
OOP with Java
27. Testing with JUnit

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 JUnit in Eclipse

3 Basic JUnit Tests

4 Expecting Exceptions

5 Test-Driven Development

6 Summary

OOP with Java Thomas Weise 2/21

w
e
b
s
it
e

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors
• using well-tested (open source) libraries for general tasks to reduce

development time and chances to make errors

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors
• using well-tested (open source) libraries for general tasks to reduce

development time and chances to make errors

• But we can still expect our code to contain errors

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors
• using well-tested (open source) libraries for general tasks to reduce

development time and chances to make errors

• But we can still expect our code to contain errors

• We should test our code before shipping/using it

OOP with Java Thomas Weise 3/21

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly, including

• debugging in Lesson 13: Debugging
• dividing code into different methods which are smaller and thus easier

to understand
• dividing code into classes which bundle functionality and encapsulate

(private) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors
• using well-tested (open source) libraries for general tasks to reduce

development time and chances to make errors

• But we can still expect our code to contain errors

• We should test our code before shipping/using it

• How can we do that in a structured, automated way?

OOP with Java Thomas Weise 3/21

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

• Usually, we make (at least one) test class for each class of the “real”
code

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

• Usually, we make (at least one) test class for each class of the “real”
code

• The methods of this test class are “test cases”, each checking one
aspect of the “real code”

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

• Usually, we make (at least one) test class for each class of the “real”
code

• The methods of this test class are “test cases”, each checking one
aspect of the “real code”

• JUnit comes as two libraries (can be downloaded from
http://junit.org) and with Eclipse integration

OOP with Java Thomas Weise 4/21

http://junit.org

Unit Testing with JUnit

• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

• Usually, we make (at least one) test class for each class of the “real”
code

• The methods of this test class are “test cases”, each checking one
aspect of the “real code”

• JUnit comes as two libraries (can be downloaded from
http://junit.org) and with Eclipse integration

• We will step-by-step explore its use in Eclipse

OOP with Java Thomas Weise 4/21

http://junit.org

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

• We choose JUnit and click Next

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

• We choose JUnit and click Next

• We choose JUnit 4 and click Finish

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

• We choose JUnit and click Next

• We choose JUnit 4 and click Finish

• We click OK

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

• We choose JUnit and click Next

• We choose JUnit 4 and click Finish

• We click OK

• The JUnit library has now appeared in the build path

OOP with Java Thomas Weise 5/21

Enabling JUnit Support

OOP with Java Thomas Weise 5/21

Project Structure

• We usually want to separate test classes from “real code” classes

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

OOP with Java Thomas Weise 6/21

Project Structure

• We usually want to separate test classes from “real code” classes:
When we create our jar s, we usually do not want the tests to be
included

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• However, we also want that tests can potentially access package
private methods, because the more we can test, the better

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

• We type in cn.edu.hfuu.iao and click Finish

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• Solution: Our project gets two root source folders, one for code, one
for tests, with the same package hierarchy

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

• We type in cn.edu.hfuu.iao and click Finish

• We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• Let’s continue with the empty project from before: There already is
the one default source folder (src)

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

• We type in cn.edu.hfuu.iao and click Finish

• We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

• We type in cn.edu.hfuu.iao , make sure that
create package-info.jar is not selected, and click Finish

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Project Structure

• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

• We type in cn.edu.hfuu.iao and click Finish

• We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

• We type in cn.edu.hfuu.iao , make sure that
create package-info.jar is not selected, and click Finish

• The new package has appeared (empty) in the package explorer

OOP with Java Thomas Weise 6/21

Project Structure

OOP with Java Thomas Weise 6/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

OOP with Java Thomas Weise 7/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

OOP with Java Thomas Weise 7/21

Vertical Ball Throw with Console I/O

Listing: Vertical Ball Throw with Console I/O

package cn.edu.hfuu.iao;

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

return x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

System.out.println(position(x0, v0, t)); // compute and print position

}

}

}

OOP with Java Thomas Weise 8/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

• The thing to test here clearly is method position

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

• The thing to test here clearly is method position

• We need to investigate whether

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

• The thing to test here clearly is method position

• We need to investigate whether
• it returns correct results

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

• The thing to test here clearly is method position

• We need to investigate whether
• it returns correct results
• it deals with border cases correctly

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• Let us revisit (again) our Vertical Ball Throw example

• And this time test its correctness

• The thing to test here clearly is method position

• We need to investigate whether
• it returns correct results
• it deals with border cases correctly
• it deals with invalid arguments correctly

OOP with Java Thomas Weise 9/21

Creating JUnit Tests

• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

• Ok, but what should we test first?

