
OOP with Java
25. Exceptions

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Exception s

3 Catching and Throwing Exceptions

4 Making our Own Exceptions

5 Checked Exceptions

6 try . . . finally

7 try-with-ressource

8 Summary
OOP with Java Thomas Weise 2/49

w
e
b
s
it
e

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

• properly documenting out code, see Lesson 19: Documentation with

Javadoc

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

• properly documenting out code, see Lesson 19: Documentation with

Javadoc

• using generics to reduce the number of type casts in Lesson 21:
Generics

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

• properly documenting out code, see Lesson 19: Documentation with

Javadoc

• using generics to reduce the number of type casts in Lesson 21:
Generics

• using Java’s collections instead of self-made classes, since they have
been tested extremely thoroughly (Lesson 22: Collections, equals ,

and hashCode)

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

• properly documenting out code, see Lesson 19: Documentation with

Javadoc

• using generics to reduce the number of type casts in Lesson 21:
Generics

• using Java’s collections instead of self-made classes, since they have
been tested extremely thoroughly (Lesson 22: Collections, equals ,

and hashCode)

• But we can still expect our code to be used incorrectly sooner or later

OOP with Java Thomas Weise 3/49

Introduction

• We have already learned quite a few things that we can do to make
sure that our code works correctly and is used correctly, including

• debugging in Lesson 13: Debugging
• dividing code focusing on different concerns into packages in

Lesson 17: Packages and import

• only allowing member variables and methods to be accessed if
absolutely necessary and hiding them otherwise in Lesson 18: Visibility,
Encapsulation, final , and Inner Classes

• properly documenting out code, see Lesson 19: Documentation with

Javadoc

• using generics to reduce the number of type casts in Lesson 21:
Generics

• using Java’s collections instead of self-made classes, since they have
been tested extremely thoroughly (Lesson 22: Collections, equals ,

and hashCode)

• But we can still expect our code to be used incorrectly sooner or later

• What do we do if our code receives invalid arguments?

OOP with Java Thomas Weise 3/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

• Should we treat it as 10 or should we crash?

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

• Should we treat it as 10 or should we crash?

• What should we do if our program is supposed to print the contents
of a given file, but the path provided by the user does not exist?

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

• Should we treat it as 10 or should we crash?

• What should we do if our program is supposed to print the contents
of a given file, but the path provided by the user does not exist?

• Should we print nothing (treat it as empty file) or crash?

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

• Should we treat it as 10 or should we crash?

• What should we do if our program is supposed to print the contents
of a given file, but the path provided by the user does not exist?

• Should we print nothing (treat it as empty file) or crash?

• We should crash!

OOP with Java Thomas Weise 4/49

Policy of Dealing with Faulty Data

• Many error situations emerge because of faulty data.

• What should we do if our program expects an integer number
between 1 and 10 but receives value 11?

• Should we treat it as 10 or should we crash?

• What should we do if our program is supposed to print the contents
of a given file, but the path provided by the user does not exist?

• Should we print nothing (treat it as empty file) or crash?

• We should crash! ALWAYS crash!

OOP with Java Thomas Weise 4/49

Why should we crash?

• There are five major reasons why we should crash

OOP with Java Thomas Weise 5/49

Why should we crash?

• There are five major reasons why we should crash:

1 If we receive data which violates the specification of what input we
should get, the violation is on the user’s side. If we do not crash but
try to work with the faulty input, we violate the specification of our
software as well.

OOP with Java Thomas Weise 5/49

Why should we crash?

• There are five major reasons why we should crash:

1 If we receive data which violates the specification of what input we
should get, the violation is on the user’s side. If we do not crash but
try to work with the faulty input, we violate the specification of our
software as well.

2 If the input is faulty, this is usually is the result of some unintend error.
By crashing, we show to the user that something is wrong. Maybe
there was an error in another program he used to generate the input of
our program?

OOP with Java Thomas Weise 5/49

Why should we crash?

• There are five major reasons why we should crash:

1 If we receive data which violates the specification of what input we
should get, the violation is on the user’s side. If we do not crash but
try to work with the faulty input, we violate the specification of our
software as well.

2 If the input is faulty, this is usually is the result of some unintend error.
By crashing, we show to the user that something is wrong. Maybe
there was an error in another program he used to generate the input of
our program?

3 If we do not crash, the user will not notice that something is wrong. If
we try to do the best we can do with the broken input data, what we
do may actually be wrong and thus, the error in the input of our
program has propagated to an error in the output.

OOP with Java Thomas Weise 5/49

Why should we crash?

• There are five major reasons why we should crash:

1 If we receive data which violates the specification of what input we
should get, the violation is on the user’s side. If we do not crash but
try to work with the faulty input, we violate the specification of our
software as well.

2 If the input is faulty, this is usually is the result of some unintend error.
By crashing, we show to the user that something is wrong. Maybe
there was an error in another program he used to generate the input of
our program?

3 If we do not crash, the user will not notice that something is wrong. If
we try to do the best we can do with the broken input data, what we
do may actually be wrong and thus, the error in the input of our
program has propagated to an error in the output.

4 If we try to “fix” the broken input data, we have implicitly extended the
specification for the input of our program. We now need to maintain
this extended specification and always consider it in all future updates.

OOP with Java Thomas Weise 5/49

Why should we crash?

• There are five major reasons why we should crash:

1 If we receive data which violates the specification of what input we
should get, the violation is on the user’s side. If we do not crash but
try to work with the faulty input, we violate the specification of our
software as well.

2 If the input is faulty, this is usually is the result of some unintend error.
By crashing, we show to the user that something is wrong. Maybe
there was an error in another program he used to generate the input of
our program?

3 If we do not crash, the user will not notice that something is wrong. If
we try to do the best we can do with the broken input data, what we
do may actually be wrong and thus, the error in the input of our
program has propagated to an error in the output.

4 If we try to “fix” the broken input data, we have implicitly extended the
specification for the input of our program. We now need to maintain
this extended specification and always consider it in all future updates.

5 The earlier we crash, the fewer damage will be done.

OOP with Java Thomas Weise 5/49

How should we crash?

• OK, so we should crash.

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

• Gracefully

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

• Gracefully:
• We should provide as much information about what went wrong as

possible.

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

• Gracefully:
• We should provide as much information about what went wrong as

possible.
• If possible, code at a lower level should hand control back to code at a

higher level and let that code deal with what went wrong.

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

• Gracefully:
• We should provide as much information about what went wrong as

possible.
• If possible, code at a lower level should hand control back to code at a

higher level and let that code deal with what went wrong.
• Ideally, we should ask the user for what she wants to do to fix the error.

OOP with Java Thomas Weise 6/49

How should we crash?

