to understand
o dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a

valid way

Introduction %()

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

OOP with Java Thomas Weise 3/21

Introduction %()

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

e using Java's utility classes as heavily as possible to avoid writing own
code and making errors

OOP with Java Thomas Weise 3/21

Introduction %o»

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

e using Java's utility classes as heavily as possible to avoid writing own
code and making errors

e using well-tested (open source) libraries for general tasks to reduce
development time and chances to make errors

OOP with Java Thomas Weise 3/21

Introduction %o»

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

e using Java's utility classes as heavily as possible to avoid writing own
code and making errors

e using well-tested (open source) libraries for general tasks to reduce
development time and chances to make errors

e But we can still expect our code to contain errors

OOP with Java Thomas Weise 3/21

Introduction %()

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

e using Java's utility classes as heavily as possible to avoid writing own
code and making errors

e using well-tested (open source) libraries for general tasks to reduce
development time and chances to make errors

e But we can still expect our code to contain errors

e We should test our code before shipping/using it

OOP with Java Thomas Weise 3/21

Introduction %D

e We have already learned quite a few things that we can do to make
sure that our code works correctly, including

e debugging in Lesson 13: Debugging

e dividing code into different methods which are smaller and thus easier
to understand

¢ dividing code into classes which bundle functionality and encapsulate
(private) variables making sure that data can only be changed in a
valid way

e dividing code focusing on different concerns into packages to make the
whole project easier to understand

e using Java's utility classes as heavily as possible to avoid writing own
code and making errors

e using well-tested (open source) libraries for general tasks to reduce
development time and chances to make errors

e But we can still expect our code to contain errors
e We should test our code before shipping/using it
e How can we do that in a structured, automated way?

OOP with Java Thomas Weise 3/21

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

http://junit.org

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

http://junit.org

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

http://junit.org

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

e |f we use JUnit, we add a new form of classes: Tests

http://junit.org

Unit Testing with JUnit §\

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

e |f we use JUnit, we add a new form of classes: Tests

e Usually, we make (at least one) test class for each class of the “real”
code

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit §\

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

e |f we use JUnit, we add a new form of classes: Tests

e Usually, we make (at least one) test class for each class of the “real”
code

e The methods of this test class are “test cases”, each checking one
aspect of the “real code”

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit §\

1AQ

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

e |f we use JUnit, we add a new form of classes: Tests

e Usually, we make (at least one) test class for each class of the “real”
code

e The methods of this test class are “test cases”, each checking one
aspect of the “real code”

¢ JUnit comes as two libraries (can be downloaded from
http://junit.org) and with Eclipse integration

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit §\

1AQ

e Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

e JUnit is a software framework for unit testing in Java

e An application normally consists of a main classes to execute and
several utility classes

e |f we use JUnit, we add a new form of classes: Tests

e Usually, we make (at least one) test class for each class of the “real”
code

e The methods of this test class are “test cases”, each checking one
aspect of the “real code”

¢ JUnit comes as two libraries (can be downloaded from
http://junit.org) and with Eclipse integration

o We will step-by-step explore its use in Eclipse

OOP with Java Thomas Weise 4/21

http://junit.org

e Eclipse provides direct, first-class JUnit support

o Eclipse provides direct, first-class JUnit support

e To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

o Eclipse provides direct, first-class JUnit support

e To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it

27_testing_with_junit

B0 FOIEE T

[

[oucinces)i = @& #

12 Package Expl 33 |% Type Hierarch (=}
e@ ¢ -

~G> 27 _testing_with_junit [javaExamples maste

» i, JRE

% classpath

gitignore
% .project

» > javaExamples [javaExamples master]

ibrary [java-8-op

=g

(#dBaBoF]

resting.

ith junit

Eclipse provides direct, first-class JUnit support

To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it
27_testing_with_junit

Then we right-click the project and click Properties

Enabling JUnit Support

javaExamples - Java - Eclipse

Golnto

Open in New Window
Open Type Hierarchy
» > javaExamples oWl
B Copy
B CopyQualified Name
@ Ppaste
% Delete

Build Path

Soul
Refactor

3 Import...
s Export...

W Refresh
close Project

Assign Working Sets...
RunAs

Debug A

Validate

Restore from Local History...
Team

Compare With

Replace with

Configure

e

27_testing_with_junit
OOP witn sava 1nomas vveise 5/21

Eclipse provides direct, first-class JUnit support

To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it
27_testing_with_junit

Then we right-click the project and click Properties

Under Java Build Path we select Libraries and click
Add Library...

type filter text

* Resource
Builders
Git

» Java Code Style

» Java Compiler

» Java Editor
Javadoc Location
Project References
Run/Debug Settings

» Task Repository
Task Tags

» Validation
wikiText

a

Java Build Path

®source &Projects Bilibraries | “gOrder and Export

JARs and class Folders on the build path:

JRE System Library [java-8-openjdk-amd&4]

J

Add Class Folder...

Edit...

L=l Sll=t3R .
Add JARs...

| Add External JARs...

[Add variable...

| AddLibrary.. |

| Add External Class Folder... |

Remove

Migrate JARFile... |

Cancel

0K

J

Apply

Enabling JUnit Support %()

o Eclipse provides direct, first-class JUnit support

e To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it
27_testing_with_junit

e Then we right-click the project and click Properties

e Under Java Build Path we select Libraries and click
Add Library...

e We choose Junit and click Next

OOP with Java Thomas Weise 5/21

Add
Add Library
Select the library type to add.

Maven Managed Dependencies
User Library

<Back

[Next> -.T\J | Cancel J |

JRE System Library |

Finish

Enabling JUnit Support %()

o Eclipse provides direct, first-class JUnit support

e To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it
27_testing_with_junit

e Then we right-click the project and click Properties

e Under Java Build Path we select Libraries and click
Add Library...

e We choose Junit and click Next

e We choose Junit 4 and click Finish

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

Add Library
JUnit Library ;

Select the JUnit version to use in this project. a '

Junit library version: | JUnit 4 -

Current location: junit.jar- fhome/tweise/Seafile/programming/dev_envs/
eclipse_neon_1a/program/plugins/

org.junit_4.12.0.v201504281640
Source location: Nokt Found

@ <Back Next > | cancel [Finish |

Enabling JUnit Support %()

o Eclipse provides direct, first-class JUnit support

e To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

e First, we create a new empty Java project, let's call it
27_testing_with_junit

e Then we right-click the project and click Properties

e Under Java Build Path we select Libraries and click
Add Library...

e We choose Junit and click Next
e We choose Junit 4 and click Finish

e We click ok

OOP with Java Thomas Weise 5/21

type filter text Java Build Path G widw w

*» Resource : f =T
Rulldars ®source &Projects Bilibraries | “gOrder and Export
Git JARs and class Folders on the build path:
\' =i JRE System Library [java-8-openjdk-amd64] \ | Add JARs... |
» Java Code Style . JUnit4]
» Java Compiler | AddExternal JARs.. |
MBI ar | Add Variable... J
Javadoc Location .
Project References | Add Library... |
Run/Debug Settings
» Task Repository | Add Class Folder... |
Task Tags | Add External Class Folder... |
» Validation
wikiText | Edit... |
| Remove |
Migrate JARFile...

[apply |

@ | cancel || oK I\J
a

Enabling JUnit Support §\

Eclipse provides direct, first-class JUnit support

To enable this support by adding JUnit to the build path, we do not
need to download the JUnit jar s or anything. ..

First, we create a new empty Java project, let's call it
27_testing_with_junit

Then we right-click the project and click Properties
Under Java Build Path we select Libraries and click
Add Library...

We choose Junit and click Next

We choose Junit 4 and click Finish

We click ok

The JUnit library has now appeared in the build path

OOP with Java Thomas Weise 5/21

Quick Access

v rmeve .

|2 @&

12 Package Expl 33 |% Type Hierarch (=}
@ ¢ -
~G>27_testing_with_junit [javaExamples maste|
@src

» mi, JRE System Library [java-8-openjdk-amds4]
Junita
& junit.jar - /home/tweise/Seale/programm|

& org hamcrest.core 1.3.0.4201303031735 jal
% .classpath
g

» B> javaExamples [javaExamples master]

=g

[#amapoma

e We usually want to separate test classes from “real code” classes

e We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

e However, we also want that tests can potentially access package

private methods, because the more we can test, the better

e We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

e However, we also want that tests can potentially access package
private methods, because the more we can test, the better

e Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

Project Structure %\

e We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

e However, we also want that tests can potentially access package
private methods, because the more we can test, the better

e Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

e Let's continue with the empty project from before: There already is
the one default source folder (src)

OOP with Java Thomas Weise 6/21

vhlvmev .

