LR B

HEFEI UNIVERSITY

OOP with Java

26. Libraries and Executables

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://iao.hfuu.edu.cn

i =4
T H A

ri]?@féﬂ#i[;’;/éJZB
5HRA

R AR ACHE RBT
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Libraries

@® Creating a Library
@ Using a Library
@ Executable JARs

@ Summary

OOP with Java Thomas Weise

e Java programs usually consist of lots of .java or .class files

e Java programs usually consist of lots of .java or .class files

e Also, there often are many resources such as text files and images

e Java programs usually consist of lots of .java or .class files

e Also, there often are many resources such as text files and images

e We can hardly ship a heap of 1000 files as application to a user

Java programs usually consist of lots of .java or .class files

Also, there often are many resources such as text files and images

We can hardly ship a heap of 1000 files as application to a user

For this purpose, jar files exist

Java programs usually consist of lots of .java or .class files

Also, there often are many resources such as text files and images

We can hardly ship a heap of 1000 files as application to a user

For this purpose, jar files exist

A jar file is basically a special zip archive which contains all the
files of a program or library

Introduction %\

e Java programs usually consist of lots of .java or .class files

Also, there often are many resources such as text files and images

We can hardly ship a heap of 1000 files as application to a user

For this purpose, jar files exist

A jar file is basically a special zip archive which contains all the
files of a program or library

jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

OOP with Java Thomas Weise 3/26

Introduction %\

1AQ

e Java programs usually consist of lots of .java or .class files

e Also, there often are many resources such as text files and images

e We can hardly ship a heap of 1000 files as application to a user

e For this purpose, jar files exist

e A jar file is basically a special zip archive which contains all the
files of a program or library

e jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

e That's already the most important stuff: Actually, you can create a
x.zip archive with the contents of your /bin folder of an Eclipse
project, rename it to x.jar and you got yourself a library

OOP with Java Thomas Weise 3/26

Introduction %\

1AQ

e Java programs usually consist of lots of .java or .class files

e Also, there often are many resources such as text files and images

e We can hardly ship a heap of 1000 files as application to a user

e For this purpose, jar files exist

e A jar file is basically a special zip archive which contains all the
files of a program or library

e jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

e That's already the most important stuff: Actually, you can create a
x.zip archive with the contents of your /bin folder of an Eclipse

project, rename it to x.jar and you got yourself a library
e But let's look at this step-by-step

OOP with Java Thomas Weise 3/26

e We have learned a two ways to structure code

e We have learned a two ways to structure code, including
o dividing code into different classes

e We have learned a two ways to structure code, including
o dividing code into different classes
o dividing code focusing on different concerns into packages in
Lesson 17: Packages and import

e We have learned a two ways to structure code, including
o dividing code into different classes
o dividing code focusing on different concerns into packages in
Lesson 17: Packages and import

e Sometimes, we have code which is used by different programs

e We have learned a two ways to structure code, including
o dividing code into different classes
o dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

Why Libraries?

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just

OOP with Java Thomas Weise 4/26

Why Libraries?

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project

OOP with Java Thomas Weise 4/26

Why Libraries? %\

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project

OOP with Java Thomas Weise 4/26

Why Libraries? %\

1AQ

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project
e copy the “shared” code into each project

OOP with Java Thomas Weise 4/26

Why Libraries? %\

1AQ

e We have learned a two ways to structure code, including

e dividing code into different classes

e dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

Sometimes, we have code which is used by different programs
Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just

e put this code into one project

e develop each program in a separate dedicated project

e copy the “shared” code into each project
This is not a nice solution

OOP with Java Thomas Weise 4/26

Why Libraries? %\

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
Sometimes, we have code which is used by different programs
Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project
e copy the “shared” code into each project
This is not a nice solution, since very time our shared code changes,
e we always have to copy many files

OOP with Java Thomas Weise 4/26

Why Libraries? %\

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
Sometimes, we have code which is used by different programs
Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project
e copy the “shared” code into each project
This is not a nice solution, since very time our shared code changes,
e we always have to copy many files
o if a file becomes no longer needed, delete

OOP with Java Thomas Weise 4/26

Why Libraries? %\

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
Sometimes, we have code which is used by different programs
Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project
e copy the “shared” code into each project
This is not a nice solution, since very time our shared code changes,
e we always have to copy many files
o if a file becomes no longer needed, delete
e it's a maintenance nightmare

OOP with Java Thomas Weise 4/26

Why Libraries? %\

e We have learned a two ways to structure code, including
e dividing code into different classes
e dividing code focusing on different concerns into packages in
Lesson 17: Packages and import
e Sometimes, we have code which is used by different programs
e Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.
e Now we can just
e put this code into one project
e develop each program in a separate dedicated project
e copy the “shared” code into each project
e This is not a nice solution, since very time our shared code changes,
e we always have to copy many files
o if a file becomes no longer needed, delete
e it's a maintenance nightmare
e That's what libraries are good for: They are basically zip archives
containing all classes of a project

OOP with Java Thomas Weise 4/26

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

e Here | print the classes again to refresh your memory

The prerson Class

Listing: A Person class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person;

public class Person {

String

String

public

this.
this.

public

familyName;

givenName;

Person(String _familyName, String _givenName) {
familyName = _familyName;
givenName = _givenName;

String toString() {

return this.givenName + ',,' + this.familyName;

}

OOP with Java Thomas Weise

6/26

Professor Class

/*% A

public class Professor extends Person {

/** cr t it

public Professor(String _familyName,
super (_familyName, _givenName);

}

/**% return

@Override // mark < L
public String toStrlng() {
return "Prof._," + super.toString();

}

ate a person record and sel 1its

String _glvenName) {

OOP with Java

Thomas Weise

7/26

Student Class %\’

udent class in pack cn.edu.hfuu

package cn.edu.hfuu.iao.person;

public class Student extends Person {

String id;

public Student (String _familyName, String _givenName, String _id) {
super (_familyName, _givenName);
this.id = _id;

@0verride
public String toString() {
return "student," + super.toString();
}
&

OOP with Java Thomas Weise 8/26

Foreign Exchange Student Class

package cn.edu.hfuu.iao.person;

public class ForeignExchangeStudent extends Student {

String homeCountry;

public ForeignExchangeStudent (String _familyName, String _givenName,

String _id, String country) {
super (_familyName, _givenName, _id);
this.homeCountry = country;
}
@0verride

public String toString() {
return super.toString() + ", from," + this.homeCountry;

}
}

OOP with Java Thomas Weise

9/26

A Person Reader

Listing: Person Reader in package cn.edu.

package cn.edu.hfuu.iao.io;

public class PersonReader {

public PersonReader (){
}

public cn.edu.hfuu.iao.person.Person read(java.util.Scanner scanner) {
System.err.println("Enter person's,family name:");

String familyName = scanner.nextLine();
System.err.println("Enter_ person's,given name:");
String givenName = scanner.nextLine();

return new cn.edu.hfuu.iao.person.Person(familyName, givenName);

OOP with Java Thomas Weise 10/26

A Professor Reader

Professor Reader in package cn.edu.

