
OOP with Java
26. Libraries and Executables

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Libraries

3 Creating a Library

4 Using a Library

5 Executable JARs

6 Summary

OOP with Java Thomas Weise 2/26

w
e
b
s
it
e

Introduction

• Java programs usually consist of lots of .java or .class files

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

• A jar file is basically a special zip archive which contains all the
files of a program or library

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

• A jar file is basically a special zip archive which contains all the
files of a program or library

• jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

• A jar file is basically a special zip archive which contains all the
files of a program or library

• jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

• That’s already the most important stuff: Actually, you can create a
x.zip archive with the contents of your /bin folder of an Eclipse

project, rename it to x.jar and you got yourself a library

OOP with Java Thomas Weise 3/26

Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

• A jar file is basically a special zip archive which contains all the
files of a program or library

• jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

• That’s already the most important stuff: Actually, you can create a
x.zip archive with the contents of your /bin folder of an Eclipse

project, rename it to x.jar and you got yourself a library

• But let’s look at this step-by-step

OOP with Java Thomas Weise 3/26

Why Libraries?

• We have learned a two ways to structure code

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution, since very time our shared code changes,
• we always have to copy many files

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution, since very time our shared code changes,
• we always have to copy many files
• if a file becomes no longer needed, delete

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution, since very time our shared code changes,
• we always have to copy many files
• if a file becomes no longer needed, delete
• it’s a maintenance nightmare

OOP with Java Thomas Weise 4/26

Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution, since very time our shared code changes,
• we always have to copy many files
• if a file becomes no longer needed, delete
• it’s a maintenance nightmare

• That’s what libraries are good for: They are basically zip archives
containing all classes of a project

OOP with Java Thomas Weise 4/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

OOP with Java Thomas Weise 5/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

OOP with Java Thomas Weise 5/26

The Person Class

Listing: A Person class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package

cn.edu.hfuu.iao.person

/** A class representing a person with constructor and toString

method. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

public Person(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** return a string representation of this person record */

public String toString () {

return this.givenName + ' ' + this.familyName;

}

}

OOP with Java Thomas Weise 6/26

Professor Class

Listing: A Professor class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a professor */

public class Professor extends Person { // class Processor extends class Person

/** create a person record and set its name */

public Professor(String _familyName , String _givenName) {

super(_familyName , _givenName);

}

/** return "Prof. " + result of super.toString () = Person.toString () */

@Override // mark this method explicitly as overridden

public String toString () {

return "Prof. " + super.toString (); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 7/26

Student Class

Listing: A Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a student */

public class Student extends Person { // class Student extends class Person

/** the id of the student */

String id;

/** create a student record and set its name and student id */

public Student(String _familyName , String _givenName , String _id) {

super(_familyName , _givenName);

this.id = _id;

}

/** return a string representation of this student record */

@Override // mark this method explicitly as overridden

public String toString () {

return "student " + super.toString (); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 8/26

Foreign Exchange Student Class

Listing: A Foreign Exchange Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a foreign exchange student */

public class ForeignExchangeStudent extends Student {

/** the home country of the student */

String homeCountry; // we add a new field

/** create a student record and set its name , student id, and home country */

public ForeignExchangeStudent(String _familyName , String _givenName ,

String _id , String country) {

super(_familyName , _givenName , _id);

this.homeCountry = country;

}

/** override toString () from Person */

@Override // mark this method explicitly as overridden

public String toString () {

return super.toString () + " from " + this.homeCountry;//$NON -NLS -1$

}

}

OOP with Java Thomas Weise 9/26

A Person Reader

Listing: Person Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

/** a class to read a person record from stdin: using canonical class names */

public class PersonReader {

/** the constructor */

public PersonReader (){

}

/** Read a person record from stdin. All class names are specified canonically

* @return the new person record */

public cn.edu.hfuu.iao.person.Person read(java.util.Scanner scanner) {

System.err.println("Enter person 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter person 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new cn.edu.hfuu.iao.person.Person(familyName , givenName);

}

}

OOP with Java Thomas Weise 10/26

A Professor Reader

Listing: Professor Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Professor from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Professor;

/** a class to read a professor record from stdin */

public class ProfessorReader extends PersonReader {

/** the constructor */

public ProfessorReader (){

}

/** read a profesor record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Professor read(Scanner scanner) {

System.err.println("Enter professor 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter professor 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new Professor(familyName , givenName);

}

}

OOP with Java Thomas Weise 11/26

A Student Reader

Listing: Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Student from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Student;

/** a class to read a student record from stdin */

public class StudentReader extends PersonReader {

/** the constructor */

public StudentReader (){

}

/** read a student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Student read(Scanner scanner) {