[oucinces)i = @& #

12 Package Expl 33 |% Type Hierarch (=}
@ ¢ -
~G>27_testing_with_junit [javaExamples maste|
@src

» mi, JRE System Library [java-8-openjdk-amds4]
Junita
& junit.jar - /home/tweise/Seale/programm|

t.core_1.3.0.v201303031735,ja

» B> javaExamples [javaExamples master]

=g

|#dDePsBe

Project Structure %\

We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

However, we also want that tests can potentially access package
private methods, because the more we can test, the better

Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

Let's continue with the empty project from before: There already is
the one default source folder (src)

Right-click the project, choose New then Source Folder

OOP with Java Thomas Weise 6/21

Project Structure

javaExamples - Java - Eclipse

Golnto

Open in New Window
Open Type Hierarchy
Show in

B copy
B copyQualified Name
B Paste
¢ Delete

Build Path
Source
Refactor

&1 Import...
3 Export...

W Refresh

close Project

Close Unrelated Projects
Assign Working Sets...
Run As

Debug As

validate

Restore from Local History...

Team
Compare With
Replace With
Configure

Properties

OOP witn sava

27_testing_with_junit

Interface

Enum
Annotation

Java Working
Folder

File

Untitled Text File
JUnit Test Case
Task

Example.

Other

1nomas vveise

6/21

Project Structure %\

e We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

e However, we also want that tests can potentially access package
private methods, because the more we can test, the better

e Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

e Let's continue with the empty project from before: There already is
the one default source folder (src)

e Right-click the project, choose New then Source Folder

e Choose a good name for the test classes folder, how about tests,
click Finish

OOP with Java Thomas Weise 6/21

New Source Folder

Source Folder

Create a new source Folder.

Project name: [ZT_testing_with_junit

]| Browse... |

Folder name: [—tests

]| Browse... |

"1 Update exclusion Filters in other source Folders to solve nesting

["I Ignore optional compile problems

Cancel

| |__Finish_,J -

Project Structure %\

We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

However, we also want that tests can potentially access package
private methods, because the more we can test, the better
Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

Let's continue with the empty project from before: There already is
the one default source folder (src)

Right-click the project, choose New then Source Folder

Choose a good name for the test classes folder, how about tests,
click Finish

We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

OOP with Java Thomas Weise 6/21

Project Structure %\

We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

However, we also want that tests can potentially access package
private methods, because the more we can test, the better
Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

Let's continue with the empty project from before: There already is
the one default source folder (src)

Right-click the project, choose New then Source Folder

Choose a good name for the test classes folder, how about tests,
click Finish

We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

We right-click the folder src, choose New then Package

OOP with Java Thomas Weise 6/21

Project Structure

javaExamples - Java - Eclipse

&

& JavaProject

Open in New Window W Project

Open Type Hierarchy
Show In Class
Copy Interface
Copy Qualified Name
Paste

Enum
Annotation
Source Folder
Java Working Set
> Folder
Build Path File
Source Untitled Text File
Refactor JUnit Test Case.
Task

Delete

Example...

Other...

Assign Working Sets...

RuUNAs
Debug As

Validate

Restore from Local History...
Maven

Team

Compare With

Replace With

Properties

src-27_testing_with_junit
OOP witn sava 1nomas vveise 6/21

Project Structure §\

1AQ

However, we also want that tests can potentially access package
private methods, because the more we can test, the better
Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

Let's continue with the empty project from before: There already is
the one default source folder (src)

Right-click the project, choose New then Source Folder

Choose a good name for the test classes folder, how about tests,
click Finish

We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

We right-click the folder src, choose New then Package

We type in cn.edu.hfuu.iao and click Finish

OOP with Java Thomas Weise 6/21

New Java Package

Java Package

Create a new Java package.

Creates folders corresponding to packages.

H

Source folder: | 27 _testing with_junit/src

] | Browse...

MName: [cn.edu.hfuu.iaa

]

Create package-info.java

Cancel

gﬁvw\\wil > m

>k ERiH-O0-QU-@O-i®ds - PE & [
jEER AR Ao AR [Quick Access || @ @& %
] 2 2|k erarch = O | [I package-infojava 2
el «
~G>27_testing_with_junit [javaExamples mastei|
~@>src

1 /** The actual source code of our project| */
2 package cn.edu.hfuu.iao;

~ g > cn.edu.hfuu.iao
 ypackage-info java
(Btests

» 5 JRE System Library [java-8-openjdk-amdsa]
@\ JUnit4
» & junitjar

» @ org.hamcrest.core_1.3.0.v201303031735 jal| [N
% .classpath

& gitignore

% .project
G

> javaExamples [javaExamples master]

Project Structure %()

e Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

e Let's continue with the empty project from before: There already is
the one default source folder (src)

e Right-click the project, choose New then Source Folder

e Choose a good name for the test classes folder, how about tests ,
click Finish

e We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

o We right-click the folder src, choose New then Package

e We type in cn.edu.hfuu.iao and click Finish

e We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

OOP with Java Thomas Weise 6/21

Project Structure

Y

R

i# Package Expl 33 |% TypeHierarch = B | [package-info.java &2 =0

/+* The actual source code of our project */
2 package cn.edu.hfuu.iao;

~G4>27_testing_with_junit [javaExampl
v (@ >src
~ 8 > cn.edu.hfuu.iao
» [1 package-info java

maste;

pe
a
%
*

Open in New Window
Open Type Hierarchy
Show In Class
B copy Interface
B copyQualified Name
B P

Delete

Enum
Annotation

Source Folder
Java Working Set
Folder

File

Untitled Text File

Build Path
Source

Refactor

mEmmREe2Qn%aq

Import...

$ Refresh

ign Working Set:

| 3

Other..

RunAs

Maven

Team
Compare With
Replace With
{ Properties
tests-27_testing_with_junit
OOP witn sava 1nomas vveise 6/21

Project Structure %()

e Let's continue with the empty project from before: There already is
the one default source folder (src)

e Right-click the project, choose New then Source Folder

e Choose a good name for the test classes folder, how about tests,
click Finish

e We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

e We right-click the folder src, choose New then Package

e We type in cn.edu.hfuu.iao and click Finish

o We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

e We type in cn.edu.hfuu.iao , make sure that
create package-info.jar is not selected, and click Finish

OOP with Java Thomas Weise 6/21

New Java Package

Java Package

Create a new Java package.

Creates folders corresponding to packages.

H

Source folder: | 27 testing with_junit/tests

] | Browse...

MName: [cn.edu.hfuu.iaa

]

[| Create package-info.java

Cancel

Project Structure %\

Right-click the project, choose New then Source Folder

Choose a good name for the test classes folder, how about tests
click Finish

We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

We right-click the folder src, choose New then Package
We type in cn.edu.hfuu.iao and click Finish

We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

We type in cn.edu.hfuu.iao , make sure that
create package-info.jar is not selected, and click Finish

The new package has appeared (empty) in the package explorer

OOP with Java Thomas Weise 6/21

R ————

12 Package Expl 33 |% Type Hierarch (=}
@ ¢ -
~G>27_testing_with_junit [javaExamples maste|
~@>src
~ # > cn.edu.hfuu.iao
» [package-info java

~&JUnit4

» & junit jar - /home/tweise/Seafile/programm
» @ org.hamcrest.core_1.3.0.v201303031735.ja
7 .classpath

gitignore

% .project

» G> javaExamples [javaExamples master]

=g

[#amapema;

[oucinces)i = @& #

_ edu.hfuu.iao-27_testing_with junit/tests _

e Let us revisit (again) our Vertical Ball Throw example

e Let us revisit (again) our Vertical Ball Throw example

e And this time test its correctness

Vertical Ball Throw with Console 1/0

=

Listi Vertical Ball Throw with Console |

package cn.edu.hfuu.iao;

import java.util.Scanner;

public class VerticalBallThrow {

static double position(double x0, double v0O, double t) {
return x0 + (vO * t) - 0.5d * 9.80665d * t * t;

public static final void main(String[] args) {
try(Scanner scanner = new Scanner(System.in)) {
System.err.println("Enter, size, x0,0f personin m:");
double x0 = scanner.nextDouble();
System.err.println("Enter,initial upward,velocity v0,0f ball inym/s:");
double vO = scanner.nextDouble();
System.err.println("Enter,time t,in,s:");
double t = scanner.nextDouble();
System.out.println(position(x0, vO, t));