• OK, so we should crash.

• How should we crash?

• Gracefully:
• We should provide as much information about what went wrong as

possible.
• If possible, code at a lower level should hand control back to code at a

higher level and let that code deal with what went wrong.
• Ideally, we should ask the user for what she wants to do to fix the error.

• “Crash” does not mean that our whole program needs to die/exit
abnormally, instead, an Exception should be generated.

OOP with Java Thomas Weise 6/49

Exception s

• Exception s are special Java classes which store information about an
error

OOP with Java Thomas Weise 7/49

Exception s

• Exception s are special Java classes which store information about an
error

• If a piece of code detects that something is wrong, it should throw

an Exception

OOP with Java Thomas Weise 7/49

Exception s

• Exception s are special Java classes which store information about an
error

• If a piece of code detects that something is wrong, it should throw

an Exception

• Code at a higher level can then catch the Exception and analyse
the error information to find what to do

OOP with Java Thomas Weise 7/49

Exception s

• Exception s are special Java classes which store information about an
error

• If a piece of code detects that something is wrong, it should throw

an Exception

• Code at a higher level can then catch the Exception and analyse
the error information to find what to do

• If an Exception is not caught anywhere, the Exception ’s information

is printed to stderr and the calling Thread is terminated (if it is the
main Thread of the process, the whole process dies, we learn what
Thread s are at another time)

OOP with Java Thomas Weise 7/49

Exception s

• Exception s are special Java classes which store information about an
error

• If a piece of code detects that something is wrong, it should throw

an Exception

• Code at a higher level can then catch the Exception and analyse
the error information to find what to do

• If an Exception is not caught anywhere, the Exception ’s information

is printed to stderr and the calling Thread is terminated (if it is the
main Thread of the process, the whole process dies, we learn what
Thread s are at another time)

• Many actions in Java can cause Exception s

OOP with Java Thomas Weise 7/49

Example for integer division by 0

Listing: Example program dividing an integer by 0

/** This class shows what happens if we divide an integer by 0

*/

public class IntegerDivisionByZero {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

System.out.println (10 / 0);

}

}

Listing: Output of this program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

OOP with Java Thomas Weise 8/49

Example for a wrong class cast

Listing: Example for a wrong class cast

/** This class shows what happens if cast an object to a wrong

class */

public class WrongTypeCast {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

Object o = new Integer (34);

String s = ((String)o);

System.out.println(s);

}

}

Listing: Output of this program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

OOP with Java Thomas Weise 9/49

Example for working with a null pointer

Listing: Example for working with a null pointer

/** What happens if we access a method of a null object? */

public class NullPointer {

/** get the fifth array element */

static void printToString(final Object o) {

System.out.println(o.toString ());

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

printToString(null);

}

}

Listing: Output of this program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

OOP with Java Thomas Weise 10/49

Accessing an array element outside the valid range

Listing: Example for accessing an array element outside the valid range

/** This class shows what happens if we access an array element out of the

bounds */

public class ArrayIndexOutOfBounds {

/** get the fifth array element */

static int getFifth(final int[] array) {

return array [4];

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

System.out.println(getFifth(new int[] {1, 2, 3}));

}

}

Listing: Output of this program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

OOP with Java Thomas Weise 11/49

How to Read Exceptions

• OK, good, if we do something nasty, our program will hopefully crash
with an Exception

OOP with Java Thomas Weise 12/49

How to Read Exceptions

• OK, good, if we do something nasty, our program will hopefully crash
with an Exception

• How do we read an Exception ?

OOP with Java Thomas Weise 12/49

How to Read Exceptions

• OK, good, if we do something nasty, our program will hopefully crash
with an Exception

• How do we read an Exception ?

• It happens soo often that a program crashes with an Exception , and

the (student) programmer then says: Oh, the program has crashed.
Where could the error be?

OOP with Java Thomas Weise 12/49

How to Read Exceptions

• OK, good, if we do something nasty, our program will hopefully crash
with an Exception

• How do we read an Exception ?

• It happens soo often that a program crashes with an Exception , and

the (student) programmer then says: Oh, the program has crashed.
Where could the error be?

• In 99% of the cases, the Exception print tells you where it is.

OOP with Java Thomas Weise 12/49

How to Read Exceptions

• OK, good, if we do something nasty, our program will hopefully crash
with an Exception

• How do we read an Exception ?

• It happens soo often that a program crashes with an Exception , and

the (student) programmer then says: Oh, the program has crashed.
Where could the error be?

• In 99% of the cases, the Exception print tells you where it is.

• In the remaining 1%, it at least tells you where to look.

OOP with Java Thomas Weise 12/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

OOP with Java Thomas Weise 13/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

• “There was a division by 0”

OOP with Java Thomas Weise 13/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

• “There was a division by 0”

• It took place in class/file IntegerDivisionByZero.java at code line 6

OOP with Java Thomas Weise 13/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

• “There was a division by 0”

• It took place in class/file IntegerDivisionByZero.java at code line 6

• Which happens to be in method IntegerDivisionByZero.main

OOP with Java Thomas Weise 13/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArithmeticException: / by zero

at IntegerDivisionByZero.main(IntegerDivisionByZero.java :6)

• “There was a division by 0”

• It took place in class/file IntegerDivisionByZero.java at code line 6

• Which happens to be in method IntegerDivisionByZero.main

• How about putting a break point there and using the debugger?

OOP with Java Thomas Weise 13/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

• It seems that you tried to cast an instance of type java.lang.Integer

to java.lang.String

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

• It seems that you tried to cast an instance of type java.lang.Integer

to java.lang.String

• java.lang.Integer appears to not be a subclass of

java.lang.String , so you are not allowed to make such a class cast

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

• It seems that you tried to cast an instance of type java.lang.Integer

to java.lang.String

• java.lang.Integer appears to not be a subclass of

java.lang.String , so you are not allowed to make such a class cast

• It took place in class/file WrongTypeCast.java at code line 7

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

• It seems that you tried to cast an instance of type java.lang.Integer

to java.lang.String

• java.lang.Integer appears to not be a subclass of

java.lang.String , so you are not allowed to make such a class cast

• It took place in class/file WrongTypeCast.java at code line 7

• Which happens to be in method WrongTypeCast.main

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ClassCastException: java.lang.Integer cannot be

cast to java.lang.String

at WrongTypeCast.main(WrongTypeCast.java :7)

• “There was a wrong class cast”

• It seems that you tried to cast an instance of type java.lang.Integer

to java.lang.String

• java.lang.Integer appears to not be a subclass of

java.lang.String , so you are not allowed to make such a class cast

• It took place in class/file WrongTypeCast.java at code line 7

• Which happens to be in method WrongTypeCast.main

• How about putting a break point there and using the debugger?