package cn.edu.hfuu.iao.io;

import java.util.Scanner;

import cn.edu.hfuu.iao.person.Professor;

public class ProfessorReader extends PersonReader {

public ProfessorReader (){
}

@Override

public Professor read(Scanner scanner) {
System.err.println("Enter_ professor's, family name:");
String familyName = scanner.nextLine();
System.err.println("Enter professor's,given name:");
String givenName = scanner.nextLine();

return new Professor(familyName, givenName);

N
-
=

Bt == L.
with~Java Fhomas-Werse

A Student Reader

Reader in package cn.edu.

package cn.edu.hfuu.iao.io;
import java.util.Scanner;

import cn.edu.hfuu.iao.person.Student;

public class StudentReader extends PersonReader {

public StudentReader (){
}

@0verride
public Student read(Scanner scanner) {
System.err. println(" Enterystudent 'syfamily name: o) g

String familyName = scanner.nextLine();
System.err.println("Enter student's,given name:");
String givenName = scanner.nextLine();
System.err.println("Enter student's, ID:");

String id = scanner.nextLine();

return new Student(familyName, givenName, id);

OOP with Java Thomas Weise 12/26

A Foreign Exchange Student Reader

Listing: Forei i cn.edu.hfuu

package cn.edu.hfuu.iao.io;
import java.util.Scanner;

import cn.edu.hfuu.iao.person.ForeignExchangeStudent;

public class ForeignExchangeStudentReader extends PersonReader {

public ForeignExchangeStudentReader (){
}

@Override

public ForeignExchangeStudent read(Scanner scanner) {
System.err.println("Enter exchange student's, family name:");
String familyName = scanner.nextLine();
System.err.println("Enter exchange, student's, given name:");
String givenName = scanner.nextLine();
System.err.println("Enter exchange,student's ID:");
String id = scanner.nextLine();
System.err.println("Enter exchange student's home,country:");
String country = scanner.nextLine();

return new ForeignExchangeStudent(familyName, givenName, id,

OORawibh

13426

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

e Here | print the classes again to refresh your memory

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

e Here | print the classes again to refresh your memory

e Ok, memory refreshed. We have eight classes in two packages.

Creating a Library %}

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

e Here | print the classes again to refresh your memory
e Ok, memory refreshed. We have eight classes in two packages.

e Let's say that these are classes needed by several applications in our
enterprise, including the software of the human resources department
and the financial department

OOP with Java Thomas Weise 14/26

Creating a Library §\

o Let's revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

e Here | print the classes again to refresh your memory
e Ok, memory refreshed. We have eight classes in two packages.

e Let's say that these are classes needed by several applications in our
enterprise, including the software of the human resources department
and the financial department

e Thus, we want to put them into a library which can be shared among
these applications

OOP with Java Thomas Weise 14/26

e Let's make a new Eclipse project called person_library and put all
the code in there

person. jar

SR HTO-U-F O ISE A (RS B8 SR
Quick Access ; :5 @ﬁ‘ k-

[# Package Explorer % h: Type Hierarchy = g = 7

E@ s -
» &% > javaExamples [javaExamples master]
&> src
~ 83 > cn.edu.hfuu.iao
> >io
* [ForeignExchangeStudentReader.java
» [PersonReaderjava
¥ [13 ProfessorReader java
» [StudentReader.java
~§; >person
* [ForeignExchangeStudent.java
» [53 Person.java
¥ [} Professor.java
» [} Student.java
* @i JRE System Library [java-8-openjdk-amd64]
% .classpath
[.gitignore

[% .project - y
(% Prob @ Java [Decl <" Sear ‘Elconsm SgProg #sDeb = O
X% RHEEE 20~

<terminated> IterableTest [Java Application] /usr/lib/jvm/java-8-openjdk-amde¢
Hello World! It's me your teacher.

BrbEi™ o>nm

person_library

e Let's make a new Eclipse project called person_library and put all
the code in there

e We then choose Export from the File menu

Creating the person.jar | Library

New
Open File...
Open Projects from File System...

Move...

g Rename...

& Refresh

Convert Line Delimiters To

Switch Workspace
Restart

vy Import...

Properties

1 make_linux.sh [javaExamples/...]

2make_linux.sh [javaExamples/lessons] -
= @ B o B =
3README.md [javaExamples/lessons] [£l Prob @ Java [Decl < Sear [Cons % &jProg % Deb (=]

4README.md [javaExamples/lessons/...] i X% EHE2EEE 8-y

Exit <terminated> IterableTest [Java Application] /usr/lib/jvm/java-8-openjdk-amde

Hello World! Tt's me your teacher.

person_library

OOP with Java Thomas Weise 15/26

e Let's make a new Eclipse project called person_library and put all
the code in there
e We then choose Export from the File menu

e In the export wizzard, we choose Java and then JAR file and press

Next

Select

Export resources into a JAR file on the local file system. ﬁ

Select an export wizard:

type filter text @
(]

» = General
* = Install
~izJava
@] Javadoc
JHRunnable JAR file
* =Run/Debug
¥ = Tasks
¥ = Team
P XML

@ | <Back \[N'extﬁ I | cancel \ | Finish

Let's make a new Eclipse project called person_library and put all
the code in there

We then choose Export from the File menu

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

person. jar

JA

Expo
JAR File Specification
@ The export destination will be relative to your workspace. ‘D

Select the resources to export:
|~ @& person _library |

3 8 cn.edu.hfuu.iao.ic
3 # cn.edu.hfuu.iae.persen

Export generated class files and resources
[Export all output Folders for checked projects
(7 Export Java source files and resources.

[Export refactorings for checked projects.Select refactorings..

Select the export destination:

JARfile: [braries and_executables/person_user/libs/personjar ~ || Browse...

Options:
Compress the contents of the JAR file
(") Add directory entries

(") overwrite existing files without warning

@

[<Back | Neg> || cancel | [Finish)

person.jar‘

Let's make a new Eclipse project called person_library and put all
the code in there

We then choose Export from the File menu

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it person.jar and hit

0K

person. jar

Name: |[TEESNLjar

)

@ Home
[Desktop
[program

& oppPO

[seafile

+

Other Locatio...

|4 java | j | lessons | 26 libraries_and_executables | person_user libs| | =)
Name ~ size Modified
[@ person jar 6.4kB 15:21

L jar;*.2ip v “

o | (o)

Creating the person.jar Library %\
IAG>

Let's make a new Eclipse project called person_library and put all
the code in there

We then choose Export from the File menu

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it person.jar and hit

0K

Back in the previous screen, we mark our code folders and click Next
(well, we could as well click Finish now...)

OOP with Java Thomas Weise 15/26

person. jar

JA

Expo
JAR File Specification
@ The export destination will be relative to your workspace. ‘D

Select the resources to export:
|~ @& person _library |

3 8 cn.edu.hfuu.iao.ic
3 # cn.edu.hfuu.iae.persen

Export generated class files and resources
[Export all output Folders for checked projects
(7 Export Java source files and resources.

[Export refactorings for checked projects.Select refactorings..

Select the export destination:

JARfile: [braries and_executables/person_user/libs/personjar ~ || Browse...