OOP-with—Jdava Fhomas-Weise

o

e Let us revisit (again) our Vertical Ball Throw example

e And this time test its correctness

e Let us revisit (again) our Vertical Ball Throw example

e And this time test its correctness

e The thing to test here clearly is method position

Let us revisit (again) our Vertical Ball Throw example

And this time test its correctness

The thing to test here clearly is method position

We need to investigate whether

Let us revisit (again) our Vertical Ball Throw example

And this time test its correctness

The thing to test here clearly is method position

We need to investigate whether
e it returns correct results

Let us revisit (again) our Vertical Ball Throw example

And this time test its correctness

The thing to test here clearly is method position

We need to investigate whether

e it returns correct results
o it deals with border cases correctly

Let us revisit (again) our Vertical Ball Throw example

And this time test its correctness

The thing to test here clearly is method position

We need to investigate whether
e it returns correct results
o it deals with border cases correctly
o it deals with invalid arguments correctly

o We first create a new (test) class in package the cn.edu.hfuu.iao
package of the tests folder and call it
VerticalBallThrowPositionTest

Creating JUnit Tests

ith_junit/src/cn/edu/hfuu/iac/VerticalBallThrow.jav:

i £y v Qv G~ ® -l g
R B @R 4
s PackageExpl % |% TypeHierarch = O | [I packageinfojava | [VerticalBallThrow java & =g

package cn.edu.hfuu.iao;

~G4>27_testing_with_junit [javaExam,
v (@ >src
~ 8 > cn.edu.hfuu.iao

import java.util.Scanner;

1
3
2

* A ball is thrown vertically upwards into the air by a g

» [packageinfo.java
P pacageinfojave * with velocity 'v On/s . Where is it after 't seconds?<t
+ B VerticalBallThrow.java e v - Ga gt

(= tests */
cn.edu.|

(good style: these cor
what the
Open Type Hier: y 9 ., the initial
Show In

Copy. the ball at time step t
Copy Qualified Name

b Annotation Fioubte vg, deble)
Source Folder | 80665d *

rking Set

Delete

Build Path

Untitled Text File for tor now &/
JUnit Test Case fing[1 args) {
£ br(System.in)) { // init

Import... Task E X0 of personin m:"); /
ort... (); // read initial ver
LG Example... ial upward velocity v@
Refresh (): // read initial vel
O e e tin s:"); //$NON-NLS-

= scanner.nextDouble(); // read the time §t
Bsten. out . printin(position(x0, v, t)); // compute

Debug As
Validate

Restore from Local Histon
Team

cn.edu.hfuu.iao - 27JG IS

OOP with Java Thomas Weise

10/21

Java Class

Create a new Java class.

Q

sourcefolder: | 27_testing_with_junit/tests || Browse.. |

Package: [en.edu.hfuu.iao] | Browse.. |

"1 Enclosing type: | || Browse.. |

Name: [VerticalBallh]

Modifiers: © public () package private protected

(") abstract () final [static

Superclass: “ava.lang.object W { Browse... J

Interfaces: [add. |
Remove |

Wwhich method stubs would you like to create?
[publicstaticvoid main(string[] args)
(") Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)

(") Generate comments

@

e | o)

Empty block should be documented

gﬁvw\\wil > m
R R SR AR

Sei#-0-a-iwo-imsy-PB

~& > cn.edu.hfuu.iao
» B\ JRE System Library [java-8-openjdk-amds4]

@ JUnit4

» @ junit.jar - /home/tweise/Seafile/programm

» & org.hamcrest.core_1.3.0.v201303031735 jai
% .classpath

gitignore
% .project

» @ > javaExamples [javaExamples master]

Writable

m
[Quick Access .‘ B @R %
i 5% TpeHerarch = 0 |1 packageinfojova @ @
@@ . < | 1 package cn.edu.hfuu.iao;

4> 27_testing_with_junit [javaExamples mastel 3 public class VerticalBallThrowPositionTest {

e I,,

~ & >cn.edu.hfuu.iao 5 Xk N

» [package-info java 6

» [B VerticalBallThrow.java
~@ > tests

SmartInsert 4:1

o We first create a new (test) class in package the cn.edu.hfuu.iao
package of the tests folder and call it
VerticalBallThrowPositionTest

e Ok, but what should we test first?

o Let us first test some very common cases, e.g.,
e if position = 4.903325 if 9 =0, vo = 9.80665m/s, and t = 1s
o if position = 45.3867 if xg =1, vg = 32m/s, and t = 2s

o We first create a new (test) class in package the cn.edu.hfuu.iao
package of the tests folder and call it
VerticalBallThrowPositionTest

e Ok, but what should we test first?

o Let us first test some very common cases, e.g.,
e if position = 4.903325 if 9 =0, vo = 9.80665m/s, and t = 1s
o if position = 45.3867 if xg =1, vg = 32m/s, and t = 2s
e if position = 2.870075 if g =2, vg = 15m/s, and t = 3s

Creating JUnit Tests %}

We first create a new (test) class in package the cn.edu.hfuu.iao
package of the tests folder and call it
VerticalBallThrowPositionTest
Ok, but what should we test first?
Let us first test some very common cases, e.g.,

e if position = 4.903325 if o =0, vo = 9.80665m/s, and t = 1s

e if position = 45.3867 if x9 =1, vo = 32m/s, and t = 2s

e if position = 2.870075 if g =2, v9 = 15m/s, and t = 3s
We have computed these values by hand and expect that our function
should return results reasonably close to them

OOP with Java Thomas Weise 10/21

Creating JUnit Tests %}

o We first create a new (test) class in package the cn.edu.hfuu.iao
package of the tests folder and call it
VerticalBallThrowPositionTest

e Ok, but what should we test first?

o Let us first test some very common cases, e.g.,

e if position = 4.903325 if o =0, vo = 9.80665m/s, and t = 1s
e if position = 45.3867 if x9 =1, vo = 32m/s, and t = 2s
e if position = 2.870075 if g =2, v9 = 15m/s, and t = 3s

e We have computed these values by hand and expect that our function

should return results reasonably close to them

e As a JUnit test, this looks as follows

OOP with Java Thomas Weise 10/21

Common Test Cases for Vertical Ball Throw }\o’

Listing: Common Test Cases for Vertical Ball Throw

package cn.edu.hfuu.iao;

import org.junit.Assert;
import org.junit.Test;

public class VerticalBallThrowPositionTest {

QTest
public void testPosition_x00_vOg_t1() {
Assert.assertEquals (4.903325d,
VerticalBallThrow.position(0d, 9.80665d, 1d),
1e-104d) ;

QTest
public void testPosition_x01_v032_t2() {
Assert.assertEquals (45.3867d,
VerticalBallThrow.position(1d, 32d, 2d),
1e-10d) ;

QTest
public void testPosition_x02_v015_t3() {
Assert.assertEquals (2.870075d,
VerticalBallThrow.position(2d, 15d, 3d),
1e-10d);

OOP with Java Thomas Weise 11/21

e Each test case is placed into one method with a descriptive name

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method

e Each test case is placed into one method with a descriptive name
e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method
e Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

Creating JUnit Tests: Common Cases %0

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method
¢ Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals
methods from class org.junit.Assert
e assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

OOP with Java Thomas Weise 12/21

iB~H G >oDm 8 ide g i [.

Quick Acces

12 Package 3¢ |% TypeHie gulunit = B | [J] package-info. [m icalBall iti o T j =@
=@ . v | 1 package cn.edu.hfuu.iao; =
~(G> 27 testing_with_junit [javaExamples maste| 3- import org.junit.Assert; o
~@>src 4 import org.junit.Test; B
~ g > cn.edu.hfuu.iao g BRI A ot
+ [packagedinfo ur first test class 2
,g: :ﬁ"s;':ux:;_jm ; public class VerticalBallThrowPositionTest { =
~@>tesls . 9 /** test the position for 'x 0=0m’, "v_0=g=0.90665m/s°2, 't?=ls’ */ 4
~ & > cn.edu.hfuu.iao 10= @Test // the annotation @Test means that this method is a test case —
P VerticalBaliThrowPositionTest java 11 public void testPosition x00 vg t1() {
» ai JRE System Library [java-8-openjdk-amdl 12 Assert.assertEquals(4.903325d, // the expected value
~ 2 JUnit4 13 VerticalBallThrow.position(@d, 9.86665d, 1d), // the actual result
le-16d); // comparisons are a no-no for floating point, le-10d is the allow

