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Introduction

• Java programs usually consist of lots of .java or .class files

• Also, there often are many resources such as text files and images

• We can hardly ship a heap of 1000 files as application to a user

• For this purpose, jar files exist

• A jar file is basically a special zip archive which contains all the
files of a program or library

• jar files can either be executable, i.e., be programs, or not, in which
case they are libraries

• That’s already the most important stuff: Actually, you can create a
x.zip archive with the contents of your /bin folder of an Eclipse

project, rename it to x.jar and you got yourself a library

• But let’s look at this step-by-step
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Why Libraries?

• We have learned a two ways to structure code, including
• dividing code into different classes
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• Sometimes, we have code which is used by different programs
• Say, code to deal with reading and writing special files, code for
rendering graphics, code implementing machine learning and
mathematical routines, etc.

• Now we can just
• put this code into one project
• develop each program in a separate dedicated project
• copy the “shared” code into each project

• This is not a nice solution, since very time our shared code changes,
• we always have to copy many files
• if a file becomes no longer needed, delete
• it’s a maintenance nightmare

• That’s what libraries are good for: They are basically zip archives
containing all classes of a project
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Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import
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The Person Class

Listing: A Person class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package

cn.edu.hfuu.iao.person

/** A class representing a person with constructor and toString

method. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

public Person(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** return a string representation of this person record */

public String toString () {

return this.givenName + ' ' + this.familyName;

}

}
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Professor Class

Listing: A Professor class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a professor */

public class Professor extends Person { // class Processor extends class Person

/** create a person record and set its name */

public Professor(String _familyName , String _givenName) {

super(_familyName , _givenName);

}

/** return "Prof. " + result of super.toString () = Person.toString () */

@Override // mark this method explicitly as overridden

public String toString () {

return "Prof. " + super.toString (); //$NON -NLS -1$

}

}
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Student Class

Listing: A Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a student */

public class Student extends Person { // class Student extends class Person

/** the id of the student */

String id;

/** create a student record and set its name and student id */

public Student(String _familyName , String _givenName , String _id) {

super(_familyName , _givenName);

this.id = _id;

}

/** return a string representation of this student record */

@Override // mark this method explicitly as overridden

public String toString () {

return "student " + super.toString (); //$NON -NLS -1$

}

}
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Foreign Exchange Student Class

Listing: A Foreign Exchange Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a foreign exchange student */

public class ForeignExchangeStudent extends Student {

/** the home country of the student */

String homeCountry; // we add a new field

/** create a student record and set its name , student id, and home country */

public ForeignExchangeStudent(String _familyName , String _givenName ,

String _id , String country) {

super(_familyName , _givenName , _id);

this.homeCountry = country;

}

/** override toString () from Person */

@Override // mark this method explicitly as overridden

public String toString () {

return super.toString () + " from " + this.homeCountry;//$NON -NLS -1$

}

}
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A Person Reader

Listing: Person Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

/** a class to read a person record from stdin: using canonical class names */

public class PersonReader {

/** the constructor */

public PersonReader (){

}

/** Read a person record from stdin. All class names are specified canonically

* @return the new person record */

public cn.edu.hfuu.iao.person.Person read(java.util.Scanner scanner) {

System.err.println("Enter person 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter person 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new cn.edu.hfuu.iao.person.Person(familyName , givenName);

}

}
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A Professor Reader

Listing: Professor Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Professor from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Professor;

/** a class to read a professor record from stdin */

public class ProfessorReader extends PersonReader {

/** the constructor */

public ProfessorReader (){

}

/** read a profesor record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Professor read(Scanner scanner) {

System.err.println("Enter professor 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter professor 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new Professor(familyName , givenName);

}

}
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A Student Reader

Listing: Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Student from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Student;

/** a class to read a student record from stdin */

public class StudentReader extends PersonReader {

/** the constructor */

public StudentReader (){

}

/** read a student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Student read(Scanner scanner) {

System.err.println("Enter student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

return new Student(familyName , givenName , id);

}

}
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A Foreign Exchange Student Reader