Options:
Compress the contents of the JAR file
(") Add directory entries

(") overwrite existing files without warning

@

[<Back | Neg> || cancel | [Finish)

Creating the person.jar | Library §
IAG>

Let's make a new Eclipse project called person_library and put all
the code in there

We then choose Export from the File menu

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it person.jar and hit

0K

Back in the previous screen, we mark our code folders and click Next
(well, we could as well click Finish now...)

We click Next

OOP with Java Thomas Weise 15/26

JAR Packaging Options

Define the options for the JAR export.

W=
Select options for handling problems:
Export class files with compile errors

Export class files with compile warnings

_| Create source folder structure
¥ Build projects if not built automatically

(7) save the description of this JAR in the workspace

Description file: |

|| Browse..

[<Back

[wext>)| cancel ||

Finish J

Creating the person.jar | Library

”

>
<

e Let's make a new Eclipse project called person_library and put all
the code in there

e We then choose Export from the File menu

e In the export wizzard, we choose Java and then JAR file and press
Next

e In the next screen, we hit the Browse button

e We choose a nice destination for our library call it person.jar and hit
0K

e Back in the previous screen, we mark our code folders and click Next
(well, we could as well click Finish now...)

e We click Next

e We click Finish and the jar archive will be created

OOP with Java Thomas Weise 15/26

JAR Manifest Specification
Customize the manifest file For the JAR file. ‘D

‘Specify the manifest:
© Generate the manifest file

("] save the manifest in the workspace

([l Use the saved manifest in the generated JAR description file

Manifest File: | || Browse...

) Use existing manifest from workspace

Manifest file: | || Browse..

Seal contents:

© sealthe AR JARsealed |

() seal some packages

Select the class of the application entry point:

Mainglass:[M Browse... J

@ [<Back | mext> |[cancel |[_Fish |

Creating the person.jar | Library

”

>
<

e Let's make a new Eclipse project called person_library and put all
the code in there

e We then choose Export from the File menu

e In the export wizzard, we choose Java and then JAR file and press
Next

e In the next screen, we hit the Browse button

e We choose a nice destination for our library call it person.jar and hit
0K

e Back in the previous screen, we mark our code folders and click Next
(well, we could as well click Finish now...)

o We click Next
e We click Finish and the jar archive will be created

e and we are done. ..

OOP with Java Thomas Weise 15/26

e Let us now confirm that the generated file person.jar is actually a

“special” =zip archive

Checking the person.jar Library

Recent Name ~ Size

Home #5 person iar 6.4kB Archive 15:21

Desktop
Trash

Network

Computer

OPPO

>

Seafile

Connect to Server

Type Modified

“person.jar” selected (6.4 kB)

OOP with Java Thomas Weise

16/26

e Let us now confirm that the generated file person.jar is actually a
“special” =zip archive

e Under Ubuntu Linux, we therefore can open it with the Archive
Manager

Checking the person.jar Library

tables

person_user libs

Recent
Home
Desktop
Trash

Network

Computer

OPPO
Seafile

Connect to Server

Move to Trash

Email...
Extract Here

Properties

L3
% Archive Mounter

Other Applicati

“person.jar” selected (6.4 kB)

OOP with Java

Thomas Weise 16/26

e Let us now confirm that the generated file person.jar is actually a
“special” =zip archive

e Under Ubuntu Linux, we therefore can open it with the Archive
Manager

e Tada, it opens as archive, with some special folder (for the Manifest,
let's ignore this)

person. jar ‘

e Let us now confirm that the generated file person.jar is actually a
“special” zip archive

e Under Ubuntu Linux, we therefore can open it with the Archive
Manager

e Tada, it opens as archive, with some special folder (for the Manifest,
let's ignore this)

e But the folder structure in the archive perfectly reflects our package
hierarchy

Checking the person.jar Library %\’

person.jar

Extract =+

<|> || @] Location: (E,f [

[META-INF 39 bytes e
i .classpath 226 bytes ut
i | -gitignore 6 bytes ul
:-;__ .project 373 bytes u

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

person.jar

Extract =+

<> |fr| Location: [G /ey

OOP with Java Thomas Weise

16/26

Checking the person.jar Library

person.jar

Extract =+

<> |fr| Location: [G /cn/edu/

OOP with Java Thomas Weise

16/26

Checking the person.jar Library

person.jar

Extract =+

<> |fr| Location: [B /cn/edu/hfuu/

OOP with Java Thomas Weise

16/26

Checking the person.jar Library

person.jar

Extract =+

< > ||/ Location: ([/cn/edu/hfuufiao/

OOP with Java Thomas Weise

16/26

Checking the person.jar | Library %\
IAG>

e Let us now confirm that the generated file person.jar is actually a
“special” =zip archive

e Under Ubuntu Linux, we therefore can open it with the Archive
Manager

e Tada, it opens as archive, with some special folder (for the Manifest,
let's ignore this)

e But the folder structure in the archive perfectly reflects our package
hierarchy

e And the folder cn/edu/hfuu/iao/person includes the compiled class
files for the Person -related classes

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

person.jar

Extract =+

< > ||/ Location: W Jenfedu/hfuu/iac/person/
Name
3| ForeignExchangeStudent.class
| Person.class
=] Professor.class
2| Student.class

e

Size

996 bytes
866 bytes
688 bytes
792 bytes

Ji
Ji
Je
Ji

OOP with Java Thomas Weise

16/26

Checking the person.jar | Library %\

1AQ

e Let us now confirm that the generated file person.jar is actually a
“special” =zip archive

e Under Ubuntu Linux, we therefore can open it with the Archive
Manager

e Tada, it opens as archive, with some special folder (for the Manifest,
let's ignore this)

e But the folder structure in the archive perfectly reflects our package
hierarchy

e And the folder cn/edu/hfuu/iao/person includes the compiled class
files for the Person -related classes

e Cool, so now we have our library and it actually is a handy archive of
all the necessary stuff in one single file

OOP with Java Thomas Weise 16/26

e We now want to use our library in our code

e We now want to use our library in our code

e Our main application shall be the same as in Lesson 17: Packages
and import

A Main class using our Person classes }\o

Listi A Main class using our Person classes

import java.util.Scanner;

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader;
import cn.edu.hfuu.iao.io.PersonReader;

import cn.edu.hfuu.iao.io.ProfessorReader;

import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

public class Main {

public static void main(Stringl[] args) {
PersonReader reader;
Scanner scanner = new Scanner (System.in);

System.err.println("Do,you,want, to,read,(p)rofessors, (s)tudents, or,(e)change, students: ") ;

switch (scanner.nextLine().charAt(0)) {

case 'p': { reader = new ProfessorReader(); break; }
case 's': { reader = new StudentReader (); break; }
default: { reader = new ForeignExchangeStudentReader (); break; }
3
for (5;) {
Person person = reader.read(scanner);
System.out.println("You, entered: " + person);
System.out.println("Type,enter, to,continue, Ctrl-D to exit.");
if (scanner.hasNextLine()) {
scanner.nextLine () ;
continue;
&
return;
b3
}
— —

OOP with Java Thomas Weise 18/26

e We now want to use our library in our code
e Our main application shall be the same as in Lesson 17: Packages
and import

e We now want to use our library in our code

e Our main application shall be the same as in Lesson 17: Packages
and import

e We create a new Eclipse project person_user and copy our Main
class there

We now want to use our library in our code
Our main application shall be the same as in Lesson 17: Packages
and import