» & junitjar -fhome/tweise/Seaile/programm| {10

» & org.hamcrest.core_1.3.0.v201303031735a 1
% .classpath 17 /** test the position for 'x 0=Im’, "v_8=32m/s"2", "t?=2s" */
itignore 18= @Test // the annotation @Test means that this method is a test case
% project 19 public void testPosition x01 v832 t2() {
s favaEkamiples avaBxampl & 20 Assert.assertEquals(45.3867d, // the expected value
B Tovatamiples [wetxamples master] 21 VerticalBallThrow.position(1d, 32d, 2d), // the actual result
22 le-16d); // comparisens are a no-no for floating point, le-10d is the allow
23
24
25 /** test the position for "x 8=2m", ‘v_0=15m/s"2", * A
6= @Test // the annotation @Test means that this method is a test case
27 public void testPosition x02 v015 t3() {
28 Assert.assertEquals(2.870075d, // the expected value
29 VerticalBallThrow.position(2d, 15d, 3d), // the actual result
30 le-10d); // == comparisons are a no-no for floating point, le-10d is the al
31
32 }
33
cn.edu.hfuu.i i i java-27_testing_with junit/tests i

Creating JUnit Tests: Common Cases %0‘

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method
e Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals
methods from class org.junit.Assert
e assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

e Let us now run these tests

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

>
<

”

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method
e Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals
methods from class org.junit.Assert
e assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

e Let us now run these tests

e Right-click on class VerticalBallThrowPositionTest , Choose Run As
and then JUnit Test

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

- X BiHvO- AU~ B O~ BE AV~ F x x
@5
12 Package 32 |% TypeHie guJunit = B | [J] packagedinfojava [} i iti java 52 1] i java =g
B < |1 package cn.edu.hfuu.iao;

| &> 27 testing_with junit [javaExamples maste| 3= import org.junit.Assert;
~@&>src 4 import org.junit.Test;

~ % > cn.edu.hfuu.iao 5

15 parkageintojava 6 /** Our first test class

» [VerticalBallThrow java public class VerticalBallThrowPositionTest {

~ @ > tests
~ > cn.edu.hfuu.iao

0.90665m/5°2", “t?=1s’ */
this method is a test case

// the expected value
1uon(8d 9.80665d, 1d), // the actual result
ns are a no-no for floating point, le-16d is the allow

» & JRE Syslem lerary [java
~ &\ JUnit4
unit.jar - /home/tweis

s classpath Co x_0=1m", ‘v_0=32m/s"2°, 't?=2s" */
[.gitignore Jualifie st means that this method is a test case
% project bast 1 v032 t2() {

+ &3> javaExamples [j < 67

// the expected value
ition(1d, 32d, 2d), // the actual result
Ins are a no-no for floating point, le-10d is the allow

Build Path
Source 0=2m’, v 0=15m/s"2°, “t?=3s" */
Hetattor st means that this method is a test case
2 ve15 t3() {
1 Import. 0754, // the expected value
. ition(2d, 15d, 3d), // the actual result
a no-no for floating point, le-10d is the al

Declarations
W Refresh
Assign

Run Configurati

cn.edu.hfuu.iao.VerticalBallThrowPositionTes!

O R

#d o

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

>
<

”

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method
e Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals
methods from class org.junit.Assert
e assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

e Let us now run these tests

e Right-click on class VerticalBallThrowPositionTest , Choose Run As
and then JUnit Test

o All tests succeed, we get all green bars

OOP with Java Thomas Weise 12/21

v G

Quick Acces :‘ B @&

in~ W @i~

=]
=
5
]
n]

1 Package fz TypeHie [gnJunitx} =8

L]
@ LG @@ mE~ v | L package cn.edu.hfuu.iao; =
g , ® B 2
Finished aFter 0.013 seconds 3-import org.junit.Assert; E
Runs: 3/3 | BErrors: 0 | B Failures: (0 g’ import org.junit.Test; b
N || 6 /*x Our First test class * 2
7 public class VerticalBallThrowPositionTest {

VerticalBallThrowPosition Te|| i3 b
éltestPosition_x02_v015_t3 (0.000s) 9 /** test the position for 'x 0=0m’, "v_0=g=0.90665m/s°2, 't?=ls’ */ 4
{ltestPosition_x00_v0g_t1 (0.0005) 10= @Test // the annotation @Test means that this method is a test case —

e 11 public void testPosition x00 vg t1() {
i estros Hon M1V 03212 (01000) 12 Assert.assertEquals (4.903325d, // the expected value
13 VerticalBﬂlIThrml,pﬂsiticn(Bd, 9.80665d, 1d), // the actual result
14 le-16d); // comparisons are a no-no for floating point, le-10d is the allow
15
N 16

17 /** test the position for 'x 6=Im’, ‘v 0=32m/s"2", /
18= @Test // the annotation @Test means that this method is a test case
19 public void testPosition x01 v32 t2() {

20 Assert.assertEquals(45.3867d, // the expected value
21 VerticalBallThrow.position(1ld, 32d, 2d), // the actual result
22 le-16d); // comparisens are a no-no for floating point, le-10d is the allow
23)
= Failure Trace e 24

25 /** test the position for "x @=2m’, “v_6=15m/s"2", " R
26= @Test // the annotation @Test means that this methnﬂ is a test case
27 public void testPosition x02 v015 t3() {

28 Assert.assertEquals (2.870075d, // the expected value
29 VerticalBallThrow.position(2d, 15d, 3d), // the actual result

30 le-18d); // == comparisons are a no-no for floating point, le-18d is the al
31

32}

Creating JUnit Tests: Common Cases

>
<

”

e Each test case is placed into one method with a descriptive name

e Each such method is annotated with a @Test (between the javadoc
and the method signature), telling JUnit that it is a test method

e Inside the test method, we compare the expected result of position
with its actual result by using one of the many assertEquals
methods from class org.junit.Assert

e assertEquals would throw an exception if the expected and actual
value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

Let us now run these tests

Right-click on class VerticalBallThrowPositionTest , Choose Run As
and then JUnit Test

All tests succeed, we get all green bars
This does not proof anything, but so far our position method looks

OK

OOP with Java Thomas Weise 12/21

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if zg = 1, vg = 10m/s%, and t = 1000s
should be Om, not —4893324m

Creating JUnit Tests: Border Cases

1AQ

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if zg =1, vy = 10m/52, and ¢t = 1000s
should be Om, not —4893324m

e Let's build a test case for this

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases %\’

The new border case test Verti

1BallThrowPositionNotBelowOTest

package cn.edu.hfuu.iao;

import org.junit.Assert;
import org.junit.Test;

public class VerticalBallThrowPositionNotBelowOTest {

@Test
public void testPosition_not_below_0_x01_v010_t1000() {
Assert.assertEquals (0d, /
VerticalBallThrow. posltlon(ld 10d, 1000d)
le-104d); omp a a a no-no f

n est means that this method is a test cas

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases %}

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if zg =1, vy = 10m/52, and ¢t = 1000s
should be Om, not —4893324m

e Let's build a test case for this

e We can now run this test in the same way as before, or run all tests in
the tests package at once

OOP with Java Thomas Weise 13/21

12 Package 32 |% TypeHie gfjunit = 8

=

B@ ¢ -
~G¥>27_testing_with_junit [javaExamples maste|
~@ssrc
~ 8 > cn.edu.hfuu.iao
» [1; package-info.java
» [VerticalBallThrow.java
@ tests

v

» &\ JRE System Library [java-g-openjdk-amdsd]
~ @ JUnit4

» & junit jar -

» & org.hamcrest.core_1.3.0.v201303031735.j3

% .classpath
gitignore

1% .project

» Gy > javaExamples [javaExamples master]

1 package cn.edu.hfuu.iao;
2
3+import org.junit.Assert;[]
5

6 /** Our second test clas:

7 public class VerticalBall

H /+* test the position for ‘x @=lm’, v_8=10m/s*2°, "t=1000s’ */
10= @Test // the annotation @Test means that this method is a test case

11 public void testPosition not below 8 x01 ve1e t1008() {

12 Assert.assertEquals (6d, // the expected value

the ball cannot fall below “Om* */
ionNotBe! {

13 VerticalBallThrow.position(1d, 10d, 100@d), // the actual result

14 le-16d); // == comparisons are a no-no for floating point, le-16d is the a
15

16 }

17

(#ama@eoma;

cn.edu.hfuv.iac-27_testing_with_junit/tests

Creating JUnit Tests: Border Cases %0\,

e Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if g =1, vg = 10m/s?, and t = 1000s
should be Om, not —4893324m

e Let's build a test case for this

e We can now run this test in the same way as before, or run all tests in
the tests package at once

o We right-click the test package, choose Run As, and JUnit Test

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

o~ N O~ QAW GBS AT - =
@
8 Package 3 |% TypeHie giJUnit = O | (i packageinfojeva [} Verti 3 Verti jo [Vverti owpozt = O
< | 1 package cn.edu.hfuu.iao;

~G4>27_testing_with_junit [lavaExamples maste 3s import org. junit.Assert;[]
~@>src 5
~ 8 > cn.edu hfutiao
» [5 package-nfojava
» [VerticalBallThrow java 9/ test th
(3> tests .