OOP with Java Thomas Weise 14/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

• Which happens to be in method NullPointer.printToString

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

• Which happens to be in method NullPointer.printToString

• This method was invoked from method NullPointer.main at line 10 of class/file
NullPointer.java

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

• Which happens to be in method NullPointer.printToString

• This method was invoked from method NullPointer.main at line 10 of class/file
NullPointer.java

• So either the code in NullPointer.printToString is doing something wrong

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

• Which happens to be in method NullPointer.printToString

• This method was invoked from method NullPointer.main at line 10 of class/file
NullPointer.java

• So either the code in NullPointer.printToString is doing something wrong

• Or it was called with wrong parameters by NullPointer.main

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.NullPointerException

at NullPointer.printToString(NullPointer.java :5)

at NullPointer.main(NullPointer.java :10)

• “There was an attempt to de-reference a null pointer”

• Some variable was null but obviously should not have been null

• The error took place in class/file NullPointer.java at code line 5

• Which happens to be in method NullPointer.printToString

• This method was invoked from method NullPointer.main at line 10 of class/file
NullPointer.java

• So either the code in NullPointer.printToString is doing something wrong

• Or it was called with wrong parameters by NullPointer.main

• You should put a break point at line 10 of class/file NullPointer.java to see what’s
going on

OOP with Java Thomas Weise 15/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

• Which happens to be in method ArrayIndexOutOfBounds.getFifth

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

• Which happens to be in method ArrayIndexOutOfBounds.getFifth

• This method was invoked from method ArrayIndexOutOfBounds.main at line 10 of

class/file ArrayIndexOutOfBounds.java

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

• Which happens to be in method ArrayIndexOutOfBounds.getFifth

• This method was invoked from method ArrayIndexOutOfBounds.main at line 10 of

class/file ArrayIndexOutOfBounds.java

• So either the code in ArrayIndexOutOfBounds.getFifth is doing something wrong

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

• Which happens to be in method ArrayIndexOutOfBounds.getFifth

• This method was invoked from method ArrayIndexOutOfBounds.main at line 10 of

class/file ArrayIndexOutOfBounds.java

• So either the code in ArrayIndexOutOfBounds.getFifth is doing something wrong

• Or it was called with wrong parameters by ArrayIndexOutOfBounds.main

OOP with Java Thomas Weise 16/49

Reading Exceptions

Listing: Output of a program to stderr

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4

at ArrayIndexOutOfBounds.getFifth(ArrayIndexOutOfBounds.java :5)

at ArrayIndexOutOfBounds.main(ArrayIndexOutOfBounds.java :10)

• “There was an attempt to access an array element with a invalid index”

• The index 4 is out of bounds of the array (which must have had less than 5
elements)

• The error took place in class/file ArrayIndexOutOfBounds.java at code line 5

• Which happens to be in method ArrayIndexOutOfBounds.getFifth

• This method was invoked from method ArrayIndexOutOfBounds.main at line 10 of

class/file ArrayIndexOutOfBounds.java

• So either the code in ArrayIndexOutOfBounds.getFifth is doing something wrong

• Or it was called with wrong parameters by ArrayIndexOutOfBounds.main

• You should put a break point at line 10 of class/file ArrayIndexOutOfBounds.java to
see what’s going on

OOP with Java Thomas Weise 16/49

Debugging

• With the information from the Exception s, we have a good chance
to find the bug

OOP with Java Thomas Weise 17/49

Debugging

• With the information from the Exception s, we have a good chance
to find the bug

• Reading of exceptions is an important skill

OOP with Java Thomas Weise 17/49

Catching Exceptions

• Ok, so if an exception occurs, our program will die.

OOP with Java Thomas Weise 18/49

Catching Exceptions

• Ok, so if an exception occurs, our program will die.

• Does not look very useful, because I could as well do
System.err.println(...); and then System.exit(1); to print error
infos and then quit the program

OOP with Java Thomas Weise 18/49

Catching Exceptions

• Ok, so if an exception occurs, our program will die.

• Does not look very useful, because I could as well do
System.err.println(...); and then System.exit(1); to print error
infos and then quit the program

• Well, we can catch exceptions at a higher code level, read their
information, and take actions.

OOP with Java Thomas Weise 18/49

Catching Exceptions

• Ok, so if an exception occurs, our program will die.

• Does not look very useful, because I could as well do
System.err.println(...); and then System.exit(1); to print error
infos and then quit the program

• Well, we can catch exceptions at a higher code level, read their
information, and take actions.

• The code which might throw an exception of type T is therefore
wrapped into
try { ...code...} catch(T error){ ... do something (using infos from error)... }

OOP with Java Thomas Weise 18/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...}

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...} ,

• the program stores it in a variable called error

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...} ,

• the program stores it in a variable called error and

• jumps directly to the start of the code in the catch(T error){ ... }

block

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...} ,

• the program stores it in a variable called error and

• jumps directly to the start of the code in the catch(T error){ ... }

block,
• skipping over whatever code in try { ...code...} comes ofter the

instruction causing the error

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...} ,

• the program stores it in a variable called error and

• jumps directly to the start of the code in the catch(T error){ ... }

block,
• skipping over whatever code in try { ...code...} comes ofter the

instruction causing the error

• If an exception (which is not a subclass of T) occurs, the control is
passed to a corresponding catch block in a higher level of code, if
any, or the program exits (Thread dies)

OOP with Java Thomas Weise 19/49

Catching Exceptions

try { ...code...} catch(T error){ ... do something (using infos from error)... }

• If an exception of type (or subclass of) T occurs somewhere in the

code inside the try { ...code...} ,

• the program stores it in a variable called error and

• jumps directly to the start of the code in the catch(T error){ ... }

block,
• skipping over whatever code in try { ...code...} comes ofter the

instruction causing the error

• If an exception (which is not a subclass of T) occurs, the control is
passed to a corresponding catch block in a higher level of code, if
any, or the program exits (Thread dies)

• If no exception occurs, the try { ...code...} block completes

normally and the catch(T error){ ... } block is ignored

OOP with Java Thomas Weise 19/49

An example for catching and processing an exception

Listing: An example for catching and processing an exception

/** a modifiable number */

public class ModifiableNumber {

/** the number value */

private int value;

/** are we ok */

private boolean ok;

/** create */

public ModifiableNumber () { this.ok = true; }

/** add a value */

public void add(final int v) { this.value += v; }

/** divide by a value */

public void divide(final int v) {

try { // if an ArithmeticException occurs between here and the } two lines below

this.value /= v; // the control jumps directly to the code in the catch block

System.out.println("Correct division by " + v); // this line here will only be reached if the division went OK //$NON -NLS -1$