We create a new Eclipse project person_user and copy our Main
class there

Sadly, it won't compile, because now it misses all the required
Person -related code

Using a Library

javaExamples - Java - person_user/src/Main.java - Eclipse

= - tS = [Quick Access | || g2 &
H Packag 52 Tg TypeHl = 8 | & Main.java 2 =]
B g - % 1=import java.util.Scanner; // import class Scanner from the java
2 =
vy 3 import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impol
+ &> person_library [javaExamples n| 4 import cn.edu.hfuu.iao.io.PersonReader; // and =
~f2 > person_user [javaExamples ma 5 import cn.edu.hfuu.iao.io.ProfessorReader; o
viEesrc 6 import cn.edu.hfuu.iac.io.StudentReader;
~&1 > (default package) "] ; import cn edu.hfuu.iao.person.Person;
PR Mainjava 9 /** testing our package structure */
E System Library [java-8-oper|| 16 public class Main {
% .classpath 11= /** The main routine reading person records of a certain type™
= .gitignore 12 * (@param args we ignore this parameter */
% .project 13 publ:u: static void main(String[] args) {
s w14 PersonReader reader;
15 Scanner scanner = new Scanner(System.in); // create a struc=
16 s
17 System.err.println("Do you want to read (p)rofessors, (s)tu
18
19 switch (scanner.nextLine().charAt(@)) { // check the first o
w20 case 'p': { reader = new ?_fufes_ggmrﬁeadewr(], break; } //
@2l case 's': { reader = new H break; } // s
Gh22 default: { reader = new FurelgnEx~ geStudentRegger(),
23
24
25 for (;;) { // loop forever, see loop condition at bottom of
w2 Person person = reader.read(scanner); // use the person r

javaExamples

Svstem. naut . nrintln("Ynu entered: " + nersnnl: // nrint ne

2*

]

HFEWHE o

We now want to use our library in our code

Our main application shall be the same as in Lesson 17: Packages
and tmport

We create a new Eclipse project person_user and copy our Main
class there

Sadly, it won't compile, because now it misses all the required
Person -related code

Let's fix this.

We now want to use our library in our code

Our main application shall be the same as in Lesson 17: Packages
and import

We create a new Eclipse project person_user and copy our Main
class there

Sadly, it won't compile, because now it misses all the required
Person -related code

Let's fix this.

First, we create a new folder 1ibs in our project to store all the
libraries needed

Using a Library

- > X5 (o v - 5 @B %

[2 Packag = | TypeHi = O | &) Mainjava 22 =0 5

= | 1=import java.util.Scanner; // import class Scanner from the java =

o | ool e
* iy > javaExamples nplesr import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impo_

person_libral 4 4 import cn.edu.hfuu.iao.io.PersonReader; // and = &

' - import cn.edu.hfuu.iao.io.ProfessorReader:; =

&> src # JavaProject =)

-2 > (default pa el W Project... =

* & Main java Open in New Window Package =

Open Type Hierarchy
Show In

Class
Interface
Enum

of a certain type”

[% .project Copy
Copy Qualified Name
Paste
Delete

Annotation
Source Folder /{ create a struc®

n2GMm3aR

Java Working Set
File check the

p)rofessors, (s)tu

= 5 first =
Build path B Untitled Text File 'E); breaki % ;’: I;
Source B Junit Test Case e (');
Refactor ' Task)
3 Import... W Example... ition at bottom of
s Export... t 1k
" oo i e rec=e
— W Refresh i :)

person_user

Close Project

Folder

Folder
Create a new Folder resource. ﬁ

Enter or select the parent folder:

[persuniuser]

B oo

» 5> javaExamples [javaExamples master]
v &' > person_library [javaExamples master]
person_user [j

= bin
Ey>src

Folder name: (libs }

| Advanced »> |

@ | Cancel J l_L(fnish]

H

Using a Library

javaExamples - Java - person_user/src/Mai

java - Eclipse

0] Hils 3 k I

: > | vt -

.H Packag 2 ;Tg TypeHi = 0O
BE =

» (& > javaExamples [javaExamples m
+ &> person_library [javaExamples n|
~f5i > person_user [javaExamples ma
g >src
i > (default package)
» &4 Main.java
» @i JRE System Library [java-8-oper

classpath
=3 .gitignore
[.project

libs - person_user

& Main.java 2

18

SR H-0~-QA- WO &S

¥

| Quick Access ||| g% -@‘ g

g8

import java.util.Scanner; // import class Scanner from the java
import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impol
import cn.edu.hfuu.iao.io.PersonReader; / and =
import cn.edu.hfuu.iao.io.ProfessorReader; o
import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

/** testing our package structure */
public class Main {
/** The main routine reading person records of a certain type™
* (@param args we ignore this parameter */
public static void main(String[] args) {
PersonReader reader;
new Scanner(System.in); // create a struc®

Scanner scanner
System.err.println("Do you want to read (p)rofessors, (S)tuEI

switch (scanner.nextLine().charAt(@)) { // check the first o

case 'p': { reader = new ProfessorReader(); break; } // p
case 's': { reader = new S \eader(); break; } // s
default: { reader = new ForeignExchangeStudentReader();

for (;;) { // loop forever, see loop condition at bottom of
Person person = reader.read(scanner); // use the person r
Svstem. naut . nrintln("Ynu entered: " + nersnnl: // nrint ne

o

| 24 @

Using a Library %}

e We now want to use our library in our code

e Our main application shall be the same as in Lesson 17: Packages
and tmport

e We create a new Eclipse project person_user and copy our Main
class there

e Sadly, it won't compile, because now it misses all the required
Person -related code

o Let's fix this.

e First, we create a new folder 1ibs in our project to store all the
libraries needed

e Then we copy our library person.jar into this folder

OOP with Java Thomas Weise 19/26

Using a Library %\’

tmp xyz
® Recent .
4 Home
n.je T . % = —
[Desktop B open With OpenJDK Java 8 Runtime
@ Trash
@ Network
[E computer
Move To...
-
B 10PFO) = Copy To...
[Seafile Make Link
Rename...
B connect to Server Delete

Email...
Extract Here

Properties

“person.jar” selected (6.4 kB)

OOP with Java Thomas Weise 19/26

Using a Library

ain.java &2 = B

=import java.util.Scanner; // import class Scanner from the java

=

> person_library [j

2 import cn.edu.hfuu.iao.io.PersonReader; // and =
| ~k5¢ > person_user [javaExamples ma||s#

A

#H

import cn.edu.hfuu.iao.io.ProfessorReader; ol
import cn.edu.hfuu.iao.io.StudentReader;
import cn.edu.hfuu.iao.person.Person;

M
L
2
1 3 import cn.edu.hfuu.iac.io.ForeignExchangeStudentReader; // impol
1 3
5
6

g >src
i > (default package)
» &4 Main.java

/** testing our package structure */
» B JRE System Library [java-8-oper|| 18

public class Main {
X The p routine reading person records of a certain type™
[llros we ignore this parameter */
c void main(String[] args) {
er reader;
ianner = new Scanner(System.in); // create a struc®

| I
= New

Open in New Window

% project

.println("Do you want to read (p)rofessors, (s)tuEI

anner.nextLine().charAt(0)) { // check the first o

{ reader = new ProfessorReader(); break; } // p
{ reader = new S Y: break; } // s
{ reader = new ForeignExchangeStudentReader();