5
6 /** Our second test class: the ball cannot fall below “6m" */
7 public class VerticalBallThrowPositionNotBelowdTest {

8

e position for 'x O=In", v 0=10m/s*2’, "t=1000s’ */
e annotation @Test means that this method is a test case

5>, New b testPosition not_below 0 x01 v610_t1000() {

» [3 VerticalBallThrofi UL bsertEquals(0d, // the expected value

» [VerticalBallThro R calBallThrow.position(1d, 10d, 1060d), // the actual result
» = JRE System Librar, SRS pd); // == comparisons are a no-no for floating point, le-10d is the al

: Open Type Hierarchy
~ &\ JUnit4 5
Show In

Copy
% classpath CopyQualified Name
[.gitignore Padte
i projeck Delete
» G > javaExamples [jav]

Build Path
Source

Refactor

w1 Import

w3 Exporl

References

Declarations

& Refresh

Assign Working Sets.

. = <
RunAs 1Java Applet
Debug As ava Application
Validate fest

BEREEERR, rectore From Local History.

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases %}

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if 2o = 1, vg = 10m/s?, and ¢t = 1000s
should be Om, not —4893324m

e Let's build a test case for this

e We can now run this test in the same way as before, or run all tests in
the tests package at once

o We right-click the test package, choose Run As, and JUnit Test
e All 4 test cases in the package are executed, including the three
previous tests

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases %\

1AQ

e One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

e Obviously, it can never fall below Om. ..

e The result of position for if 2o = 1, vg = 10m/s?, and ¢t = 1000s
should be Om, not —4893324m

e Let's build a test case for this

e We can now run this test in the same way as before, or run all tests in
the tests package at once

o We right-click the test package, choose Run As, and JUnit Test

e All 4 test cases in the package are executed, including the three
previous tests

e The new test fails and becomes red, claiming
java.lang.AssertionError: expected:<0.0> but was:<-4893324.0> ,
meaning that our position method does not guard the ball against
falling through earth

OOP with Java Thomas Weise 13/21

in~-H @i

12 Package Explorer fs Type Hierarchy [.‘uJUnit n‘

¢ e"dE AR E

Finished aFter 0.022 seconds

Runs: (4/4 B Errors: [0 B Failures: 1
L]}

< |1 package cn.edu.hfuu.iao;
2

3+ import org.junit.Assert;[]

~ficn.eduhfuu.i

Jnica] || 9

dltestPosition_x02_v015_t3 (0.000s)
ltestPosition_x00_v0g_t1(0.000s)
dltestPosition_x01_v032_t2 (0.000s)

~Hijcn.edu.hfu
/3 testPositiol

elow.

= Failure Trace.

10=

11
12

u.iao.VerticalBallThrowPositionNotBelowoTest [Runni ﬁ

15
16
17

va.lang.
ten.edu.

.0> but

testPosit]

6 /** Our second test class: the ball cannot fall below “Om" */
7 public class VerticalBallThrowPositionNotBelowdTest {

/** test the position for “x 6=1m", ‘v_6=16m/s"2°, 't=1000s’ */
@Test // the annotation @Test means that this methnﬂ is a test cas
public void testPosition_not_below_0_x01 v10_t1000() {
Assert.assertEquals(0d, // the expected
VerticalBallThrow.position(1ld, 10d, 100ed), // the actual re
le-16d); // == comparisons are a no-no for floating point, 1

(#ama@eoma;

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

o (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

o (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

e The new code looks like this

Fixed Problem: Ball Cannot Fall through Earth Anymore }\o

Vertical Ball Throw P

package cn.edu.hfuu.iao_fix1;

import java.util.Scanner;

public class VerticalBallThrow {

static double position(double x0, double v0, double t) {
final double result = x0 + (vO * t) - 0.5d * 9.80665d * t * t;
return (result > 0d) ? result : 0d;

public static final void main(Stringl[] args) {
try(Scanner scammer = new Scanmer (System.in)) {
System.err.println("Enterysize x0 of personin,m:

double x0 = scanner.nextDouble();
System.err.println("Enter,initial upward, velocity,vO,of ball in,m/s:");
double vO scanner.nextDouble () ;

System.err.println("Enterytime, t,in s:");

double t = scanner.nextDouble();

System.out.println(position(x0, v0, t));

¥
3 OOP with Java Thomas Weise 14/21

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

o (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

e The new code looks like this

e And the test code stays the same (only the package name changed)

Fixed Problem: Ball Cannot Fall through Earth Anymore %o\’

Listi Vertical Ball Throw, Common Case Test

package cn.edu.hfuu.iao_fixl;

import org.junit.Assert;
import org.junit.Test;

public class VerticalBallThrowPositionTest {

QTest
public void testPosition_x00_vOg_t1() {
Assert.assertEquals (4.903325d,
VerticalBallThrow.position(0d, 9.80665d, 1d),
1e-10d);

@Test
public void testPosition_x01_v032_t2() {
Assert.assertEquals (45.3867d,
VerticalBallThrow.position(1d, 32d, 2d),
1e-10d);

QTest
public void testPosition_x02_v015_t3() {
Assert.assertEquals (2.870075d,
VerticalBallThrow.position(2d, 15d, 3d),
1e-10d);

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore %o\,

Listi Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix1;

import org.junit.Assert;
import org.junit.Test;

@Test his a
public void testPosition_not_below_0_x01 vOlO t1000() {
Assert.assertEquals (0d, e
VerticalBallThrow. posltlon(ld 10d, 1000d),
le-10d); // == comparisc are a no-no for

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore %o\’

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

(For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

The new code looks like this

And the test code stays the same (only the package name changed)

e We can now execute the tests again

OOP with Java Thomas Weise 14/21

im > mom 3.

il v e

Quick Acces

% | B Verti % =5

12 Package Explorer 52 | Type Hierarchy gt Junit =8
Be@® ¢ -
~G> 27 _testing_with_junit [javaExamples master]
~@&>src
~ 8 >cn.edu.hfuu
> § > iao

g>iao_fix1

Ripackageinfojava
R VerticalBallThrow java
<% >tests
~ & >cn.edu.hfuu
» 3 > 120
th>i30) fix1

B VerticalBallThrowPositionNotBelowoTest java
I VerticalBallThrow PositionTest.java
» 2i, JRE system Library [lava--openjdicamded] W
~ =\ JUnit4

» & junit.jar -
» @ org.hamcrest.core_1.3.0.v201303031735 jar - /hnme/twelselse
% .classpath
itignore

% project
» &> javaExamples [javaExamples master]

B

1 packege co;edu;fun a0 Plxly:// <~ packagenape changell for desd p
Z@Hpnrt org.junit.Assert;[]
5

6 /** Our first test class *
7 public class VerticalBallThrowPositionTest {
8

9 /** test the position for “x €=6m’, ‘v_6=g=0.90665m/s"2", "t?=1s’

@Test // the annotation @Test means that this method is a test cas

11 public void testPosition x80_vOg t1() {

12 Assert.assertEquals(4.903325d, // the expect

13 VerticalBallThrow.position(@d, 9.80665d, 1d), // the actual

14 le-16d); // == comparisons are a no-no for floating point, 1
}

17 /** test the position for “x 6=Im’, ‘v @=32m/s"2’, “t?=2s’ */
@est // the annotation @Test means that this method is a test cas
19 public void testPosition x01 vB32 t2() {
Assert.assertEquals(45.3867d, / the expected val
VerticalBallThrow.position(1d, 32d, 2d), // the actual resul
le-18d); // == comparisons are a no-no for floating point, 1

]
s a test cas

/** test the position for “x @=2m’, ‘v_6=15m/s"2°, 't
@Test // the annotation @Test means that this method
public void testPosition x62 vO15_t3() {
Assert.assertEquals(2.870075d, // the expected val
VerticalBallThrow.position(2d, 15d, 3d), // the actual resul
le-10d); // == comparisons are a no-no for floating point, 1

6items selected

(#ama@eoma;

Fixed Problem: Ball Cannot Fall through Earth Anymore

12 Package Explorer 2 |5 Type Hierarchy gt JUnit =A@ 2| [0 i 6} i s =8 -
5 < | @ 1 uu.iao fixl; // <-- package name changed for demo purposes =
= 2
| &> 27_testing_with_junit [javaExamples master] 3- Assert; <
~@&>src 4 Test;
~ 8> cn.edu.hfuu 5 &
V> a0 6 st class: the ball cannot fall below “Om' */ =)
= 7 icalBallThrowPositionNotBelowdTest {
~ i >iao_fix1 8 =
* [packageinolayy | O sition for ‘x 0=Im’, ‘v 0=16m/5°2’, ‘t=1000s" */ #
» [% VerticalBa New 10 notation @Test means that this method is a test case
<> tests Golnto 11 tPosition not below 6 x61 ve10 t1000() {
~ 3 > cn.edu.hful o 12 Equals(ed, // the expected value
V@10 OpeninHew Window 13 allThrow.position(1d, 16d, 1608d), // the actual result
h Open Type Hierarchy 14 // == comparisons are a no-no for floating point, le-18d is the allc
>iao fix - 1
» [Verticals SRR &l 5
» [Verticalg S S 7

EWEEEE 8 CopyQualified Name
~EAJUnit4 B Paste

Build Path
Source
Refactor
w1 Import
s Export..
References
Declarations
& Refresh

Assign Working Sets...

