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• debugging in Lesson 13: Debugging
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to understand
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( private ) variables making sure that data can only be changed in a

valid way
• dividing code focusing on different concerns into packages to make the

whole project easier to understand
• using Java’s utility classes as heavily as possible to avoid writing own

code and making errors
• using well-tested (open source) libraries for general tasks to reduce

development time and chances to make errors

• But we can still expect our code to contain errors

• We should test our code before shipping/using it

• How can we do that in a structured, automated way?
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• Unit testing is a software testing method in which individual units of
code are tested whether they meet the specification

• JUnit is a software framework for unit testing in Java

• An application normally consists of a main classes to execute and
several utility classes

• If we use JUnit, we add a new form of classes: Tests

• Usually, we make (at least one) test class for each class of the “real”
code

• The methods of this test class are “test cases”, each checking one
aspect of the “real code”

• JUnit comes as two libraries (can be downloaded from
http://junit.org) and with Eclipse integration

• We will step-by-step explore its use in Eclipse
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Enabling JUnit Support

• Eclipse provides direct, first-class JUnit support

• To enable this support by adding JUnit to the build path, we do not

need to download the JUnit jar s or anything. . .

• First, we create a new empty Java project, let’s call it
27_testing_with_junit

• Then we right-click the project and click Properties

• Under Java Build Path we select Libraries and click
Add Library...

• We choose JUnit and click Next

• We choose JUnit 4 and click Finish

• We click OK

• The JUnit library has now appeared in the build path
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• Right-click the project, choose New then Source Folder

• Choose a good name for the test classes folder, how about tests ,
click Finish

• We now want to create the same package structure, say with root
package cn.edu.hfuu.iao , in both folders

• We right-click the folder src , choose New then Package

• We type in cn.edu.hfuu.iao and click Finish

• We repeat the procedure for folder tests : right-click the folder
tests , choose New then Package

• We type in cn.edu.hfuu.iao , make sure that
create package-info.jar is not selected, and click Finish

• The new package has appeared (empty) in the package explorer
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Vertical Ball Throw with Console I/O

Listing: Vertical Ball Throw with Console I/O

package cn.edu.hfuu.iao;

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?<br/>

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

return x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time $t$

System.out.println(position(x0, v0, t)); // compute and print position

}

}

}
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• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest
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• We first create a new (test) class in package the cn.edu.hfuu.iao

package of the tests folder and call it
VerticalBallThrowPositionTest

• Ok, but what should we test first?

• Let us first test some very common cases, e.g.,
• if position = 4.903325 if x0 = 0, v0 = 9.80665m/s, and t = 1s

• if position = 45.3867 if x0 = 1, v0 = 32m/s, and t = 2s

• if position = 2.870075 if x0 = 2, v0 = 15m/s, and t = 3s

• We have computed these values by hand and expect that our function
should return results reasonably close to them

• As a JUnit test, this looks as follows
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Common Test Cases for Vertical Ball Throw

Listing: Common Test Cases for Vertical Ball Throw

package cn.edu.hfuu.iao;

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}
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• Each test case is placed into one method with a descriptive name
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Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
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Creating JUnit Tests: Common Cases

• Each test case is placed into one method with a descriptive name
• Each such method is annotated with a @Test (between the javadoc

and the method signature), telling JUnit that it is a test method
• Inside the test method, we compare the expected result of position

with its actual result by using one of the many assertEquals

methods from class org.junit.Assert

• assertEquals would throw an exception if the expected and actual

value are different (or, in case of floating point numbers, differ by more
than a given maximum deviation)

• Let us now run these tests

• Right-click on class VerticalBallThrowPositionTest , choose Run As

and then JUnit Test

• All tests succeed, we get all green bars

• This does not proof anything, but so far our position method looks
OK
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Creating JUnit Tests: Border Cases

Listing: The new border case test VerticalBallThrowPositionNotBelow0Test

package cn.edu.hfuu.iao;

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}
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Creating JUnit Tests: Border Cases

• One extreme case here would clearly be what happens if enough time
has passed so that the ball has fallen back to the ground

• Obviously, it can never fall below 0m. . .