} catch(ArithmeticException error) { // (only) iff an ArithmeticException occurs , it is stored in variable error and the 2 lines below are executed

System.out.println("Error when trying to divide " + this.value + " by " + v + ": " + error.getMessage ()); //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

this.ok = false;

}

}

/** convert to string */

@Override

public String toString () {

return (this.ok ? ""+this.value : "error"); //$NON -NLS -1$ //$NON -NLS -2$

}

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

ModifiableNumber n = new ModifiableNumber ();

System.out.println(n); // 0

n.add (100);

System.out.println(n); // 100

n.divide (10); // Correct division by 10

System.out.println(n); // 10

n.add(1);

System.out.println(n); // 11

n.divide (0); // Error when trying to divide 11 by 0: / by zero

System.out.println(n); // error

n.add(1);

System.out.println(n); // error

}

}

OOP with Java Thomas Weise 20/49

Throwing Exceptions

• Now we clearly do not just want to catch exceptions that come
somewhere from the bowels of Java

OOP with Java Thomas Weise 21/49

Throwing Exceptions

• Now we clearly do not just want to catch exceptions that come
somewhere from the bowels of Java

• We want to throw exceptions as soon as we detect an error

OOP with Java Thomas Weise 21/49

Throwing Exceptions

• Now we clearly do not just want to catch exceptions that come
somewhere from the bowels of Java

• We want to throw exceptions as soon as we detect an error

• Rule of Thumb: Check all parameters and throw exceptions as soon
as possible!

OOP with Java Thomas Weise 21/49

Throwing Exceptions

• Now we clearly do not just want to catch exceptions that come
somewhere from the bowels of Java

• We want to throw exceptions as soon as we detect an error

• Rule of Thumb: Check all parameters and throw exceptions as soon
as possible!

• Reason: Exception stack trace tells us where the exception was
thrown.

OOP with Java Thomas Weise 21/49

Throwing Exceptions

• Now we clearly do not just want to catch exceptions that come
somewhere from the bowels of Java

• We want to throw exceptions as soon as we detect an error

• Rule of Thumb: Check all parameters and throw exceptions as soon
as possible!

• Reason: Exception stack trace tells us where the exception was
thrown. The earlier we throw the exception, the closer this point will
be to the source of the error.

• We can throw exception doing something like
throw new ExceptionType(exceptionParameters)

OOP with Java Thomas Weise 21/49

An example for computing factorials

Listing: An example for computing factorials: 21! is wrong

/** An example program computing factorials , defined as i! =
i∏

j=1

j. */

public class Factorial {

/** Compute the factorial of i

* @return i! =
i∏

j=1

j */

static long factorial(int i) {

long result = 1L;

for(int v = i; v > 1; --v) {

result *= v;

}

return result;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for(int i = 0; i <= 21; i++){ // printing the first 22 factorials , where 21! is wrong

System.out.print(i);

System.out.print("! = "); //$NON -NLS -1$

System.out.println(factorial(i));

}

}

}

OOP with Java Thomas Weise 22/49

Computing factorials and throwing exceptions

Listing: An example for computing factorials: exception at 21!

/** An example program computing factorials , defined as i! =
i∏

j=1

j. */

public class FactorialException {

/** Compute the factorial of i

* @return i! =
i∏

j=1

j */

static long factorial(int i) {

long result = 1L;

if(i < 0) { throw new IllegalArgumentException(i + "! is undefined."); } //$NON -NLS -1$

if(i > 20) { throw new ArithmeticException(i + "! exceeds the range of long."); } //$NON -NLS -1$

for(int v = i; v > 1; --v) {

result *= v;

}

return result;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for(int i = 0; i <= 21; i++){ // printing the first 22 factorials , exception at 21!

System.out.print(i);

System.out.print("! = "); //$NON -NLS -1$

System.out.println(factorial(i));

}

}

}

OOP with Java Thomas Weise 23/49

Catching Multiple Different Exceptions

• We can catch multiple different exceptions by specifying multiple
catch statements

OOP with Java Thomas Weise 24/49

Catching Multiple Different Exceptions

• We can catch multiple different exceptions by specifying multiple
catch statements

• At most one of them will be executed, the first one whose type
parameter is a superclass of the actual exception

OOP with Java Thomas Weise 24/49

Computing factorials and catching multiple exceptions

Listing: Computing factorials and catching multiple exceptions

/** An example program computing factorials , defined as i! =
i∏

j=1

j. */

public class FactorialExceptionCatch {

/** Compute the factorial of i

* @return i! =
i∏

j=1

j */

static long factorial(int i) {

long result = 1L;

if(i < 0) { throw new IllegalArgumentException(i + "! is undefined."); } //$NON -NLS -1$

if(i > 20) { throw new ArithmeticException(i + "! exceeds the range of long."); } //$NON -NLS -1$

for(int v = i; v > 1; --v) {

result *= v;

}

return result;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for(int i = -1; i <= 21; i++){ // this time starting loop at -1...

try {

long f = factorial(i);

System.out.println(i + "! = " + f); //$NON -NLS -1$

} catch (IllegalArgumentException error) {

System.out.println("Illegal argument: " + error.getMessage ()); //$NON -NLS -1$

} catch (ArithmeticException error) {

System.out.println("Arithmetic error: " + error.getMessage ()); //$NON -NLS -1$

}

}

}

} OOP with Java Thomas Weise 25/49

Making our Own Exceptions

• Exceptions are objects

OOP with Java Thomas Weise 26/49

Making our Own Exceptions

• Exceptions are objects

• There is a whole class hierarchy of exceptions

OOP with Java Thomas Weise 26/49

Making our Own Exceptions

• Exceptions are objects

• There is a whole class hierarchy of exceptions

• The base class of all (checked) exceptions in the class Exception

OOP with Java Thomas Weise 26/49

Making our Own Exceptions

• Exceptions are objects

• There is a whole class hierarchy of exceptions

• The base class of all (checked) exceptions in the class Exception

• We can make our own exception classes

OOP with Java Thomas Weise 26/49

Making our Own Exceptions

• Exceptions are objects

• There is a whole class hierarchy of exceptions

• The base class of all (checked) exceptions in the class Exception

• We can make our own exception classes

• Let us therefore revisit our BankAccount example from Lesson 18:
Visibility, Encapsulation, final , and Inner Classes

OOP with Java Thomas Weise 26/49

The original BankAccount class

Listing: The original BankAccount class

/** A class for a bank account with complete encapsulation and the final keyword */

public final class BankAccount { // we declare the class final , we don't allow subclassing

/** the account number: clearly private , clearly never changes , so it should be final */

private final String accountNumber;

/** the amount of money in the account in cents: also private */

private long balance; // we use long , not double , because an account cannot have "fractional" cents

/** create a new bank account with balance 0 */

public BankAccount(final String number){ // number parameter is final , it cannot be changed inside constructor

this.accountNumber = number; // why would we want to change it anyway ..