Debug As
By Validate
an.edu.hfuuiao_fix

Restore from L

OOP with Java Thomas Weise 14/21

3

i) !) Verti

1 Package Explorer fs Type Hierarchy [@Junit n‘
Lo QR s E
Finished after 0.015 seconds

Runs: 4/4 BErors: 0| B Failures: 0

erticalBallThrowPositionNotBelowOTe
dtestPosition_not_below_0_x01_v010_£1000 (0.0005)
~Eicn.edu.hfuu.iao_fix1.VerticalBallThrowPositionTest [Runner: JUn|
dltestPosition_x02_v015_t3 (0.000s)
dEltestPosition_x00_v0g_t1(0.000s)
(EltestPosition_x01_v032_t2 (0.0005)

= Failure Trace.

1 uu.iao_fixl; // <-- package name changed for demo purposes
2
3= Assert;
4 Test;
5

6 st class: the ball cannot fall below “6m" */
7 icalBallThrowPositionNotBelowdTest {
8

9 sition for "x @=lm’, 'v 0<=16m/s"2, "t=1006s’ */
10=notation @Test means that this method is a test case
tPosition not below 8 x01 vl t1008() {

1
12 Equals(0d, /1 the expected value
13 allThrow.position(1d, 16d, 1600d), // the actual result

14 // == comparisons are a no-no for floating point, le-1@d is the allc

(#ama@eoma;

Fixed Problem: Ball Cannot Fall through Earth Anymore %0\’

e We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

o (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

e The new code looks like this
e And the test code stays the same (only the package name changed)

e We can now execute the tests again

...and they succeed.

OOP with Java Thomas Weise 14/21

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

o In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

o In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

e In our case, this would mean that

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

o In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

e In our case, this would mean that position should probably...

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

e In our case, this would mean that position should probably. ..

e throw an IllegalArgumentException if 2o <0

OOP with Java Thomas Weise 15/21

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect

e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”
e In our case, this would mean that position should probably. ..
e throw an IllegalArgumentException if 2o <0
e throw an IllegalArgumentException if vg <0

OOP with Java Thomas Weise 15/21

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect
e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”
e In our case, this would mean that position should probably. ..
e throw an IllegalArgumentException if 2o <0
e throw an IllegalArgumentException if vg <0
e throw an IllegalArgumentException if g < 0

OOP with Java Thomas Weise 15/21

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect
e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”
e In our case, this would mean that position should probably. ..
e throw an IllegalArgumentException if 2o <0
e throw an IllegalArgumentException if vg <0
e throw an IllegalArgumentException if g < 0

e throw an ArithmeticException if its result would overflow (i.e.,
become infinite, or NaN)

OOP with Java Thomas Weise 15/21

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect
e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”
e In our case, this would mean that position should probably. ..
e throw an IllegalArgumentException if 2o <0
e throw an IllegalArgumentException if vg <0
e throw an IllegalArgumentException if g < 0
e throw an ArithmeticException if its result would overflow (i.e.,
become infinite, or NaN)

e We can test this with JUnit tests which will fail if a specified
exception is not thrown

OOP with Java Thomas Weise 15/21

Expecting Exceptions %()

e We should not just test whether our code produces correct output for
correct input (whether “normal” or "border” cases)

e We should also check whether it behaves reasonable if the inputs are
incorrect
e In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”
e In our case, this would mean that position should probably. ..
e throw an IllegalArgumentException if 2o <0
e throw an IllegalArgumentException if vg <0
e throw an IllegalArgumentException if g < 0
e throw an ArithmeticException if its result would overflow (i.e.,
become infinite, or NaN)
e We can test this with JUnit tests which will fail if a specified
exception is not thrown

e Let's make such a test

OOP with Java Thomas Weise 15/21

Test Cases Expecting Exceptions for Vertical Ball Throw %

Listing: Test Cases Expecting Exceptions for Vertical Ball Th

package cn.edu.hfuu.iao_fix1;

import org.junit.Test;
public class VerticalBallThrowPositionInvalidInputTest {

@Test (expected = IllegalArgumentException.class)
public void testPosition_x0_below_0() {

VerticalBallThrow.position(-0.1d, 10d, 1000d);
}

@Test (expected = IllegalArgumentException.class)
public void testPosition_vO_below_0() {

VerticalBallThrow.position(1d, -10d, 1000d);
}

@Test (expected = IllegalArgumentException.class)

public void testPosition_t_below_0() {
VerticalBallThrow.position(1d, 10d, -1d);

}

@Test (expected = ArithmeticException.class)
public void testPosition_overflow() {
VerticalBallThrow.position(Double.MAX_VALUE, Double.MAX_VALUE, 100d);
I
}

OOP with Java Thomas Weise 16/21

e So let us run the new tests

in~E@ix > oma

12 Package Ex uh; Type Hierar gJunit = 8| [0 vert 3 Verti @ Verti [m ®| ™ SE
B « v | 1 Ppackape cn.edu.hfuu.iso fixl; =
~(>27_testing_with_junit [javaExamples master] 3 import org.junit.Test; o
~@>sic B
s crvediEhPull S /e Expect Exceptions it Paraneters are Illegal =/ P
» i iao - public class 5]
St i : /+* test the position for “x 6<om’ */ =
» [% package-infojava 0= @Test(expected = IllegalArgumentException.class) // this method is expected £
* [VerticalBallThrow java 10 public void testPosition x8 below 0() { /7 to throw an IllegalArgume |——
- tests 11 VerticalBallThrow.position(-0.1d, 10d, 1000d);
~ &> cn.edu.hfuu g ¥
::::" - 14 /** test the position for “v 6<6m/s’ */
15- @Test(expected = IllegalArgumentException. class) J1Us methet 3 e ted
16 public void testPosition v@ below 0() { 7 to throw an IllegalArgume
O] jav| 17 VerticalBallThrow.position(ld, -10d, 1000d);
» [VerticalBallThrowPositionTest java 18}
» B\ JRE System Library [java-8-openjdk-amde4] 19
- JUnit4 20 /** test the position for “t<@s’ */
& it jar - /home/weise/seafile/programming/d | 217 €Test (expected = TllegalArgunentException.class) // this method is expected
2, o 22 public void testPosition t below 0() { // to throw an IllegalArgume
» & org.hamcrest.core_1.3.0.v201303031735jar - /ho, | 53 VerticalBallThrow.position(1d, 16d, -1d);
B classpath 2}
.gitignore 25
ek % o ;?st the pazitlon for parametars; that »;n}} surely ovectloy 2/
N - @Test(expected = ArithmeticException.class is method is expecte
S iavaamples [evasxamplea master] 28 public void testPosition overflow() { // to throw an ArithmeticExceptic
20 VerticalBallThrow.position(Double.MAX_VALUE, Double.MAX_VALUE, 100d);
3}
31}
32

Writable smartinsert 6:55 i

Running the New Tests

= < |1 package cn.edu.hfuu.iao fixl; =
3 5
> 27_testing_with_junit [lavaExamples master] 3 import org.junit.Test; =
~@>src 4 B
s crvediEhPull 5 /1« Expect Exceptions if Paraneters are Illegal */ &
e 6 public class [EEETEICEINNITET] nputTestiRe 2
7
£oe e © 8 /** test the position for “x 0<Om’ */ “
» [packagginiolang s GTest(expected = IllegalArgumentException.class) // this method is expected | #
» [Vertic} public void testPosition x@ below
<> tests Gointo