Build Path
Refactor [// loop forever, see loop condition at bottom of
lerson = reader.read(scanner); // use the person r

Imporkt... .
B he ut nrintin("Yon entered: " + nersonl: // nrinf ne

B E ® %

FH @y Ee B

Using a Library

javaExamples - Java - person_user/src/Main.java - Eclipse

=@ <

1=
2

» & > javaExamples [javaExamples m 3
+ &> person_library [javaExamples n| 4
i > person_user [javaExamples ma|| @ 3
g >src 6

i > (default package) & ;

» &4 Main.java 9
» B JRE System Library [java-8-oper|| 10

tignore
% .project iﬁ

person.jar - person_userflibs

. I# Packag = ;Tg TypeHi = 8 Qj Main.java 22

R HE-O-R- O &S

A > F

| Quick Access |} 1% (B &

= B

import java.util.Scanner; // import class Scanner from the java

=

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impol

import cn.edu.hfuu.iao.io.PersonReader;
import c
import
import cn.edu.hfuu.iao.person.Person;

/** testing our package structure */
public class Main {

.edu.hfuu.iao.io.ProfessorReader;
cn.edu.hfuu.iao.io.StudentReader;

/ and =

=

/** The main routine reading person records of a certain type™
* (@param args we ignore this parameter */
public static void main(String[] args) {

PersonReader reader;

Scanner scanner = new Scanner(System.in); // create a struc®

System.err.println("Do you want to read (p)rofessors, (S)tuEI

switch (scanner.nextline().charAt(@)) { // check the first =

case 'p': { reader
case 's': { reader
default: { reader

o

H W
Y /s

new F gnExc angeStudentReader()

for (;;) { // loop forever, see loop condition at bottom of
Person person = reader.read(scanner); // use the person r

Svstem nut nrintini"Ynn entered:

+ nersnnl:

// _nrint_ne

Using a Library %\

We now want to use our library in our code

Our main application shall be the same as in Lesson 17: Packages
and tmport

We create a new Eclipse project person_user and copy our Main
class there

Sadly, it won't compile, because now it misses all the required
Person -related code

Let’s fix this.

First, we create a new folder 1ibs in our project to store all the
libraries needed

Then we copy our library person.jar into this folder

We now right-click our project and select Properties

OOP with Java Thomas Weise 19/26

Using a Library

javaExample:
Y 9 v
v & v - Qui B B+
it Packag % |%: TypeHi = B | & Mainjava 2 = |

1-import java.util.Scanner; // inport class Scamer from the java | g

i 3 import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impos “"

@ 4 mport c edu hfuu.iao.io.PersonReader; // and =|| &

on_user .iao.i0.ProfessorReader; = &
~@>src w B.120.i0. StudentReader; =g
~dit > (default paj . iao.person.Person; =l 5
* & Main java 0 Kage structure */ £

"';:5 REREL Open Type Hierarchy
~libs

Sheuln ine reading person records of a certain type
Ryperson.jar e e ignore this parameter *
% classpath B Copy fid main(String[] args) {
[.gitignore M CopyQualified Name a=
% .project B Paste

Delete tin("Do you want to read (p)rofessors, (s)tu

new Scanner (System.in); // create a struc

.nextLine().charAt(6)) { // check the first
Build Path ew Profes: (); break; } // p=
Source StudentReader(); break; } // s=
Refactor hangeStudentReader(); =

import.. oop forever, see loop condition at bottom of
Export. reader.read(scanner); // use the person re
w : " + person); // print pe
intln("Type enter to continue, Ctrl-D to exi
asNextLine()) { // if user pressed enter
Unrelated Projects tLine(); // we read the line and cont
n Working Sets. // and do another iteration
// if she instead pressed Ct
// no next line and we exit

Restore from Local History.

Team
Compare With
Replace With
Configure

person_user

OOP with Java Thomas Weise 19/26

Using a Library

”

1AQ

e Our main application shall be the same as in Lesson 17: Packages
and tmport

e We create a new Eclipse project person_user and copy our Main
class there

e Sadly, it won't compile, because now it misses all the required
Person -related code

e Let's fix this.

e First, we create a new folder 1ibs in our project to store all the
libraries needed

e Then we copy our library person.jar into this folder

e We now right-click our project and select Properties

e We choose Java Build Path , then Libraries , then click
Add JARs...

OOP with Java Thomas Weise 19/26

typefiltertext & Java Build Path

' Resource
Builders
Git

¥ Java Code Style

» Java Compiler

* Java Editor
Javadoc Location
Project References
Refactoring History
Run/Debug Settings

+ Task Repository
Task Tags

» Validation
WikiText

G wvh v w

MSource | EProjects | miLibraries | %:-Order and Export

JARs and class Folders on the build path:
» B\, JRE System Library [java-8-openjdk-amd64]

l Add JARS... |
E— . —
AddExternal JARs... |

(Add Variable... |

Add Library... |
| AddclassFolder.. |

| Add External Class Folder... |

Edit...

Remave

Migrate JARFile... |

| Apply

cancel || oK

Using a Library

”

>
<

e We create a new Eclipse project person_user and copy our Main
class there

e Sadly, it won't compile, because now it misses all the required
Person -related code

e Let's fix this.

e First, we create a new folder 1ibs in our project to store all the
libraries needed

e Then we copy our library person.jar into this folder

e We now right-click our project and select Properties

e We choose Java Build Path , then Libraries , then click
Add JARs...

e We choose person.jar in the 1ibs folder of our project and click

0K

OOP with Java Thomas Weise 19/26

Choose the archives to be added to the build path:

type Filter text @&
[)

» = javaExamples

» & person_library

== person_user

b E=bin

@& libs

FEsrc
¥ .classpath
.gitignore
¥ .project

S

|. Cancel J [QK

Using a Library %}

e Sadly, it won't compile, because now it misses all the required
Person -related code

Let’s fix this.

First, we create a new folder 1ibs in our project to store all the
libraries needed

Then we copy our library person.jar into this folder

We now right-click our project and select Properties

We choose Java Build Path , then Libraries , then click

Add JARs...

We choose person.jar in the 1ibs folder of our project and click

0K
We click ok

OOP with Java Thomas Weise 19/26

typefiltertext & Java Build Path

' Resource
Builders
Git

¥ Java Code Style

» Java Compiler

* Java Editor
Javadoc Location
Project References
Refactoring History
Run/Debug Settings

+ Task Repository
Task Tags

» Validation
WikiText

G wvh v w

MSource | EProjects | miLibraries | %:-Order and Export

JARs and class Folders on the build path:

« & person.jar - person_user/libs
» ®\, JRE System Library [java-8-openjdk-amd64]

Add JARs...]