}

/** get the account 's balance */

public final double getBalance () { // the method is marked as final. If the class was not already marked as final ,

return this.balance; // then it would still not be possible to override the method

}

/** add some money to the bank account */

public final void deposit(final long amount) {

if((amount > 0L) && (amount < 1_000_000_00L)) { // sanity check: you can only deposit a positive amount

this.balance += amount; // of money , and anything above 1 million is probably an error

} else { // an invalid amount cannot be put into the account

System.out.println("Invalid deposit amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

/** withdraw some money from the bank account */

public final void withdraw(final long amount) {

if((amount > 0L) && (amount < 1_000_00L)) { // sanity check: you can only withdraw a positive amount of

this.balance -= amount; // money and at most 1000 RMB at once

} else {

System.out.println("Invalid withdrawal amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

@Override

public final String toString () {

return '(' + this.accountNumber + ": " + this.balance + ')'; //$NON -NLS -1$

}

}
OOP with Java Thomas Weise 27/49

A test of the BankAccount class

Listing: The BankAccountTest

/** testing the plain bank account class */

public class BankAccountTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

BankAccount account;

account = new BankAccount("123"); //$NON -NLS -1$

System.out.println(account); // (123: 0)

account.deposit (900 _000_00L);

System.out.println(account); // (123: 90000000)

account.deposit (11 _000_000_00L); // Invalid deposit amount 1100000000 for account (123: 90000000)

System.out.println(account); // (123: 90000000) <---| notice how the program continues , although

// | the 11 '000 '000 RMB have not been added to

account.withdraw (900 _00L); // | the account , which now has a different value

System.out.println(account); // (123: 89910000) | from what the user exceptions?

account.withdraw (3 _000_00L); // Invalid withdrawal amount 300000 for account (123: 89910000)

System.out.println(account); // (123: 89910000)

}

}

OOP with Java Thomas Weise 28/49

What is wrong

• The above code shows that faulty transactions are not performed

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

• . . . who would then think that the bank account should have well
above 11’000’000 RMB

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

• . . . who would then think that the bank account should have well
above 11’000’000 RMB

• After a faulty transaction which was not carried out, more
transactions are performed as if nothing happened

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

• . . . who would then think that the bank account should have well
above 11’000’000 RMB

• After a faulty transaction which was not carried out, more
transactions are performed as if nothing happened

• We should throw an exception

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

• . . . who would then think that the bank account should have well
above 11’000’000 RMB

• After a faulty transaction which was not carried out, more
transactions are performed as if nothing happened

• We should throw an exception

• And maybe even put some special data into this, say, about the bank
account

OOP with Java Thomas Weise 29/49

What is wrong

• The above code shows that faulty transactions are not performed

• However, the program itself does never receive notice of that, it is
just printed to stdout

• . . . where it might be ignored/overlooked by the user

• . . . who would then think that the bank account should have well
above 11’000’000 RMB

• After a faulty transaction which was not carried out, more
transactions are performed as if nothing happened

• We should throw an exception

• And maybe even put some special data into this, say, about the bank
account

• To prevent further transactions and to force the program to recognize
that something went wrong

OOP with Java Thomas Weise 29/49

A new type of exception: TransactionException

Listing: The TransactionException class

/** our own exception class */

public class TransactionException extends IllegalArgumentException {

/**the serial version uid: don't worry about that right now */

private static final long serialVersionUID = 1L;

/** the bank account */

final BankAccountWithExceptions account;

/** create the exception */

public TransactionException(String message , BankAccountWithExceptions _account) {

super(message);

this.account = _account;

}

}

OOP with Java Thomas Weise 30/49

A Bank Account class using our new exception

Listing: The BankAccountWithExceptions class

/** A class for a bank account throwing an (unchecked) exception on error */

public final class BankAccountWithExceptions { // we declare the class final , we don't allow subclassing

/** the account number: clearly private , clearly never changes , so it should be final */

private final String accountNumber;

/** the amount of money in the account in cents: also private */

private long balance; // we use long , not double , because an account cannot have "fractional" cents

/** create a new bank account with balance 0 */

public BankAccountWithExceptions(final String number){ // number parameter is final , it cannot be changed inside constructor

this.accountNumber = number; // why would we want to change it anyway ..

}

/** get the account 's balance */

public final double getBalance () { // the method is marked as final. If the class was not already marked as final ,

return this.balance; // then it would still not be possible to override the method

}

/** add some money to the bank account */

public final void deposit(final long amount) {

if((amount > 0L) && (amount < 1_000_000_00L)) { // sanity check: you can only deposit a positive amount

this.balance += amount; // of money , and anything above 1 million is probably an error

} else { // an invalid amount cannot be put into the account

throw new TransactionException("Invalid deposit amount " + amount , this); //$NON -NLS -1$

}

}

/** withdraw some money from the bank account */

public final void withdraw(final long amount) {

if((amount > 0L) && (amount < 1_000_00L)) { // sanity check: you can only withdraw a positive amount of

this.balance -= amount; // money and at most 1000 RMB at once

} else {

throw new TransactionException("Invalid withdrawal amount " + amount , this); //$NON -NLS -1$

}

}

@Override

public final String toString () {

return '(' + this.accountNumber + ": " + this.balance + ')'; //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 31/49

A test of the BankAccountWithExceptions class

Listing: The BankAccountWithExceptionsTestWithoutTryCatch

/** testing the exception -throwing bank account */

public class BankAccountWithExceptionsTestWithoutTryCatch {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

BankAccountWithExceptions account;

account = new BankAccountWithExceptions("123"); //$NON -NLS -1$

System.out.println(account); // (123: 0)

account.deposit (900 _000_00L);

System.out.println(account); // (123: 90000000)

account.deposit (11 _000_000_00L); // here , an exception is thrown and all further transactions are skipped

System.out.println(account); // never reached , as the above line throws an exception and the program

// terminates , printing the stack trace to stderr

account.withdraw (900 _00L); // never reached

System.out.println(account); // never reached

account.withdraw (3 _000_00L); // never reached

System.out.println(account); // never reached

}

}

OOP with Java Thomas Weise 32/49

A test of the BankAccountWithExceptions class with try ... catch

Listing: The BankAccountWithExceptionsTest

/** testing the exception -throwing bank account with try ... catch */

public class BankAccountWithExceptionsTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