1 0() 7/ to throw an IllegalArgume
VerticalBallThrow.position(-0.1d, 16d, 1080d);
~ &> cn.edu

e Open in New Window.
il Open Type Hierarchy /** test the position for ‘v_0<6m/s’ */
oo Showin @Test (expected = IllegalArgumentException.class) //
» [Vertic) public void testPosition v@_below 6()
» [Vertic S VerticalBallThrow.position(1ld, -10d, 1000d);
* [1 Vertic{
=4 JRE Systes

this method is expected
to throw an IllegalArgume
B CopyQualified Name
@ Paste

~ & JUnit4 N /** test the position for “t<0s’ */
: Delete @Test (expected = IllegalArgumentException.class) // this method is expected
s public void testPosition t below () { // to throw an IllegalArgume
VerticalBallThrow.position(1ld, 16d, -1d);
Build Path i

Source

R - /** test the position for parameters that will surely overflow */
.L—AﬂavaExam @Test(expected = ArithmeticException.class) // this method is expected
3 & Impurt... public void testPosition_overflow() { // to throw an ArithmeticExceptic
VerticalBallThrow.position(Double.MAX_VALUE, Double.MAX_VALUE, 106d);

& Refresh

Assign Working Sefs...
f—e———————

Debug As

validate

Restore from L

1JavaApplet
B 2 JavaApplication

cn,edu.hfuu.iao|

OOP with Java Thomas Weise 17/21

>0 3

iO~H@iw

il v e

Quick Acces

¢edE AR E

Finished aFter 0.031 seconds

Runs: (/8 BErors: [0 | Failures: (&

edu.hfuu.i ferticalBallTh rowPositioninv
& testPo: elow_0(0.000s) ks

gl testPosition_v0_below_0(0.000s)
dltestPosition_overflow (0.001s)
~ i cn.edu.hfuu.iao_fix1.VerticalBallThrowPositionNo|
deltestPosition_not_below_0_x01_v010_t1000 (0.00C
~Eilcn.edu.hfuu.iao_fix1.VerticalBallThrowPositionTes|
tEltestPosition_x02 v015_t3 (0.000'5)
étestPosition_x00_v0g_t1(0.000s)
ltestPosition_x01_v032_t2 (0.0005)

Failure Trace

1 PackageEx Y3 TypeHierar [ﬁuunitaﬂ =8 Hm

1 package cn.edu.hfuu.iao fixl;
2

3 import org.junit.Test;
4

5[5 Eupact Exceptions. it Parametars ace Tilagal 4/

e public class [[EEat asltmnlnvalldlnputTP:t {

ﬂ /** test the position for “x @<6m™ */

0= @Test(expected = IllegalArgumentException.class) // this method is expected
10 public void testPosition x@_below 6() / to throw an IllegalArgume
11 VerticalBallThrow.position(-0.1d, 10d, 1000d);

12

13

14 /** test the position for “v_6<ém/s’ */

15- @Test(expected = IllegalArgumentException. class) // this method is expected
16 public void testPosition v@_below 8() { / to throw an IllegalArgume
17 VerticalBallThrow.position(ld, -10d, 1000d);

18

19

20 /** test the position for "t<@s’ */

21- @Test(expected = IllegalArgumentException.class) // this method is expected
22 public void testPosition t below 0() { // to throw an IllegalArgume
23 VerticalBallThrow.position(1ld, 10d, -1d);

24

25

26 /** test the position for parameters that will surely overflow */

27~ @Test(expected = ArithmeticException.class) // this method is expected

28 public void testPosition overflow() { // to throw an ArithmeticExceptic
29 VerticalBallThrow.position(Double.MAX_VALUE, Double.MAX_VALUE, 106d);

30

31}

(#ama@eoma;

e So let us run the new tests

e Obviously, the new tests fail, since we do not throw any exception in
our code

e Let's now fix our code to throw appropriate exceptions

e Let's now fix our code to throw appropriate exceptions

e (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_£ix2)

e Let's now fix our code to throw appropriate exceptions

e (For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_£ix2)

e The new code looks like this

Fixed Problem: Code is now throwing Exceptions

— System.out.println(position(x0, v0, ©));

Vertical Ball Throw, Exc

ption Fix

package cn.edu.hfuu.iao_fix2;

import java.util.Scamner;

public class VerticalBallThrow {

static double position(double x0, double vO, double t) {
if ((x0 < 0d) |l (vO < 0d) |l (¢ < 0d)) {
throw new IllegalArgumentException("Invalid,arguments x0="
X0 + ", v0="4v0 + "t=" + t)
+
final double result = x0 + (vO * t) - 0.5d * 9.80665d * t * t;
if (! (Double.isFinite (result))) {
throw new ArithmeticException("Arguments.x
+ X0 4 ", v0="4VO0 + "t=" 4t +
".leadutonon-finite result," + result);

return (result > 0d) ? result : 0d;

public static final void main(String[] args) {

try(Scanmer scanner = new Scanmer(System.in)) {
System.err.println("Enter,size, x0,0f spersonin,
double x0 = scanner.nextDouble();
System.err.println("Enter,initial upward,velocity,v0,of ball,in m/s:
double vO = scanner.nextDouble();
System.err.println("Enter, time,toin,s:");
double t = scanner.mextDouble();

3 OOP with Java Thomas Weise 18/21

Let's now fix our code to throw appropriate exceptions

(For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_£ix2)

e The new code looks like this

And the test code stays the same (only the package name changed)

Fixed Problem: Code is now throwing Exceptions

Vertical Ball Throw, Comm

Case Test

package cn.edu.hfuu.iao_fix2;

import org.junit.Assert;
import org.junit.Test;

public class VerticalBallThrowPositionTest {

QTest
public void testPosition_x00_vOg_t1() {
Assert.assertEquals (4.903325d,
VerticalBallThrow.position(0d, 9.80665d, 1d),
1e-10d);

@Test
public void testPosition_x01_v032_t2() {
Assert.assertEquals (45.3867d,
VerticalBallThrow.position(1d, 32d, 2d),
1e-10d);

QTest
public void testPosition_x02_v015_t3() {
Assert.assertEquals (2.870075d,
VerticalBallThrow.position(2d, 15d, 3d),
1e-10d);

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions %\’

Listi Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix2;

import org.junit.Assert;
import org.junit.Test;

@Test his a
public void testPosition_not_below_0_x01 vOlO t1000() {
Assert.assertEquals (0d, e
VerticalBallThrow. posltlon(ld 10d, 1000d),
le-10d); // == comparisc are a no-no for

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

Vertical Ball Throw, Invalid

package cn.edu.hfuu.iao_fix2;

import org.junit.Test;

public class VerticalBallThrowPositionInvalidInputTest {

QTest (expected = IllegalArgumentException.class)
public void testPosition_x0_below_0() {

VerticalBallThrow.position(-0.1d, 10d, 1000d);
¥

@Test (expected = IllegalArgumentException.class)
public void testPosition_vO_below_0() {

VerticalBallThrow.position(1d, -10d, 1000d);
¥

@Test (expected = IllegalArgumentException.class)

public void testPosition_t_below_0() {
VerticalBallThrow.position(1d, 10d, -1d);

¥

@Test (expected = ArithmeticException.class)
public void testPosition_overflow() {
VerticalBallThrow.position (Double.MAX_VALUE, Double.MAX_VALUE, 100d);
}
}

OOP with Java Thomas Weise 18/21

Let's now fix our code to throw appropriate exceptions

(For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_£ix2)

e The new code looks like this
And the test code stays the same (only the package name changed)

e We can now execute the tests again

3

i >m e

il v e

Quick Acces

% | B VerticalBallthr [0 VertialBall

» (2 package-info java
* [1 VerticalBallThrow java
~ 8 >iao0_fix1
» [2 package-info java
» [VerticalBallThrow java
ty>ia0_fix2

Ripackageinfo java
P VerticalBallThrow java
~ (B> tests
~ > cn.edu.hfuy
» g >iao
~#>iao Fx1
rE
"B i it ja
» [VerticalBallThrowPositionTest.java
g >iao_fix2
B VerticalBallThrowPositioninvalidinputTest jay

Test jay

BVerticalBallThrowPositionhjotBelowoTest jay
P VerticalBallThrow PositionTest.java
» 8\ JRE System Library [java-8-openjdk-amdo4]
~ & JUnit4
» @ junit jar - /homey/tweise/Seafile/programming/d
» @ org.hamcrest.core_1.3.0.v201303031735 jar - /ho
% .classpath

itignore
% .project
»G> javaExamples [javaExamples master]

1 du.hfuu.iao fix2; // <-- package name changed for demo purposes

5 ixceptions if Parameters are Illegal */
6 i VerticalBallThrowPositionInvalidInputTest {
7