AddExternal JARs... |

(Add variable... |

(Add Library... |
| AddclassFolder.. |

| Add External Class Folder... |

Edit...
\' Remove

Migrate JARFile... |

| Apply

cancel | I oK\]

Using a Library %}

e Let's fix this.

e First, we create a new folder 1ibs in our project to store all the
libraries needed

e Then we copy our library person.jar into this folder

e We now right-click our project and select Properties

e We choose Java Build Path , then Libraries , then click
Add JARs...

e We choose person.jar in the 1ibs folder of our project and click
OK

e We click ok

e And our project compiles, the compiler errors disappear.

OOP with Java Thomas Weise 19/26

Using a Library

javaExamples - Java - person_user/src/Main.java - Eclipse

]

g

e

[=RE="

»(5; > javaExamples [javaExamples m
r(=}> person_library [javaExamples n

> (default package)

I8 Main.java
» B JRE System Library [java-8-oper
» i Referenced Libraries
~ylibs

h|person.jar
.classpath
.gitignore
.project

| Quick A((ESS-: i -@‘
i = 8 1] Main._java £ = |
= | - 1=import java.util.Scanner; // import class Scanner from the javd
: 1
import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impq
import cn.edu.hfuu.iao.io.PersonReader; // and}
import cn.edu.hfuu.iao.io.ProfessorReader;
import cn.edu.hfuu.iao.io.StudentReader;
import cn.edu.hfuu.iao.person.Person;
/** testing our package structure */

public class Main {
/** The main routine reading person records of a certain typq
* (@param args we ignore this parameter */
publ:u: static void main(String[] args) {
PersonReader reader;
Scanner scanner = new Scanner(System.in); // create a strud

System.err.println("Do you want to read (p)rofessors, (s)ty

switch (scanner.nextLine().charAt(8)) { // check the first|
case 'p': { reader = new ProfessorReader(); break; } //
case 's': { reader = new StudentReader(); break; } // §
default: { reader = new ForeignExchangeStudentReader();

o

for (;;) { // loop forever, see loop condition at bottom of
Person person = reader.read(scanner); use the person r
System.out.println("You entered: " + person); // print pe
System.out.println("Type enter to continue, Ctrl-D to exi

"

#A WM F R

Using a Library %0‘

e First, we create a new folder 1ibs in our project to store all the
libraries needed

e Then we copy our library person.jar into this folder

e We now right-click our project and select Properties

e We choose Java Build Path , then Libraries , then click
Add JARs...

e We choose person.jar in the 1ibs folder of our project and click
OK

e We click ok

e And our project compiles, the compiler errors disappear.

e We can now run it, and it will run beautifully

OOP with Java Thomas Weise 19/26

Using a Library

12 Packag 3¢|% TypeHi = O

Main java 33 =
import java.util.Scanner; // import class Scanner from the java | s

Gy > javaExamples [jav
> person_library [javaExamples n
person_user [javaExamples ma

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // impc
import cn.edu.hfuu.iao.io.PersonReader; /7 and
i -hfuu.iao.io.ProfessorReader;

import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

BN U W
-
5
3
3
-
a
S
K
&
g

#FI DS E

Y our package structure */

ks Main

bin routine reading person records of a certain type
args we ignore this parameter */

ic void main(String[] args) {

pader reader;

scanner = new Scanner(System.in); // create a struc

rr.println("Do you want to read (p)rofessors, (s)tu

anner.nextLine().charAt(0)) { // check the first
Delate : { reader = new ProfessorReader(); break; } // p
new StudentReader(); break; } // s
new ForeignExchangeStudentReader () ;
Build Path
S) { // loop forever, see loop condition at bottom of
Refactor person = reader.read(scanner); // use the person r
.out.println("You entered: " + person); // print pe
.out.println("Type enter to continue, Ctrl-D to exi
s Export... anner.hasNextLine()) { // if user pressed enter
ner.nextLine(); // we read the line and cont
inue; // and do another iteration
Declarations // if she instead pressed Ct
7/ no next line and we exit

3 Import.

References
& Refresh
Assign Working Sets...
————————————
RunAs 57\ {JavaApplication |
Debughs > Rup Configurations..
validate
Restore from Local History...
Team
Compare With
Replace With

Main java

OOP with Java

1nomas vveise 19/26

= -

-2 H"E_S’ #‘-'0 Q‘EG BB’{“? 49

| Quick Access | i‘ i3 m oA

18 Packag 2 I TypeHi = O

[¥] proble @ Javad [E Declar 4 Search [E Consol S‘iw =3 Progre 13 Debug =

B ¢ =
» (& > javaExamples [javaExamples m
+ &> person_library [javaExamples n
~ 4% > person_user [javaExamples ma
B> src
~ i3 > (default package)
X Main.java
* @ JRE System Library [java-8-oper
» i Referenced Libraries
>3 libs
person.jar
[.classpath
[.gitignore
[#% .project

‘| main (1) [Java Application] /usr/lib/jvmfjava-8-openjdk-amd64/bin/java (Feb 10, 2017, 4|
; po you want to resd (p)rofessors, (s)tudents, or (e)change students:

BX% BREEE mI-0-

(FaBaFoEe

case 's’': { reader = new StudentHeader(); breakK; } // s
default: { reader = new ForeignExchangeStudentReader(); J
1

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

Using Libraries outside Eclipse %\

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %}

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

o Compilation (under Linux)

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %}

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be

in the classpath, the place where Java looks for classes
e Compilation (under Linux):
@ open your terminal, cd into src folder

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %0\,

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

e Compilation (under Linux):

@ open your terminal, cd into src folder
® type in javac -d ../bin -cp .:../libs/person.jar Main.java and
press return

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %0\,

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be

in the classpath, the place where Java looks for classes
e Compilation (under Linux):
@ open your terminal, cd into src folder

® type in javac -d ../bin -cp .:../libs/person.jar Main.java and
press return
® explanation: the -d ../bin tells the compiler to put the .class files

into the bin folder, the -cp .:../libs/person.jar tells the
compiler that the library person.jar is part of the classpath, i.e., can

be used to look up classes, Main.java is the class to compile

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %}

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

o Compilation (under Linux)

¢ Execution (under Linux)

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %\

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

o Compilation (under Linux)

e Execution (under Linux):
@ open your terminal, cd into bin folder

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse %\

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

o Compilation (under Linux)

e Execution (under Linux):

@ open your terminal, cd into bin folder
® type in java -cp .:../libs/person.jar Main and press return

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

”

1AQ

e But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

e Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder 1ib containing our person.jar
library

e To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

o Compilation (under Linux)

e Execution (under Linux):

@ open your terminal, cd into bin folder
® type in java -cp .:../libs/person.jar Main and press return

® explanation: the -cp .:../libs/person.jar tells the compiler that
the library person.jar is part of the classpath, i.e., can be used to

look up classes, Main is the class to execute

OOP with Java Thomas Weise 20/26

e Executable jar archives are just the same as normal jar archives

e Executable jar archives are just the same as normal jar archives

e With the small difference that their manifest specifies a main class

e Executable jar archives are just the same as normal jar archives
e With the small difference that their manifest specifies a main class

e Let us now make an executable out of our simple vertical ball throw
example from Lesson 6: Console 1/0

Vertical Ball Throw with Console 1/0

Vertical Ball Throw with Console |

import java.util.Scanner;

public class VerticalBallThrow {

public static final void main(String[] args) {

try (Scanner scanner = new Scanner (System.in)) {
System.err.println("Enter size x0,0f personinym:");
double x0 = scanner.nextDouble();
System.err.println("Enter initial upward, velocity,v0,o0f ball, in m/s:");
double v0 = scanner.nextDouble();

double g = 9.80665d;
System.err.println("Enter time ty ings:");
double t = scanner.nextDouble();

double xt = x0 + (vO*t) - 0.5d*gktxt;
System.out.println((xt > 0d) ? xt : 0d);

OOP with Java Thomas Weise 22/26

o We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

xamples - Java -

vertical_ball_throw/src/VerticalBallTh

va - Eclipse

iR-WEi= oD e

v G .