• Let us first test some very common cases, e.g.,
• if position = 4.903325 if x0 = 0, v0 = 9.80665m/s, and t = 1s

• if position = 45.3867 if x0 = 1, v0 = 32m/s, and t = 2s

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

• Ok, but what should we test first?

• Let us first test some very common cases, e.g.,
• if position = 4.903325 if x0 = 0, v0 = 9.80665m/s, and t = 1s

• if position = 45.3867 if x0 = 1, v0 = 32m/s, and t = 2s

• if position = 2.870075 if x0 = 2, v0 = 15m/s, and t = 3s

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

• Ok, but what should we test first?

• Let us first test some very common cases, e.g.,
• if position = 4.903325 if x0 = 0, v0 = 9.80665m/s, and t = 1s

• if position = 45.3867 if x0 = 1, v0 = 32m/s, and t = 2s

• if position = 2.870075 if x0 = 2, v0 = 15m/s, and t = 3s

• We have computed these values by hand and expect that our function
should return results reasonably close to them

OOP with Java Thomas Weise 10/21

Creating JUnit Tests

• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

• Ok, but what should we test first?

• Let us first test some very common cases, e.g.,
• if position = 4.903325 if x0 = 0, v0 = 9.80665m/s, and t = 1s

• if position = 45.3867 if x0 = 1, v0 = 32m/s, and t = 2s

• if position = 2.870075 if x0 = 2, v0 = 15m/s, and t = 3s

• We have computed these values by hand and expect that our function
should return results reasonably close to them

• As a JUnit test, this looks as follows

OOP with Java Thomas Weise 10/21

Common Test Cases for Vertical Ball Throw

Listing: Common Test Cases for Vertical Ball Throw

package cn.edu.hfuu.iao;

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 11/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

• Let us now run these tests

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

• Let us now run these tests

• Right-click on class VerticalBallThrowPositionTest , choose Run As

and then JUnit Test

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

• Let us now run these tests

• Right-click on class VerticalBallThrowPositionTest , choose Run As

and then JUnit Test

• All tests succeed, we get all green bars

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

• Let us now run these tests

• Right-click on class VerticalBallThrowPositionTest , choose Run As

and then JUnit Test

• All tests succeed, we get all green bars

• This does not proof anything, but so far our position method looks
OK

OOP with Java Thomas Weise 12/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .
• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .
• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

Listing: The new border case test VerticalBallThrowPositionNotBelow0Test

package cn.edu.hfuu.iao;

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .
• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this
• We can now run this test in the same way as before, or run all tests in
the tests package at once

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• Now we should look at border cases, i.e., whether the method is still
correct when the inputs take on extreme values

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .
• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this
• We can now run this test in the same way as before, or run all tests in
the tests package at once

• We right-click the test package, choose Run As , and JUnit Test

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .

• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this

• We can now run this test in the same way as before, or run all tests in
the tests package at once

• We right-click the test package, choose Run As , and JUnit Test

• All 4 test cases in the package are executed, including the three
previous tests

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .

• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this

• We can now run this test in the same way as before, or run all tests in
the tests package at once

• We right-click the test package, choose Run As , and JUnit Test

• All 4 test cases in the package are executed, including the three
previous tests

• The new test fails and becomes red, claiming
java.lang.AssertionError: expected:<0.0> but was:<-4893324.0> ,

meaning that our position method does not guard the ball against
falling through earth

OOP with Java Thomas Weise 13/21

Creating JUnit Tests: Border Cases

OOP with Java Thomas Weise 13/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

• The new code looks like this

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw Positive Position Fix

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball , preventing it from falling through earth

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

final double result = x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

return (result > 0d) ? result : 0d;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

System.out.println(position(x0, v0, t)); // compute and print position

}

}

} OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

• The new code looks like this

• And the test code stays the same (only the package name changed)

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw, Common Case Test

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

OOP with Java Thomas Weise 14/21

Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1)

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

• . . . and they succeed.

OOP with Java Thomas Weise 14/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

• throw an IllegalArgumentException if t0 < 0

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

• throw an IllegalArgumentException if t0 < 0

• throw an ArithmeticException if its result would overflow (i.e.,

become infinite, or NaN)

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

• throw an IllegalArgumentException if t0 < 0

• throw an ArithmeticException if its result would overflow (i.e.,

become infinite, or NaN)

• We can test this with JUnit tests which will fail if a specified
exception is not thrown

OOP with Java Thomas Weise 15/21

Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

• throw an IllegalArgumentException if t0 < 0

• throw an ArithmeticException if its result would overflow (i.e.,

become infinite, or NaN)

• We can test this with JUnit tests which will fail if a specified
exception is not thrown

• Let’s make such a test

OOP with Java Thomas Weise 15/21

Test Cases Expecting Exceptions for Vertical Ball Throw

Listing: Test Cases Expecting Exceptions for Vertical Ball Throw

package cn.edu.hfuu.iao_fix1;

import org.junit.Test;