14 PackageEx 32 |% TypeHierar gifJunit = O [m (Ballrt [m
@ ¢ -
~G> 27 _testing_with_junit [javaExamples master] 3 unit.Test;
~@>src 4
~ 8 >cn.edu.hfuu
~ a0

8 the position for “x_@<ém’ */

9-:cted = IllegalArgunentException.class) // this method
10 .d testPosition x0 below () { to throw an
11 BatiTeow. position(-0.1d, 1od, 1008d);

is expected
TllegalArgunentException

13
14 the position for ‘v 8<ém/s’ */
15-:cted = IllegalArgumentException.class) // this method
16 .d testPosition v0 below to throw an
17 BallThrow.position(1d,
18

is expected
1 0() TllegalArgunentException
“10d, 1000d);

19

20 ‘he position for “t<@s’ *,
21-:cted = IllegalArgumentException.class) // this method
22 d testPosition t below 0() { // to throw an
23 _BallThrow. position(1d, 16d,

is expected
IllegalArgumentException
-1d);

25

26 “he position for parameters that will surely overflow */

27-:cted = ArithmeticException.class) // this method is expected

28 d testPosition overflow() { // to throw an ArithmeticException
29 BallThrow.position(Double.MAX_VALUE, Double.MAX_VALUE, 10@d);

30

31
32

(#ama@eoma;

7items selected

Fixed Problem: Code is now throwing Exceptions

javaExamples OPen Type Hierarchy
show In

fuufiac_fix2/VerticalBallThrowPositionNotBelowoTest java - Eclipse
>

Copy

12 PackageEx 52 % T o i ITh in} i o i 2| u =8
1l Jen .edu.hfuu.iao_fix2; // <-- package name changed again for demo purpos

~(>27_testing_with_j RPN Blirg . junit.Assert;[]

~@EEsec Source
~ 8 >cn.eduhfuu oo second test class: the ball cannot fall below “@m’ */
~f>ia0 Befacton ffllass VerticalBallThrowPositionNotBelowdTest {

» [1; package-info.j ARSI LT
» [2 VerticalBallThr TN ST
~ 8 >iao_fix1

st the position for “x 0=Im’, ‘v 0=16m/s"2°, "t=1000s" */

// the annotation @Test means that this method is a test case

T Ml void testPosition not below © x01 ve10 t1008() {

» [3 package-nfo,g rt.assertEquals (0d, /1 the expected value

» [Verticalgalith fdlve rticalBallThrow.position(1d, 10d, 1000d), // the actual result

<> lao_fix2 % =l [le-10d); // == comparisons are a no-no for floating point, le-18d is tt

Declarations

» [2 package-infod gn Working S
» 5 Verticloal 7 vy
~@>tests & 1JavaApplet

e edihr Debug As > ® 2JavaApplication
» 83> a0 Validate N
8 >fao_fix1 Restore from Local History. Run Configuration
» [VerticalBallThr R U
* [VerticalBallThi Compare With
» [VerticalBallThr SR IRSNY

= fixz .
» [VerticalBallThr S s

» [VerticalBall

» [% VerticalBallThrowPositionTest.java
» 8 JRE System Library [java-8
Junita
unit.jar - /home/twei
» @ org.hamcrest.core_1
% .classpath
[.gitignore.
% .project
» &> javaExamples [ja

mde4]

file/programming/d
0.v201303031735.jar - /1

mples master]

cn.edu.hfu.iat

_fix2-27_testing_with_junit/tests

OOP with Java Thomas Weise 18/21

Gl G e

Quick Acces :‘ B @&

AR SRR

Finished aFter 0.016 seconds

Runs: (/8 BErors: 0| 8 Failures: [0

~Hicn.edu.hfuu.i /erticalBallThrowPositioninv
BtestPosition_t below 0(0.000
ltestPosition_x0_below_0(0.000s)
dltestPosition_vo_below_0(0.000s)
dEltestPosition_overflow (0.000's)

~ i cn.edu.hfuu.iao_fix2 VerticalBallThrowPositionNo|
deltestPosition_not_below_0_x01_v010_t1000 (0.00C
~Eilcn.edu.hfuu.iao_fix2.VerticalBallThrowPositionTes|
tEltestPosition_x02 v015_t3 (0.000'5)
étestPosition_x00_v0g_t1(0.000s)
ltestPosition_x01_v032_t2 (0.0005)

= Failure Trace &

1 PackageEx s TypeHierar |guJunit 2| = in| (Baltth | a h [3) Vertic lith [m i Wrhr 2 10 =
v 1 package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purpos
2

3+import org.junit.Assert;[]
5

6 /** Our second test class: the ball cannot fall below “6m™ */
7 public class VerticalBallThrowPositionNotBelowdTest {
8

9 /** test the position for “x @=Im", ‘v_6=16m/s*2°, "t=1000s’ */

10= @Test // the annotation @Test means that this method is a test case
11 public void testPosition not below 8 x01 ve10 t1008() {

12 Assert .assertEquals (0d, // the expected value
13 VerticalBallThrow.position(1d, 10d, 100@d), // the actual result

14 le-16d); // == comparisons are a no-no for floating point, le-16d is tt
5}

16 }

17

(#ama@eoma;

Let's now fix our code to throw appropriate exceptions

(For demonstration purposes, | therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_£ix2)

e The new code looks like this
And the test code stays the same (only the package name changed)

e We can now execute the tests again

...and they succeed.

e We have now hardened our position method against the most
common problems that could occur

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests
e Matter of fact: The tests should be created before the code!

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests

e Matter of fact: The tests should be created before the codel
e In the so-called Test-Driven Development

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests
e Matter of fact: The tests should be created before the code!
e In the so-called Test-Driven Development,

o the specification of the software is first turned into interfaces and tests
for these interfaces

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests
e Matter of fact: The tests should be created before the code!
e In the so-called Test-Driven Development,

o the specification of the software is first turned into interfaces and tests
for these interfaces

o Afterwards, the interfaces are implemented

Test-Driven Development %\’

1AQ

e We have now hardened our position method against the most
common problems that could occur

e Every piece of code that we ship should be covered with such tests
e Matter of fact: The tests should be created before the code!

e In the so-called Test-Driven Development,

e the specification of the software is first turned into interfaces and tests
for these interfaces
o Afterwards, the interfaces are implemented

e By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

OOP with Java Thomas Weise 19/21

Test-Driven Development %\

We have now hardened our position method against the most
common problems that could occur

Every piece of code that we ship should be covered with such tests
Matter of fact: The tests should be created before the code!

In the so-called Test-Driven Development,

e the specification of the software is first turned into interfaces and tests
for these interfaces
o Afterwards, the interfaces are implemented

By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

And we know, at any stage of development, that we are working with
correct code

OOP with Java Thomas Weise 19/21

Test-Driven Development %\

We have now hardened our position method against the most
common problems that could occur

Every piece of code that we ship should be covered with such tests

Matter of fact: The tests should be created before the code!
In the so-called Test-Driven Development,

e the specification of the software is first turned into interfaces and tests
for these interfaces
o Afterwards, the interfaces are implemented

By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

And we know, at any stage of development, that we are working with
correct code

Regardless whether or not this method is used, it is clear that testing
is absolutely important

OOP with Java Thomas Weise 19/21

Summary %\

We have learned about unit testing using JUnit
When testing our code, we should always cover

e the common use case

e the border cases which are unlikely to happen but still valid use cases

e the case of invalid input (also to ensure that our code properly and
early throws exceptions)

Ideally, all produced code should be covered by tests

Tests cannot proof that there are no errors, they can just reduce their
likelihood

Tests allow us to ensure that different versions of our software stay
compatible (if the new version passes old tests)

Tests are used in conjunction with debugging

OOP with Java Thomas Weise 20/21

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	JUnit in Eclipse
	Unit Testing with JUnit
	Enabling JUnit Support
	Project Structure

	Basic JUnit Tests
	Creating JUnit Tests
	Vertical Ball Throw with Console I/O
	Creating JUnit Tests
	Creating JUnit Tests
	Common Test Cases for Vertical Ball Throw
	Creating JUnit Tests: Common Cases
	Creating JUnit Tests: Border Cases
	Fixed Problem: Ball Cannot Fall through Earth Anymore

	Expecting Exceptions
	Expecting Exceptions
	Test Cases Expecting Exceptions for Vertical Ball Throw
	Running the New Tests
	Fixed Problem: Code is now throwing Exceptions

	Test-Driven Development
	Test-Driven Development

	Summary
	Summary

	Presentation End