2| BRI A0 - B G- I®S AP A BE @
[k | 8 W2 .

1% Package ¢ |} TypeHi = 8
BB ¢ ~

» (55> javaExamples [javaExamples mas

* (& person_library [javaExamples mast

» Zperson_user [javaExamples masker

~ig3>vertical_ball_throw [javaExample

(@ >src
~ f# > (default package)

I >VerticalBallThrow.java
» B JRE System Library [java-8-0 d
% .classpath
[.gitignore
[> .project
[E make_linux.sh

1) VerticalBallThrow java 2 = a

1 import java.util.Scanner;
2

3.,/**

4 * A ball is thrown vertically upwards into the air by a “x_Gm’
5 * with velocity "v_@m/s’. Where is it after "t° seconds?

6 *'x(t) =x8 +v O - 8.5*g* 12

T

tal

8 public class VerticalBallThrow {

9
10=
11
12

/** The main routine
* @param args
* we ignore this parameter for now */

public static final void main(String[] args) {

14 try(Scanner scanner = new Scanner(System.in)) { // initiate rea
15 System.err.println("Enter size x@ of personin m:"); //3SNON-NL
16 double x0 = scanner.nextDouble(); // read initial vertical pe
17 System.err.println("Enter initial upward velocity v@ of ball
18 double v@ = scanner.nextDouble(); // read initial velocity up
19 double g = 9.80665d; // free fall acceleration downwards

20 System.err.println("Enter time t in s5:"); //$NON-NLS-1$

double t = scanner.nextDouble(); // read the time t
double xt = x0 + (vO*t) - 0.5d*g*t*t; // "x(t) = x 0 + v 0*t
System.out.println((xt > ed) ? xt : @d); // prints result and

o We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it
e We again right-click on the project and then click Export...

Making an Executable JAR Archive %\’

= - G = QuickAccess | }| B B & 4

e Package 2 ‘Tg TypeHie = B | [J VerticalBallThrow.java 5% = g -
=) - 1 import java.util.Scanner; [

= 5 s

» 5> javaExamples [j 3o fAE !"
4 * A ball is thrown vertically upwards into the air by a “x 6m" tal B

5 * with velocity "v_6m/s’. Where is it after "t° seconds?
 &

6 * “x(t) =x0 +v 085 - 0.5 * g * 2 =

icalBallThrow { z

* [> VerticalBa inN R utine

y 4
B\ JRE System Liby Open Type

1% .classpath : N }gnare tlhis parameter for now */

B-gitignore Show In inal void main(String[] args) {))

i " " lcanner = new Scanner(System.in)) { // initiate rea
7 .proje_ct Copy println("Enter size x@ of personin m:"); //$NON-NL
Eimake_linux.sh Copy Qualified Name scanner.nextDouble(); // read initial vertical po

Pas println("Enter initial upward velocity v@ of ball
Delete scanner.nextDouble(); // read initial velocity up
= 9.80665d; // free fall acceleration downwards

' & println("Enter time t in s:"); //$NON-NLS-1$

Build Path PYscanner.nextDouble(); // read the time t

= X0 + (vO*t) - 0.5d*g*t*t; // "x(t) = x 0 + v 0%t
sou println((xt > 0d) ? xt : @d); // prints result and
Refactor

3 Import.

vertical _ball_throw

o We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it
e We again right-click on the project and then click Export...

e In the export wizzard, we choose Java and then JAR file and press
Next

Export resources into a JAR file on the local file system. ﬁ

Select an export wizard:
[type filter text @]

» = General
* = Install
~izJava
@] Javadoc
JHRunnable JAR file
* =Run/Debug
* = Tasks
¥ = Team
P XML

@ | <Back \[Next > d | cancel \ | Finish

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it
e We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next
In the next screen, we hit the Browse button

JAR Expo
JAR File Specification
Define which resources should be exported into the JAR. - D

Select the resources to export:

» ET@;:ers un_li’brary ‘

» [(& person_user
)

[¥ .classpath

"1 B .gitignore

Lt (7] [¥ .project

B B make_linux.sh

(default package)

Export generated class files and resources
[Export all output Folders for checked projects
(7 Export Java source files and resources.

[Export refactorings for checked projects.Select refactorings..

Select the export destination:

JARfile: [

~ || Browse.. |
)
Options:

Compress the contents of the JAR file
(") Add directory entries

(") overwrite existing files without warning

@ [<Back | mMext> |[cancel][Finish |

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

e We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar

and hit ox

Name: [

@ Home

[Desktop
[l program
b opPO (&

[Seafile

+ Other Locatio...|

[4 java j | lessons | 26_libraries_and_executal =)
Name 4 size Modified
@ bin 06:00

- sre 06:00

Making an Executable JAR Archive %ﬁ)’

e We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

e We again right-click on the project and then click Export. ..

e In the export wizzard, we choose Java and then JAR file and press
Next

e |n the next screen, we hit the Browse button

e We choose a nice destination for our library call it executable.jar
and hit 0x

e Back in the previous screen, we mark our code folders and click Next

OOP with Java Thomas Weise 23/26

JA

Expo

JAR File Specification

@ The export destination will be relative to your workspace. ‘D
Select the resources to export:
» /& person_library [¥ .classpath
» | person_user (71 B .gitignore
) | (71 [¥) .project

B B make_linux.sh

(default package)

Export generated class files and resources
[Export all output Folders for checked projects
(7 Export Java source files and resources.

[Export refactorings for checked projects.Select refactorings..

Select the export destination:

JAR file: []avaExamples/lessnns[zﬁjbrariesjndiexecutahles/' v} \ Browse...
Options:

Compress the contents of the JAR file
(") Add directory entries

(") overwrite existing files without warning

@ (

<Back | Next> | cancel || Finish |

Making an Executable JAR Archive %\’

1AQ2

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar
and hit 0x

Back in the previous screen, we mark our code folders and click Next
We click Next

OOP with Java Thomas Weise 23/26

JAR Packaging Options

Define the options for the JAR export.

W=
Select options for handling problems:
Export class files with compile errors

Export class files with compile warnings

_| Create source folder structure
¥ Build projects if not built automatically

(7) save the description of this JAR in the workspace

Description file: |

|| Browse..