Listing: Foreign Exchange Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class ForeignExchangeStudent from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.ForeignExchangeStudent;

/** a class to read a student record from stdin */

public class ForeignExchangeStudentReader extends PersonReader {

/** the constructor */

public ForeignExchangeStudentReader (){

}

/** read a foreign exchange student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public ForeignExchangeStudent read(Scanner scanner) {

System.err.println("Enter exchange student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's home country:"); //$NON -NLS -1$

String country = scanner.nextLine (); // read a string from scanner

return new ForeignExchangeStudent(familyName , givenName , id, country);

}

}
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Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory
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Creating a Library

• Let’s revisit our elaborate, package-based Person example from
lesson Lesson 17: Packages and import

• Here I print the classes again to refresh your memory

• Ok, memory refreshed. We have eight classes in two packages.

• Let’s say that these are classes needed by several applications in our
enterprise, including the software of the human resources department
and the financial department

• Thus, we want to put them into a library which can be shared among
these applications
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Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

OOP with Java Thomas Weise 15/26



Creating the person.jar Library

OOP with Java Thomas Weise 15/26



Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

OOP with Java Thomas Weise 15/26



Creating the person.jar Library

OOP with Java Thomas Weise 15/26



Creating the person.jar Library
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Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . . )

OOP with Java Thomas Weise 15/26



Creating the person.jar Library

OOP with Java Thomas Weise 15/26



Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . . )

• We click Next
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Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . . )

• We click Next

• We click Finish and the jar archive will be created
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Creating the person.jar Library

• Let’s make a new Eclipse project called person_library and put all
the code in there

• We then choose Export from the File menu

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button

• We choose a nice destination for our library call it person.jar and hit

OK

• Back in the previous screen, we mark our code folders and click Next

(well, we could as well click Finish now. . . )

• We click Next

• We click Finish and the jar archive will be created

• and we are done. . .
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Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive
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Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager
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Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

• But the folder structure in the archive perfectly reflects our package
hierarchy

• And the folder cn/edu/hfuu/iao/person includes the compiled class

files for the Person -related classes
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Checking the person.jar Library

• Let us now confirm that the generated file person.jar is actually a

“special” zip archive

• Under Ubuntu Linux, we therefore can open it with the Archive
Manager

• Tada, it opens as archive, with some special folder (for the Manifest,
let’s ignore this)

• But the folder structure in the archive perfectly reflects our package
hierarchy

• And the folder cn/edu/hfuu/iao/person includes the compiled class

files for the Person -related classes

• Cool, so now we have our library and it actually is a handy archive of
all the necessary stuff in one single file
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Using a Library

• We now want to use our library in our code
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Using a Library

• We now want to use our library in our code

• Our main application shall be the same as in Lesson 17: Packages
and import
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A Main class using our Person classes

Listing: A Main class using our Person classes

import java.util.Scanner; // import class Scanner from the java.util package

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // import all needed data structure

import cn.edu.hfuu.iao.io.PersonReader; // and I/O classes from our sub -packages

import cn.edu.hfuu.iao.io.ProfessorReader;

import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

/** testing our package structure */

public class Main {

/** The main routine reading person records of a certain type from stdin

* @param args we ignore this parameter */

public static void main(String [] args) {

PersonReader reader;

Scanner scanner = new Scanner(System.in); // create a structured text reader

System.err.println("Do you want to read (p)rofessors , (s)tudents , or (e)change students: "); //$NON -NLS -1$

switch (scanner.nextLine ().charAt (0)) { // check the first character entered by the user

case 'p': { reader = new ProfessorReader (); break; } // p -> read professors

case 's': { reader = new StudentReader (); break; } // s -> read students

default: { reader = new ForeignExchangeStudentReader (); break; } // otherwise: read exchange students

}

for (;;) { // loop forever , see loop condition at bottom of loop

Person person = reader.read(scanner); // use the person read to read a person

System.out.println("You entered: " + person); // print person.toString //$NON -NLS -1$

System.out.println("Type enter to continue , Ctrl -D to exit."); //$NON -NLS -1$

if (scanner.hasNextLine ()) { // if user pressed enter

scanner.nextLine (); // we read the line and continue

continue; // and do another iteration

} // if she instead pressed Ctrl -D or stdin ends , there is

return; // no next line and we exit the main routine

}

}

}
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Using a Library

• We now want to use our library in our code
• Our main application shall be the same as in Lesson 17: Packages
and import
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• Sadly, it won’t compile, because now it misses all the required
Person -related code

• Let’s fix this.