System.err.println("Enter student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

return new Student(familyName , givenName , id);

}

}
OOP with Java Thomas Weise 12/26

A Foreign Exchange Student Reader

Listing: Foreign Exchange Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class ForeignExchangeStudent from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.ForeignExchangeStudent;

/** a class to read a student record from stdin */

public class ForeignExchangeStudentReader extends PersonReader {

/** the constructor */

public ForeignExchangeStudentReader (){

}

/** read a foreign exchange student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public ForeignExchangeStudent read(Scanner scanner) {

System.err.println("Enter exchange student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's home country:"); //$NON -NLS -1$

String country = scanner.nextLine (); // read a string from scanner

return new ForeignExchangeStudent(familyName , givenName , id, country);

}

}

OOP with Java Thomas Weise 13/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

OOP with Java Thomas Weise 14/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

• Ok, memory refreshed. We have eight classes in two packages.

OOP with Java Thomas Weise 14/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

• Ok, memory refreshed. We have eight classes in two packages.

• Let’s say that these are classes needed by several applications in our
enterprise, including the software of the human resources department
and the financial department

OOP with Java Thomas Weise 14/26

Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

• Ok, memory refreshed. We have eight classes in two packages.

• Let’s say that these are classes needed by several applications in our
enterprise, including the software of the human resources department
and the financial department

• Thus, we want to put them into a library which can be shared among
these applications

OOP with Java Thomas Weise 14/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . .)

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . .)

• We click Next

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . .)

• We click Next

• We click Finish and the jar archive will be created

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

OOP with Java Thomas Weise 15/26

Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . .)

• We click Next

• We click Finish and the jar archive will be created

• and we are done. . .

OOP with Java Thomas Weise 15/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

• But the folder structure in the archive perfectly reflects our package
hierarchy

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

• But the folder structure in the archive perfectly reflects our package
hierarchy

• And the folder cn/edu/hfuu/iao/person includes the compiled class

files for the Person -related classes

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

OOP with Java Thomas Weise 16/26

Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

• But the folder structure in the archive perfectly reflects our package
hierarchy

• And the folder cn/edu/hfuu/iao/person includes the compiled class

files for the Person -related classes

• Cool, so now we have our library and it actually is a handy archive of
all the necessary stuff in one single file

OOP with Java Thomas Weise 16/26

Using a Library

• We now want to use our library in our code

OOP with Java Thomas Weise 17/26

Using a Library

• We now want to use our library in our code

• Our main application shall be the same as in Lesson 17: Packages
and import

OOP with Java Thomas Weise 17/26

A Main class using our Person classes

Listing: A Main class using our Person classes

import java.util.Scanner; // import class Scanner from the java.util package

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // import all needed data structure

import cn.edu.hfuu.iao.io.PersonReader; // and I/O classes from our sub -packages

import cn.edu.hfuu.iao.io.ProfessorReader;

import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

/** testing our package structure */

public class Main {

/** The main routine reading person records of a certain type from stdin

* @param args we ignore this parameter */

public static void main(String [] args) {

PersonReader reader;

Scanner scanner = new Scanner(System.in); // create a structured text reader

System.err.println("Do you want to read (p)rofessors , (s)tudents , or (e)change students: "); //$NON -NLS -1$

switch (scanner.nextLine ().charAt (0)) { // check the first character entered by the user

case 'p': { reader = new ProfessorReader (); break; } // p -> read professors

case 's': { reader = new StudentReader (); break; } // s -> read students

default: { reader = new ForeignExchangeStudentReader (); break; } // otherwise: read exchange students

}

for (;;) { // loop forever , see loop condition at bottom of loop

Person person = reader.read(scanner); // use the person read to read a person

System.out.println("You entered: " + person); // print person.toString //$NON -NLS -1$

System.out.println("Type enter to continue , Ctrl -D to exit."); //$NON -NLS -1$

if (scanner.hasNextLine ()) { // if user pressed enter

scanner.nextLine (); // we read the line and continue

continue; // and do another iteration

} // if she instead pressed Ctrl -D or stdin ends , there is

return; // no next line and we exit the main routine

}

}

}

OOP with Java Thomas Weise 18/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.
• First, we create a new folder libs in our project to store all the
libraries needed

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.
• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.
• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• Our main application shall be the same as in Lesson 17: Packages
and import

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.
• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• We create a new Eclipse project person_user and copy our Main

class there
• Sadly, it won’t compile, because now it misses all the required

Person -related code
• Let’s fix this.
• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• Sadly, it won’t compile, because now it misses all the required
Person -related code

• Let’s fix this.

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

• We click OK

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• Let’s fix this.

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

• We click OK

• And our project compiles, the compiler errors disappear.