• The result of position for if x0 = 1, v0 = 10m/s2, and t = 1000s
should be 0m, not −4893324m

• Let’s build a test case for this

• We can now run this test in the same way as before, or run all tests in
the tests package at once

• We right-click the test package, choose Run As , and JUnit Test

• All 4 test cases in the package are executed, including the three
previous tests

• The new test fails and becomes red, claiming
java.lang.AssertionError: expected:<0.0> but was:<-4893324.0> ,

meaning that our position method does not guard the ball against
falling through earth
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Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw Positive Position Fix

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?<br/>

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball , preventing it from falling through earth

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

final double result = x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

return (result > 0d) ? result : 0d;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time $t$

System.out.println(position(x0, v0, t)); // compute and print position

}

}
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• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1 )

• The new code looks like this

• And the test code stays the same (only the package name changed)
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Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw, Common Case Test

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}
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Fixed Problem: Ball Cannot Fall through Earth Anymore

Listing: Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix1; // <-- package name changed for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 14/21



Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1 )

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again
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Fixed Problem: Ball Cannot Fall through Earth Anymore

• We now fix this problem by modifying position to first check
whether the result is positive and return 0 otherwise

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix1 )

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

• . . . and they succeed.
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Expecting Exceptions

• We should not just test whether our code produces correct output for
correct input (whether “normal” or “border” cases)

• We should also check whether it behaves reasonable if the inputs are
incorrect

• In Lesson 25: Exceptions, we have learned that reasonable then
means “throws Exceptions”

• In our case, this would mean that position should probably. . .

• throw an IllegalArgumentException if x0 < 0

• throw an IllegalArgumentException if v0 < 0

• throw an IllegalArgumentException if t0 < 0

• throw an ArithmeticException if its result would overflow (i.e.,

become infinite, or NaN)

• We can test this with JUnit tests which will fail if a specified
exception is not thrown

• Let’s make such a test
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Test Cases Expecting Exceptions for Vertical Ball Throw

Listing: Test Cases Expecting Exceptions for Vertical Ball Throw

package cn.edu.hfuu.iao_fix1;

import org.junit.Test;

/** Expect Exceptions if Parameters are Illegal */

public class VerticalBallThrowPositionInvalidInputTest {

/** test the position for x0 < 0m */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_x0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (-0.1d, 10d, 1000d);

}

/** test the position for v0 < 0m/s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_v0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, -10d, 1000d);

}

/** test the position for t < 0s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_t_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, 10d, -1d);

}

/** test the position for parameters that will surely overflow */

@Test(expected = ArithmeticException.class) // this method is expected

public void testPosition_overflow () { // to throw an ArithmeticException

VerticalBallThrow.position(Double.MAX_VALUE , Double.MAX_VALUE , 100d);

}

}

OOP with Java Thomas Weise 16/21



Running the New Tests

• So let us run the new tests
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Running the New Tests

• So let us run the new tests

• Obviously, the new tests fail, since we do not throw any exception in
our code
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• Let’s now fix our code to throw appropriate exceptions
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Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Exception Fix

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?<br/>

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** Compute the position of a ball (preventing it from falling through earth

* and checking its arguments and results.

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

if ((x0 < 0d) || (v0 < 0d) || (t < 0d)) { // check invalid arguments

throw new IllegalArgumentException("Invalid arguments x0=" //$NON -NLS -1$

+ x0 + ", v0="+v0 + "t=" + t);//$NON -NLS -1$//$NON -NLS -2$

}

final double result = x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

if(!( Double.isFinite(result))) { // if result is infinite or NaN

throw new ArithmeticException("Arguments x0=" //$NON -NLS -1$

+ x0 + ", v0="+v0 + "t=" + t + //$NON -NLS -1$//$NON -NLS -2$

" lead to non -finite result " + result); //$NON -NLS -1$

}

return (result > 0d) ? result : 0d;

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time $t$

System.out.println(position(x0, v0, t)); // compute and print position

}

}

}
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Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2 )