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...
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Using a Library

• Let’s fix this.

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

• We click OK

• And our project compiles, the compiler errors disappear.
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Using a Library

• First, we create a new folder libs in our project to store all the
libraries needed

• Then we copy our library person.jar into this folder

• We now right-click our project and select Properties

• We choose Java Build Path , then Libraries , then click
Add JARs...

• We choose person.jar in the libs folder of our project and click

OK

• We click OK

• And our project compiles, the compiler errors disappear.

• We can now run it, and it will run beautifully
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Using Libraries outside Eclipse

• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?
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• But what if you cannot use Eclipse and want to compile/execute your
program from the command line?

• Assume the same directory structure as before: a project folder
containing a folder src with the source code, a folder bin for the
compiled .class files, and a folder lib containing our person.jar

library
• To compile/run a program depending on a library, the library must be
in the classpath, the place where Java looks for classes

• Compilation (under Linux):
1 open your terminal, cd into src folder

2 type in javac -d ../bin -cp .:../libs/person.jar Main.java and
press return

3 explanation: the -d ../bin tells the compiler to put the .class files

into the bin folder, the -cp .:../libs/person.jar tells the

compiler that the library person.jar is part of the classpath, i.e., can

be used to look up classes, Main.java is the class to compile
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Executable JARs

• Executable jar archives are just the same as normal jar archives
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Executable JARs

• Executable jar archives are just the same as normal jar archives

• With the small difference that their manifest specifies a main class

• Let us now make an executable out of our simple vertical ball throw
example from Lesson 6: Console I/O
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Vertical Ball Throw with Console I/O

Listing: Vertical Ball Throw with Console I/O

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?<br/>

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try(Scanner scanner = new Scanner(System.in)) { // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time $t$

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result and makes sure the ball stops at

ground

}

}

}
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Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it
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Making an Executable JAR Archive
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• In the export wizzard, we choose Java and then JAR file and press
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• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...
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Making an Executable JAR Archive

• We first make an Eclipse project called vertical_throw with our class
VerticalBallThrow in it

• We again right-click on the project and then click Export...

• In the export wizzard, we choose Java and then JAR file and press
Next

• In the next screen, we hit the Browse button
• We choose a nice destination for our library call it executable.jar

and hit OK

• Back in the previous screen, we mark our code folders and click Next

• We click Next

• We now need to select a Main class and therefore click Browse...

after the corresponding input field
• We choose our class VerticalBallThrow in the next screen and click

OK

• We click Finish and the jar archive will be created

• and we are done, the new file executable.jar has appeared. . .
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Executing JARs

• jar archives with a selected main class can be executed via

java -jar command
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Executing JARs

• jar archives with a selected main class can be executed via

java -jar command

• Open a terminal

• cd into the folder where jar archive executable.jar is located

• Type in java -jar executable.jar and press enter

• The program now runs!

• Note: If your jar archive depends on other libraries, you need to

specify them via the -cp option which must come before the -jar

stuff

• Note 2: Everything coming after -jar executable.jar will be passed
as command line arguments to the args parameter of the

static void main method of the program
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Summary

• We have learned about jar archives which are special zip archives

• They store the .class files and created resources of a Java project

• They can be used as libraries, i.e., to package a set of classes which
belong together into one archive and use this archive in many
different applications

• We can also define a main class for a jar archive, then the archive
becomes executable, i.e., we can ship a whole application as a single
file instead of a bunch of files, package folders, and resources

• jar archives are a big thing in the Java world, any project you will
work with will definitely use lots of libraries

• There exist incredibly many open source libraries in the Java world

• If we need some general functionality (I/O, maths, AI, parallelization,
. . . ), we should always first look for an open source library
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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