BankAccountWithExceptions account;

account = new BankAccountWithExceptions("123"); //$NON -NLS -1$

try {

System.out.println(account); // (123: 0)

account.deposit (900 _000_00L);

System.out.println(account); // (123: 90000000)

account.deposit (11 _000_000_00L); // here , an exception is thrown and all further transactions are skipped

System.out.println(account); // never reached

account.withdraw (900 _00L); // never reached

System.out.println(account); // never reached

account.withdraw (3 _000_00L); // never reached

System.out.println(account); // never reached

} catch (TransactionException trans) { // Invalid deposit amount 1100000000 for bank account (123: 90000000)

System.out.println(trans.getMessage () + " for bank account " + trans.account); //$NON -NLS -1$

}

}

}

OOP with Java Thomas Weise 33/49

Awareness of Exceptions

• If we think about it, the TransactionException is, sort of, part of the

specification of the methods in BankAccountWithExceptions

OOP with Java Thomas Weise 34/49

Awareness of Exceptions

• If we think about it, the TransactionException is, sort of, part of the

specification of the methods in BankAccountWithExceptions

• Whenever we use that code, we should be aware that
TransactionException s may take place

OOP with Java Thomas Weise 34/49

Awareness of Exceptions

• If we think about it, the TransactionException is, sort of, part of the

specification of the methods in BankAccountWithExceptions

• Whenever we use that code, we should be aware that
TransactionException s may take place

• However, we could compile the BankAccountWithExceptionsTest just

as fine without the try ... catch stuff. . .

OOP with Java Thomas Weise 34/49

Awareness of Exceptions

• If we think about it, the TransactionException is, sort of, part of the

specification of the methods in BankAccountWithExceptions

• Whenever we use that code, we should be aware that
TransactionException s may take place

• However, we could compile the BankAccountWithExceptionsTest just

as fine without the try ... catch stuff. . .

• This is not a good idea

OOP with Java Thomas Weise 34/49

Awareness of Exceptions

• If we think about it, the TransactionException is, sort of, part of the

specification of the methods in BankAccountWithExceptions

• Whenever we use that code, we should be aware that
TransactionException s may take place

• However, we could compile the BankAccountWithExceptionsTest just

as fine without the try ... catch stuff. . .

• This is not a good idea

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

OOP with Java Thomas Weise 34/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

• Checked exceptions do not inherit from RuntimeException (our

TransactionException does indirectly), but from Exception ,

Throwable , or another one of their subclasses

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

• Checked exceptions do not inherit from RuntimeException (our

TransactionException does indirectly), but from Exception ,

Throwable , or another one of their subclasses
• Every method that may throw such an exception must specify in its

signature via throws that it may do so

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

• Checked exceptions do not inherit from RuntimeException (our

TransactionException does indirectly), but from Exception ,

Throwable , or another one of their subclasses
• Every method that may throw such an exception must specify in its

signature via throws that it may do so
• Any user of this method must wrap it in a corresponding

try ... catch block

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

• Checked exceptions do not inherit from RuntimeException (our

TransactionException does indirectly), but from Exception ,

Throwable , or another one of their subclasses
• Every method that may throw such an exception must specify in its

signature via throws that it may do so
• Any user of this method must wrap it in a corresponding

try ... catch block

• Or otherwise the code does not compile.

OOP with Java Thomas Weise 35/49

Checked Exceptions

• Ideally, we want to force programmers using our code to be aware and
to explicitly handle the case that our exceptions may be thrown

• For this, there a checked exceptions

• Checked exceptions do not inherit from RuntimeException (our

TransactionException does indirectly), but from Exception ,

Throwable , or another one of their subclasses
• Every method that may throw such an exception must specify in its

signature via throws that it may do so
• Any user of this method must wrap it in a corresponding

try ... catch block

• Or otherwise the code does not compile.

• Checked exceptions of class E can be documented using
@throws E meaning Javadoc

OOP with Java Thomas Weise 35/49

A new type of checked exceptions: CheckedTransactionException

Listing: The CheckedTransactionException class

/** our own exception class inheriting from Exception , i.e., being a checked

exception */

public class CheckedTransactionException extends Exception {

/**the serial version uid: don't worry about that right now */

private static final long serialVersionUID = 1L;

/** the bank account */

final BankAccountWithCheckedExceptions account;

/** create the exception */

public CheckedTransactionException(String message ,

BankAccountWithCheckedExceptions _account) {

super(message);

this.account = _account;

}

}

OOP with Java Thomas Weise 36/49

A Bank Account class using our new checked exception

Listing: The BankAccountWithCheckedExceptions class

/** A class for a bank account throwing a checked exception on error */

public final class BankAccountWithCheckedExceptions { // we declare the class final , we don't allow subclassing

/** the account number: clearly private , clearly never changes , so it should be final */

private final String accountNumber;

/** the amount of money in the account in cents: also private */

private long balance; // we use long , not double , because an account cannot have "fractional" cents

/** create a new bank account with balance 0 */

public BankAccountWithCheckedExceptions(final String number){ // number parameter is final , it cannot be changed inside constructor

this.accountNumber = number; // why would we want to change it anyway ..

}

/** get the account 's balance */

public final double getBalance () { // the method is marked as final. If the class was not already marked as final ,

return this.balance; // then it would still not be possible to override the method

}

/** add some money to the bank account

* @throws CheckedTransactionException if the amount if invalid */

public final void deposit(final long amount) throws CheckedTransactionException { // throws declarion necessary !!!

if((amount > 0L) && (amount < 1_000_000_00L)) { // sanity check: you can only deposit a positive amount

this.balance += amount; // of money , and anything above 1 million is probably an error

} else { // an invalid amount cannot be put into the account

throw new CheckedTransactionException("Invalid deposit amount " + amount , this); //$NON -NLS -1$

}

}

/** withdraw some money from the bank account

* @throws CheckedTransactionException if the amount if invalid */

public final void withdraw(final long amount) throws CheckedTransactionException { // throws declarion necessary !!!

if((amount > 0L) && (amount < 1_000_00L)) { // sanity check: you can only withdraw a positive amount of

this.balance -= amount; // money and at most 1000 RMB at once

} else {

throw new CheckedTransactionException("Invalid withdrawal amount " + amount , this); //$NON -NLS -1$

}

}

@Override

public final String toString () {

return '(' + this.accountNumber + ": " + this.balance + ')'; //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 37/49

A test of the BankAccountWithCheckedExceptionsTest class

Listing: The BankAccountWithCheckedExceptionsTest

/** testing the checked -exception throwing bank account with check exceptions: MUST have try... catch */

public class BankAccountWithCheckedExceptionsTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

BankAccountWithCheckedExceptions account;

account = new BankAccountWithCheckedExceptions("123"); //$NON -NLS -1$

try { // without this try ...catch , this class cannot be compiled anymore!