[<Back

[next> N[cancel ||

Finish J

Making an Executable JAR Archive %0\‘

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow In it

We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar
and hit ok

Back in the previous screen, we mark our code folders and click Next
We click Next

We now need to select a Main class and therefore click Browse. ..
after the corresponding input field

OOP with Java Thomas Weise 23/26

JAR Expol
JAR Manifest Specification

Customize the manifest file For the JAR file. ‘D
‘Specify the manifest:
© Generate the manifest file

("] save the manifest in the workspace

([l Use the saved manifest in the generated JAR description file

Manifest File: | || Browse...

) Use existing manifest from workspace

Manifest file: | || Browse..
Seal contents:

© sealthe AR JARsealed | Details... |

() seal some packages [

Select the class of the application entry point:

Mainglass:[H Browse... 3\!

@ [<Back | wmext> |[cancel |[Finish |

Making an Executable JAR Archive %0‘

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow In it

We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar
and hit ok

Back in the previous screen, we mark our code folders and click Next
We click Next

We now need to select a Main class and therefore click Browse. ..
after the corresponding input field

We choose our class VerticalBallThrow in the next screen and click
0K

OOP with Java Thomas Weise 23/26

Select the class which is the application's entry point:

€ - VerticalBaliThrow

(default package) al ball throw/src

@ \ Cancel \[oK |\]

Making an Executable JAR Archive %o‘

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow In it

We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar
and hit ok

Back in the previous screen, we mark our code folders and click Next
We click Next

We now need to select a Main class and therefore click Browse. ..
after the corresponding input field

We choose our class VerticalBallThrow in the next screen and click
0K

We click Finish and the jar archive will be created

OOP with Java Thomas Weise 23/26

JAR Expo
JAR Manifest Specification

Customize the manifest file For the JAR file.
‘Specify the manifest:

© Generate the manifest file

("] save the manifest in the workspace

([l Use the saved manifest in the generated JAR description file

W=

Manifest File: | || Browse...
) Use existing manifest from workspace
Manifest file: | || Browse..
Seal contents:
© sealthe JAR JARsealed | Details... |
() seal some packages [Detallss.

Select the class of the application entry point:

Main class: [VerticalBallThrow

@ L <Back | Mext> || cancel

Making an Executable JAR Archive %o‘

We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow In it

We again right-click on the project and then click Export...

In the export wizzard, we choose Java and then JAR file and press
Next

In the next screen, we hit the Browse button

We choose a nice destination for our library call it executable.jar
and hit ok

Back in the previous screen, we mark our code folders and click Next
We click Next

We now need to select a Main class and therefore click Browse. ..
after the corresponding input field

We choose our class VerticalBallThrow in the next screen and click
0K

We click Finish and the jar archive will be created

and we are done, the new file executable.jar has appeared...

OOP with Java Thomas Weise 23/26

xamples - Java -

vertical_ball_throw/src/VerticalBallTh

va - Eclipse

iR-WEi= oD e

v G .

-’ 5?5#"0'1':§67565f'2t' 2l
(oo) ¢ .

1% Package ¢ |} TypeHi = 8
BB ¢ ~
» (55> javaExamples [javaExamples mas
* (& person_library [javaExamples mast
» Zperson_user [javaExamples masker
~ig3>vertical_ball_throw [javaExample
(@ >src
~ f# > (default package)
* [> VerticalBallThrow java
» B JRE System Library [java-8-openjd
% .classpath
[.gitignore
[> .project

[make_linux.sh W

1) VerticalBallThrow java 2 = a

1 import java.util.Scanner;
2

3.,/**

4 * A ball is thrown vertically upwards into the air by a “x_Gm’
5 * with velocity "v_@m/s’. Where is it after "t° seconds?

6 *'x(t) =x8 +v O - 8.5*g* 12

T

tal

8 public class VerticalBallThrow {

9
10=
11
12

/** The main routine
* @param args
* we ignore this parameter for now */

public static final void main(String[] args) {
try(Scanner scanner = new Scanner(System.in)) { // initiate rea

System.err.println("Enter size x@ of personin m:"); //$SNON-NL
double x0 = scanner.nextDouble(); // read initial vertical po

17 System.err.println("Enter initial upward velocity v@ of ball
18 double v@ = scanner.nextDouble(); // read initial velocity up
19 double g = 9.80665d; // free fall acceleration downwards
20 System.err.println("Enter time t in s5:"); //$NON-NLS-1$

double t = scanner.nextDouble(); // read the time t
double xt = x0 + (vO*t) - 0.5d*g*t*t; // "x(t) = x 0 + v 0*t
System.out.println((xt > ed) ? xt : @d); // prints result and

executable.jar -vertical _ball throw

e jar archives with a selected main class can be executed via
java -jar command

e jar archives with a selected main class can be executed via

java -jar command

e Open a terminal

e jar archives with a selected main class can be executed via

java -jar command

e Open a terminal

e cd into the folder where jar archive executable.jar is located

jar archives with a selected main class can be executed via

java -jar command

e Open a terminal

cd into the folder where jar archive executable.jar is located

e Type in java -jar executable.jar and press enter

jar archives with a selected main class can be executed via

java -jar command

e Open a terminal

cd into the folder where jar archive executable.jar is located

e Type in java -jar executable.jar and press enter

The program now runs!

jar archives with a selected main class can be executed via

java -jar command

Open a terminal

cd into the folder where jar archive executable.jar is located
Type in java -jar executable.jar and press enter

The program now runs!

Note: If your jar archive depends on other libraries, you need to

specify them via the -cp option which must come before the -jar
stuff

Executing JARs %\

1AQ

jar archives with a selected main class can be executed via
java -jar command
e Open a terminal

e cd into the folder where jar archive executable.jar is located

e Type in java -jar executable.jar and press enter

e The program now runs!

e Note: If your jar archive depends on other libraries, you need to
specify them via the -cp option which must come before the -jar
stuff

e Note 2: Everything coming after -jar executable.jar will be passed
as command line arguments to the args parameter of the
static void main method of the program

OOP with Java Thomas Weise 24/26

Summary %\

We have learned about jar archives which are special zip archives

They store the .class files and created resources of a Java project

They can be used as libraries, i.e., to package a set of classes which
belong together into one archive and use this archive in many
different applications

We can also define a main class for a jar archive, then the archive
becomes executable, i.e., we can ship a whole application as a single
file instead of a bunch of files, package folders, and resources

jar archives are a big thing in the Java world, any project you will
work with will definitely use lots of libraries

There exist incredibly many open source libraries in the Java world

If we need some general functionality (I/O, maths, Al, parallelization,
...), we should always first look for an open source library

OOP with Java Thomas Weise 25/26

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Libraries
	Why Libraries?

	Creating a Library
	Creating a Library
	The Person Class
	Professor Class
	Student Class
	Foreign Exchange Student Class
	A Person Reader
	A Professor Reader
	 A Student Reader
	A Foreign Exchange Student Reader
	Creating a Library
	Creating the person.jar Library
	Checking the person.jar Library

	Using a Library
	Using a Library
	A Main class using our Person classes
	Using a Library
	Using Libraries outside Eclipse

	Executable JARs
	Executable JARs
	Vertical Ball Throw with Console I/O
	Making an Executable JAR Archive
	Executing JARs

	Summary
	Summary

	Presentation End