• The new code looks like this

• And the test code stays the same (only the package name changed)
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Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Common Case Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our first test class */

public class VerticalBallThrowPositionTest {

/** test the position for x0 = 0m, v0 = g = 0.90665m/s, t? = 1s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x00_v0g_t1 () {

Assert.assertEquals (4.903325d, // the expected value

VerticalBallThrow.position (0d, 9.80665d, 1d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 1m, v0 = 32m/s, t? = 2s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x01_v032_t2 () {

Assert.assertEquals (45.3867d, // the expected value

VerticalBallThrow.position (1d, 32d, 2d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

/** test the position for x0 = 2m, v0 = 15m/s, t? = 3s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_x02_v015_t3 () {

Assert.assertEquals (2.870075d, // the expected value

VerticalBallThrow.position (2d, 15d, 3d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}

OOP with Java Thomas Weise 18/21



Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Border Case Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed again for demo purposes

import org.junit.Assert;

import org.junit.Test;

/** Our second test class: the ball cannot fall below 0m */

public class VerticalBallThrowPositionNotBelow0Test {

/** test the position for x0 = 1m, v0 = 10m/s, t = 1000s */

@Test // the annotation @Test means that this method is a test case

public void testPosition_not_below_0_x01_v010_t1000 () {

Assert.assertEquals (0d, // the expected value

VerticalBallThrow.position (1d, 10d, 1000d), // the actual result

1e-10d); // == comparisons are a no-no for floating point , 1e-10d is the allowed deviation

}

}
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Fixed Problem: Code is now throwing Exceptions

Listing: Vertical Ball Throw, Invalid Argument Test

package cn.edu.hfuu.iao_fix2; // <-- package name changed for demo purposes

import org.junit.Test;

/** Expect Exceptions if Parameters are Illegal */

public class VerticalBallThrowPositionInvalidInputTest {

/** test the position for x0 < 0m */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_x0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (-0.1d, 10d, 1000d);

}

/** test the position for v0 < 0m/s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_v0_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, -10d, 1000d);

}

/** test the position for t < 0s */

@Test(expected = IllegalArgumentException.class) // this method is expected

public void testPosition_t_below_0 () { // to throw an IllegalArgumentException

VerticalBallThrow.position (1d, 10d, -1d);

}

/** test the position for parameters that will surely overflow */

@Test(expected = ArithmeticException.class) // this method is expected

public void testPosition_overflow () { // to throw an ArithmeticException

VerticalBallThrow.position(Double.MAX_VALUE , Double.MAX_VALUE , 100d);

}

}
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Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2 )

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again
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Fixed Problem: Code is now throwing Exceptions

• Let’s now fix our code to throw appropriate exceptions

• (For demonstration purposes, I therefore create a copy of both the
source and the test package named cn.edu.hfuu.iao_fix2 )

• The new code looks like this

• And the test code stays the same (only the package name changed)

• We can now execute the tests again

• . . . and they succeed.
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Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur
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• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

• By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code
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Test-Driven Development

• We have now hardened our position method against the most
common problems that could occur

• Every piece of code that we ship should be covered with such tests

• Matter of fact: The tests should be created before the code!

• In the so-called Test-Driven Development,
• the specification of the software is first turned into interfaces and tests

for these interfaces
• Afterwards, the interfaces are implemented

• By working in such a way, we can prevent the programmer from lazily
making tests which fit to her/his code

• And we know, at any stage of development, that we are working with
correct code

• Regardless whether or not this method is used, it is clear that testing
is absolutely important
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Summary

• We have learned about unit testing using JUnit

• When testing our code, we should always cover
• the common use case
• the border cases which are unlikely to happen but still valid use cases
• the case of invalid input (also to ensure that our code properly and

early throws exceptions)

• Ideally, all produced code should be covered by tests

• Tests cannot proof that there are no errors, they can just reduce their
likelihood

• Tests allow us to ensure that different versions of our software stay
compatible (if the new version passes old tests)

• Tests are used in conjunction with debugging
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China
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