System.out.println(account); // (123: 0)

account.deposit (900 _000_00L);

System.out.println(account); // (123: 90000000)

account.deposit (11 _000_000_00L); // here , an exception is thrown and all further transactions are skipped

System.out.println(account); // never reached

account.withdraw (900 _00L); // never reached

System.out.println(account); // never reached

account.withdraw (3 _000_00L); // never reached

System.out.println(account); // never reached

} catch (CheckedTransactionException trans) { // Invalid deposit amount 1100000000 for bank account (123:

90000000)

System.out.println(trans.getMessage () + " for bank account " + trans.account); //$NON -NLS -1$

}

}

}

OOP with Java Thomas Weise 38/49

Ensuring Final Action

• Sometimes, we want to ensure that a specific action is always
performed

OOP with Java Thomas Weise 39/49

Ensuring Final Action

• Sometimes, we want to ensure that a specific action is always
performed, regardless whether a try block fails or not

OOP with Java Thomas Weise 39/49

Ensuring Final Action

• Sometimes, we want to ensure that a specific action is always
performed, regardless whether a try block fails or not

• For this, we can specify a finally block, either instead or after a

catch block

OOP with Java Thomas Weise 39/49

Ensuring Final Action

• Sometimes, we want to ensure that a specific action is always
performed, regardless whether a try block fails or not

• For this, we can specify a finally block, either instead or after a

catch block

• The code in this block will always be executed

OOP with Java Thomas Weise 39/49

Ensuring Final Action

• Sometimes, we want to ensure that a specific action is always
performed, regardless whether a try block fails or not

• For this, we can specify a finally block, either instead or after a

catch block

• The code in this block will always be executed

• (well, except if you kill the Java process irregularly, e.g., if you plug
the power cord from the PC. . .)

OOP with Java Thomas Weise 39/49

An example for a try ... finally block

Listing: An example for a try ... finally block

/** a try ... finally block */

public class TryFinally {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

int a = 0;

try {

System.out.println(a); // 0

a++;

System.out.println(a); // 1

a *= 3;

System.out.println(a); // 3

a /= 0;

System.out.println(a); // never reached

a -= 5;

System.out.println(a); // never reached

} finally {

System.out.println(a); // 3

}

}

}

OOP with Java Thomas Weise 40/49

An example for a try ... catch ... finally block

Listing: An example for a try ... catch ... finally block

/** a try ... catch ... finally block */

public class TryCatchFinally {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

int a = 0;

try {

System.out.println(a); // 0

a++;

System.out.println(a); // 1

a *= 3;

System.out.println(a); // 3

a /= 0;

System.out.println(a); // never reached

a -= 5;

System.out.println(a); // never reached

} catch(ArithmeticException error) {

System.out.println("Error: " + //$NON -NLS -1$

error.getMessage ()); // Error: / by zero

} finally {

System.out.println(a); // 3

}

}

}

OOP with Java Thomas Weise 41/49

Dealing with Resources

• The most common case where we definitely want to do something
regardless of how things go is when we deal with (operating system)
resources such as files or network sockets

OOP with Java Thomas Weise 42/49

Dealing with Resources

• The most common case where we definitely want to do something
regardless of how things go is when we deal with (operating system)
resources such as files or network sockets:

• Such resources are limited in the number and require lots of, well,
resources such as memory

OOP with Java Thomas Weise 42/49

Dealing with Resources

• The most common case where we definitely want to do something
regardless of how things go is when we deal with (operating system)
resources such as files or network sockets:

• Such resources are limited in the number and require lots of, well,
resources such as memory

• We definitely want to close any file we have opened, regardless
whether reading from it succeeded or not

OOP with Java Thomas Weise 42/49

Dealing with Resources

• The most common case where we definitely want to do something
regardless of how things go is when we deal with (operating system)
resources such as files or network sockets:

• Such resources are limited in the number and require lots of, well,
resources such as memory

• We definitely want to close any file we have opened, regardless
whether reading from it succeeded or not

• We definitely want to close all network connections we have opened,
regardless whether they went well or not

OOP with Java Thomas Weise 42/49

Dealing with Resources

• The most common case where we definitely want to do something
regardless of how things go is when we deal with (operating system)
resources such as files or network sockets:

• Such resources are limited in the number and require lots of, well,
resources such as memory

• We definitely want to close any file we have opened, regardless
whether reading from it succeeded or not

• We definitely want to close all network connections we have opened,
regardless whether they went well or not

• For this purpose, Java provides a special type of block:
try-with-resource

OOP with Java Thomas Weise 42/49

try-with-ressource

• a try-with-ressource statement looks quite similar to a normal
try/catch block

OOP with Java Thomas Weise 43/49

try-with-ressource

• a try-with-ressource statement looks quite similar to a normal
try/catch block

• But in its head, you allocate a resource and at its bottom, it will
automatically be disposed

OOP with Java Thomas Weise 43/49

try-with-ressource

• a try-with-ressource statement looks quite similar to a normal
try/catch block

• But in its head, you allocate a resource and at its bottom, it will
automatically be disposed

• In order to deal with a resource of type R , you do the following
try(R resource = ..create..){ ... }

OOP with Java Thomas Weise 43/49

try-with-ressource

• a try-with-ressource statement looks quite similar to a normal
try/catch block

• But in its head, you allocate a resource and at its bottom, it will
automatically be disposed

• In order to deal with a resource of type R , you do the following
try(R resource = ..create..){ ... }

• At the closing } , resource is disposed

OOP with Java Thomas Weise 43/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

OOP with Java Thomas Weise 44/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

• This interface only has one method, void close()throws Exception

OOP with Java Thomas Weise 44/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

• This interface only has one method, void close()throws Exception :

Listing: The abridged code of java.lang.AutoCloseable

package java.lang;

/**

* An object that may hold resources (such as file or socket handles) until it is closed. The {@link #close()}

* method of an {@code AutoCloseable} object is called automatically when exiting a {@code try}-with -resources

* block for which the object has been declared in the resource specification header. This construction ensures

* prompt release , avoiding resource exhaustion exceptions and errors that may otherwise occur.

* ...

*/

public interface AutoCloseable {

/**

* Closes this resource , relinquishing any underlying resources. This method is invoked automatically on

* objects managed by the {@code try}-with -resources statement.

*

* ...

*

* However , implementers of this interface are strongly encouraged to make their {@code close} methods

* idempotent.