/** Expect Exceptions if Parameters are Illegal */

public class VerticalBallThrowPositionInvalidInputTest {

/** test the position for x0 < 0m */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_x0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (-0.1d, 10d, 1000d);

}

/** test the position for v0 < 0m/s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_v0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, -10d, 1000d);

}

/** test the position for t < 0s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_t_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, 10d, -1d);

}

/** test the position for parameters that will surely overflow */

@Test(expected = ArithmeticException.class) // this method is expected

public void testPosition_overflow () { // to throw an ArithmeticException

VerticalBallThrow.position(Double.MAX_VALUE , Double.MAX_VALUE , 100d);

}

}

OOP with Java Thomas Weise 16/21

Running the New Tests

• So let us run the new tests

OOP with Java Thomas Weise 17/21

Running the New Tests

OOP with Java Thomas Weise 17/21

Running the New Tests

OOP with Java Thomas Weise 17/21

Running the New Tests

OOP with Java Thomas Weise 17/21

Running the New Tests

• So let us run the new tests

• Obviously, the new tests fail, since we do not throw any exception in
our code

OOP with Java Thomas Weise 17/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2)

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2)

• The new code looks like this

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Exception Fix

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball (preventing it from falling through earth

* and checking its arguments and results.

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

if ((x0 < 0d) || (v0 < 0d) || (t < 0d)) { // check invalid arguments

throw new IllegalArgumentException("Invalid arguments x0=" //$NON -NLS -1$

+ x0 + ", v0="+v0 + "t=" + t);//$NON -NLS -1$//$NON -NLS -2$

}

final double result = x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

if(!(Double.isFinite(result))) { // if result is infinite or NaN

throw new ArithmeticException("Arguments x0=" //$NON -NLS -1$

+ x0 + ", v0="+v0 + "t=" + t + //$NON -NLS -1$//$NON -NLS -2$

" lead to non -finite result " + result); //$NON -NLS -1$

}

return (result > 0d) ? result : 0d;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

System.out.println(position(x0, v0, t)); // compute and print position

}

}

}

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2)

• The new code looks like this

• And the test code stays the same (only the package name changed)

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Common Case Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Invalid Argument Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed for demo purposes

import org.junit.Test;

/** Expect Exceptions if Parameters are Illegal */

public class VerticalBallThrowPositionInvalidInputTest {

/** test the position for x0 < 0m */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_x0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (-0.1d, 10d, 1000d);

}

/** test the position for v0 < 0m/s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_v0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, -10d, 1000d);

}

/** test the position for t < 0s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_t_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, 10d, -1d);

}

/** test the position for parameters that will surely overflow */

@Test(expected = ArithmeticException.class) // this method is expected

public void testPosition_overflow () { // to throw an ArithmeticException

VerticalBallThrow.position(Double.MAX_VALUE , Double.MAX_VALUE , 100d);

}

}

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2)

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

OOP with Java Thomas Weise 18/21

Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2)

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

• . . . and they succeed.

OOP with Java Thomas Weise 18/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

• By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

• By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

• And we know, at any stage of development, that we are working with
correct code

OOP with Java Thomas Weise 19/21

Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

• By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

• And we know, at any stage of development, that we are working with
correct code

• Regardless whether or not this method is used, it is clear that testing
is absolutely important

OOP with Java Thomas Weise 19/21

Summary

• We have learned about unit testing using JUnit

• When testing our code, we should always cover
• the common use case
• the border cases which are unlikely to happen but still valid use cases
• the case of invalid input (also to ensure that our code properly and

early throws exceptions)

• Ideally, all produced code should be covered by tests

• Tests cannot proof that there are no errors, they can just reduce their
likelihood

• Tests allow us to ensure that different versions of our software stay
compatible (if the new version passes old tests)

• Tests are used in conjunction with debugging

OOP with Java Thomas Weise 20/21

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 21/21

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	JUnit in Eclipse
	Unit Testing with JUnit
	Enabling JUnit Support
	Project Structure

	Basic JUnit Tests
	Creating JUnit Tests
	Vertical Ball Throw with Console I/O
	Creating JUnit Tests
	Creating JUnit Tests
	Common Test Cases for Vertical Ball Throw
	Creating JUnit Tests: Common Cases
	Creating JUnit Tests: Border Cases
	Fixed Problem: Ball Cannot Fall through Earth Anymore

	Expecting Exceptions
	Expecting Exceptions
	Test Cases Expecting Exceptions for Vertical Ball Throw
	Running the New Tests
	Fixed Problem: Code is now throwing Exceptions

	Test-Driven Development
	Test-Driven Development

	Summary
	Summary

	Presentation End