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

• We click OK

• And our project compiles, the compiler errors disappear.

• We can now run it, and it will run beautifully

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using a Library

OOP with Java Thomas Weise 19/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux)

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library
• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux):
1 open your terminal, cd into src folder

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library
• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux):
1 open your terminal, cd into src folder

2 type in javac -d ../bin -cp .:../libs/person.jar Main.java and
press return

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library
• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux):
1 open your terminal, cd into src folder

2 type in javac -d ../bin -cp .:../libs/person.jar Main.java and
press return

3 explanation: the -d ../bin tells the compiler to put the .class files

into the bin folder, the -cp .:../libs/person.jar tells the

compiler that the library person.jar is part of the classpath, i.e., can

be used to look up classes, Main.java is the class to compile

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux)

• Execution (under Linux)

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux)
• Execution (under Linux):

1 open your terminal, cd into bin folder

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux)
• Execution (under Linux):

1 open your terminal, cd into bin folder

2 type in java -cp .:../libs/person.jar Main and press return

OOP with Java Thomas Weise 20/26

Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library

• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux)
• Execution (under Linux):

1 open your terminal, cd into bin folder

2 type in java -cp .:../libs/person.jar Main and press return

3 explanation: the -cp .:../libs/person.jar tells the compiler that

the library person.jar is part of the classpath, i.e., can be used to

look up classes, Main is the class to execute

OOP with Java Thomas Weise 20/26

Executable JARs

• Executable jar archives are just the same as normal jar archives

OOP with Java Thomas Weise 21/26

Executable JARs

• Executable jar archives are just the same as normal jar archives

• With the small difference that their manifest specifies a main class

OOP with Java Thomas Weise 21/26

Executable JARs

• Executable jar archives are just the same as normal jar archives

• With the small difference that their manifest specifies a main class

• Let us now make an executable out of our simple vertical ball throw
example from Lesson 6: Console I/O

OOP with Java Thomas Weise 21/26

Vertical Ball Throw with Console I/O

Listing: Vertical Ball Throw with Console I/O

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result and makes sure the ball stops at

ground

}

}

}

OOP with Java Thomas Weise 22/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...

after the corresponding input field

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...

after the corresponding input field
• We choose our class VerticalBallThrow in the next screen and click

OK

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...

after the corresponding input field
• We choose our class VerticalBallThrow in the next screen and click

OK

• We click Finish and the jar archive will be created

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...

after the corresponding input field
• We choose our class VerticalBallThrow in the next screen and click

OK

• We click Finish and the jar archive will be created

• and we are done, the new file executable.jar has appeared. . .

OOP with Java Thomas Weise 23/26

Making an Executable JAR Archive

OOP with Java Thomas Weise 23/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

• Type in java -jar executable.jar and press enter

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

• Type in java -jar executable.jar and press enter

• The program now runs!

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

• Type in java -jar executable.jar and press enter

• The program now runs!

• Note: If your jar archive depends on other libraries, you need to

specify them via the -cp option which must come before the -jar

stuff

OOP with Java Thomas Weise 24/26

Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

• Type in java -jar executable.jar and press enter

• The program now runs!

• Note: If your jar archive depends on other libraries, you need to

specify them via the -cp option which must come before the -jar

stuff

• Note 2: Everything coming after -jar executable.jar will be passed
as command line arguments to the args parameter of the

static void main method of the program

OOP with Java Thomas Weise 24/26

Summary

• We have learned about jar archives which are special zip archives

• They store the .class files and created resources of a Java project

• They can be used as libraries, i.e., to package a set of classes which
belong together into one archive and use this archive in many
different applications

• We can also define a main class for a jar archive, then the archive
becomes executable, i.e., we can ship a whole application as a single
file instead of a bunch of files, package folders, and resources

• jar archives are a big thing in the Java world, any project you will
work with will definitely use lots of libraries

• There exist incredibly many open source libraries in the Java world

• If we need some general functionality (I/O, maths, AI, parallelization,
. . .), we should always first look for an open source library

OOP with Java Thomas Weise 25/26

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 26/26

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Libraries
	Why Libraries?

	Creating a Library
	Creating a Library
	The Person Class
	Professor Class
	Student Class
	Foreign Exchange Student Class
	A Person Reader
	A Professor Reader
	 A Student Reader
	A Foreign Exchange Student Reader
	Creating a Library
	Creating the person.jar Library
	Checking the person.jar Library

	Using a Library
	Using a Library
	A Main class using our Person classes
	Using a Library
	Using Libraries outside Eclipse

	Executable JARs
	Executable JARs
	Vertical Ball Throw with Console I/O
	Making an Executable JAR Archive
	Executing JARs

	Summary
	Summary

	Presentation End