*

* @throws Exception if this resource cannot be closed

*/

void close() throws Exception;

}

OOP with Java Thomas Weise 44/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

• This interface only has one method, void close()throws Exception

• The try-with-resource statement then is basically equivalent to
R resource = ...create...; try { ... } finally { resource.close(); resource = null; }

OOP with Java Thomas Weise 44/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

• The try-with-resource statement then is basically equivalent to
R resource = ...create...; try { ... } finally { resource.close(); resource = null; }

• All of Java’s resources classes implement either this interface directly,
or its sub-interface java.io.Closeable for I/O resources

OOP with Java Thomas Weise 44/49

How does that work?

• All resources which should be closeable via the try-with-resource
statement must implement the interface java.lang.AutoCloseable

• The try-with-resource statement then is basically equivalent to
R resource = ...create...; try { ... } finally { resource.close(); resource = null; }

• All of Java’s resources classes implement either this interface directly,
or its sub-interface java.io.Closeable for I/O resources:

Listing: The abridged code of java.io.Closeable

package java.io;

import java.io.IOException;

/** A {@code Closeable} is a source or destination of data that can be closed. The close method is invoked to

* release resources that the object is holding (such as open files). ... */

public interface Closeable extends AutoCloseable {

/** Closes this stream and releases any system resources associated with it. If the stream is already closed

* then invoking this method has no effect.

* <p> As noted in {@link AutoCloseable#close()}, cases where the close may fail require careful attention.

* It is strongly advised to relinquish the underlying resources and to internally mark the

* {@code Closeable} as closed , prior to throwing the {@code IOException }.

* @throws IOException if an I/O error occurs */

public void close () throws IOException;

}

OOP with Java Thomas Weise 44/49

java.util.Scanner s are Resources

• So far, we have used instances of java.util.Scanner to read numbers
from stdin

OOP with Java Thomas Weise 45/49

java.util.Scanner s are Resources

• So far, we have used instances of java.util.Scanner to read numbers
from stdin

Listing: The code of our Vertical Ball Throw example

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds? x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrow {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result and makes sure the ball stops at ground

}

}

OOP with Java Thomas Weise 45/49

java.util.Scanner s are Resources

• So far, we have used instances of java.util.Scanner to read numbers
from stdin

• java.util.Scanner s are Resources implementing java.io.Closeable

OOP with Java Thomas Weise 45/49

java.util.Scanner s are Resources

• So far, we have used instances of java.util.Scanner to read numbers
from stdin

• java.util.Scanner s are Resources implementing java.io.Closeable

Listing: The abridged code of our java.util.Scanner

package java.util;

import ...

/** A simple text scanner which can parse primitive types and strings using regular expressions. ... */

public final class Scanner implements Iterator <String >, Closeable {

private boolean closed = false;

private Readable source;

private boolean sourceClosed = false;

...

/** Closes this scanner. ... */

public void close () {

if (closed)

return;

if (source instanceof Closeable) {

try {

((Closeable)source).close ();

} catch (IOException ioe) {

lastException = ioe;

}

}

sourceClosed = true;

source = null;

closed = true;

}

}

OOP with Java Thomas Weise 45/49

java.util.Scanner s are Resources

• So far, we have used instances of java.util.Scanner to read numbers
from stdin

• java.util.Scanner s are Resources implementing java.io.Closeable

• That’s why we get warnings from the Eclipse compiler like “Resource
leak: ’scanner’ is never closed”

OOP with Java Thomas Weise 45/49

VerticalBallThrow using Scanner and try-with-resource

Listing: An example for a try-with-resource block

import java.util.InputMismatchException;

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds? x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

* Applying try -with -resource to close the scanner

*/

public class VerticalBallThrowTryWithResource {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try (Scanner scanner = new Scanner(System.in)) {// Scanner is resource , implements java.io.Closeable

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:");//$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result , makes sure the ball stops at ground

} // scanner.close is automatically invoked when the code reaches this point

}

}

OOP with Java Thomas Weise 46/49

VerticalBallThrow using Scanner, try-with-resource, catch

Listing: An example for a try-with-resource block and catch

import java.util.InputMismatchException;

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds? x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

* Applying try -with -resource to close the scanner

*/

public class VerticalBallThrowTryWithResourceAndCatch {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

try (Scanner scanner = new Scanner(System.in)) {// Scanner is resource , implements java.io.Closeable

System.err.println("Enter size x0 of personin m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result and makes sure the ball stops at ground

} catch (InputMismatchException error) { // scanner.close is always invoked , even if catch is executed

System.err.println("Sorry , you provided an incorrect input."); //$NON -NLS -1$

}

}

}

OOP with Java Thomas Weise 47/49

Summary

• We have learned about exceptions to deal with errors in programs

• Exceptions are special objects generated if something goes wrong,
holding information about what and where the fault has happened

• We should check data as much as possible and throw exceptions as
soon as possible to prevent greater mischief

• If an exception is thrown, the code afterwards is skipped and control
passes to the next fitting catch statement

• We can catch exception objects to use the error information

• We can make sure that certain code is always executed by putting it
into finally

• The try-with-resource statement is a special form of the finally

statement to always close resources

• We can create our own exception classes

• We distinguish checked or unchecked exceptions

OOP with Java Thomas Weise 48/49

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 49/49

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Policy of Dealing with Faulty Data
	Why should we crash?
	How should we crash?

	Exceptions
	Exceptions
	Example for integer division by 0
	Example for a wrong class cast
	Example for working with a null pointer
	Accessing an array element outside the valid range
	How to Read Exceptions
	Reading Exceptions
	Reading Exceptions
	Reading Exceptions
	Reading Exceptions
	Debugging

	Catching and Throwing Exceptions
	Catching Exceptions
	Catching Exceptions
	An example for catching and processing an exception
	Throwing Exceptions
	An example for computing factorials
	Computing factorials and throwing exceptions
	Catching Multiple Different Exceptions
	Computing factorials and catching multiple exceptions

	Making our Own Exceptions
	Making our Own Exceptions
	The original BankAccount class
	A test of the BankAccount class
	What is wrong
	A new type of exception: TransactionException
	A Bank Account class using our new exception
	A test of the BankAccountWithExceptions class
	A test of the BankAccountWithExceptions class with try ... catch

	Checked Exceptions
	Awareness of Exceptions
	Checked Exceptions
	A new type of checked exceptions: CheckedTransactionException
	A Bank Account class using our new checked exception
	A test of the BankAccountWithCheckedExceptionsTest class

	try … finally
	Ensuring Final Action
	An example for a try ... finally block
	An example for a try ... catch ... finally block

	try-with-ressource
	Dealing with Resources
	try-with-ressource
	How does that work?
	java.util.Scanners are Resources
	VerticalBallThrow using Scanner and try-with-resource
	VerticalBallThrow using Scanner, try-with-resource, catch

	Summary
	Summary

	Presentation End

