
OOP with Java
24. Interfaces

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Interfaces: Definition, Usage

3 Default Methods

4 Interfaces in Java

5 Summary

OOP with Java Thomas Weise 2/21

w
e
b
s
it
e

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

• This means that if we want to define multiple independent APIs (in
different abstract classes) and implement them in one class

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

• This means that if we want to define multiple independent APIs (in
different abstract classes) and implement them in one class, we have
a problem

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

• This means that if we want to define multiple independent APIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

• This means that if we want to define multiple independent APIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

• But this is actually not an uncommon case

OOP with Java Thomas Weise 3/21

Introduction

• With abstract classes we can now define an “API” which can be
implemented by subclasses in different ways

• In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which

has none)

• This means that if we want to define multiple independent APIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

• But this is actually not an uncommon case

• For this, there exist interfaces

OOP with Java Thomas Weise 3/21

Interfaces

• An interface is a type, similar to a class

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

• Interfaces are declared in the same way as classes, using the keyword
interface instead of class

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

• Interfaces are declared in the same way as classes, using the keyword
interface instead of class

• An interface A with one method void print() is defined as

interface A { void print(); }

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

• Interfaces are declared in the same way as classes, using the keyword
interface instead of class

• An interface A with one method void print() is defined as

interface A { void print(); }

• Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

• Interfaces are declared in the same way as classes, using the keyword
interface instead of class

• An interface A with one method void print() is defined as

interface A { void print(); }

• Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

• An interface A can be implemented by a class B by declaring it as
class B implements A and implementing (overriding) all of the
interface methods

OOP with Java Thomas Weise 4/21

Interfaces

• An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

• For now, let us just focus on method signatures, i.e., abstract

methods

• Interfaces are declared in the same way as classes, using the keyword
interface instead of class

• An interface A with one method void print() is defined as

interface A { void print(); }

• Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

• An interface A can be implemented by a class B by declaring it as
class B implements A and implementing (overriding) all of the
interface methods

• A class can implement any number of interfaces

OOP with Java Thomas Weise 4/21

An example for an interface

Listing: An example for an StringFunction

/** an interface for string functions */

public interface StringFunction {

/** compute the result of the string function for a given input

* @param in the input string

* @return the result of the string function */

public String compute(final String in);

/** a static function which maps all the strings in an array and

* prints them

* @param strings the strings

* @param func the mapper function

*/

public static void mapAndPrint(String [] strings , StringFunction func) {

for(String string : strings) { // fast read -only iteration over array

System.out.print(func.compute(string)); // print function result

System.out.print(' '); // print space

}

}

}

OOP with Java Thomas Weise 5/21

An example implementation of the interface

Listing: An example implementation of the StringFunction

/** a string function just rendering each string as upper case */

public class UpperCase implements StringFunction {

/** convert a string to upper case */

@Override

public final String compute(String in) {

return in.toUpperCase (); // convert String in to upper case: "a" -> "A"

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

StringFunction.mapAndPrint(new String [] { // allocate text , apply function

"Hello", "World!", "It's", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"me ,", "your", "good", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"old", "teacher." //$NON -NLS -1$//$NON -NLS -2$

}, new UpperCase ()); // HELLO WORLD! IT'S ME , YOUR GOOD OLD TEACHER.

}

}

OOP with Java Thomas Weise 6/21

Implementation of the interface based on HashMap

Listing: Implementation of the interface based on HashMap

import java.util.HashMap;

/** A map function transforms a string according to a map. This would not be

* possible using an abstract base class , since then we could not extend HashMap */

public class MapFunction extends HashMap <String , String > implements StringFunction {

/** the serial version uid , do not worry about this , just ignore it */

private static final long serialVersionUID = 1L;

/** If a mapping is defined for the string in, return the mapping.

* Otherwise , return the string in.*/

@Override

public final String compute(String in) { // Obtain the mapping for "in" stored in

String replacement = this.get(in); // this hash map. If there is one stored ,

return (replacement != null) ? replacement : in; // return it, otherwise return "in"

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

MapFunction map = new MapFunction (); // create the map function

map.put("teacher.", "Prof. Weise."); //$NON -NLS -1$//$NON -NLS -2$

map.put("me ,", "your teacher ,"); //$NON -NLS -1$//$NON -NLS -2$

StringFunction.mapAndPrint(new String [] {//

"Hello", "World!", "It's", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"me ,", "your", "good", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"old", "teacher." //$NON -NLS -1$//$NON -NLS -2$

}, map); // Hello World! It's your teacher , your good old Prof. Weise.

}

}
OOP with Java Thomas Weise 7/21

An example for a generic interface

Listing: A generic interface allowing to add elements

/** a generic interface allowing to add elements.

* @param <T> the type of elements to add */

public interface Addable <T> {

/** add a value */

public void addAtEnd(final T value);

}

OOP with Java Thomas Weise 8/21

An class implementing two interfaces

Listing: An class implementing two interfaces

import java.util.ArrayList;

/** a class implementing two interfaces , StringFunction and Addable <StringFunction >, on top of class ArrayList */

public class ConcatenatedFunction extends ArrayList <StringFunction > implements StringFunction , Addable <StringFunction > {

/** the serial version uid , do not worry about this , just ignore it */

private static final long serialVersionUID = 1L;

/** convert a string by applying all functions one by one */

@Override

public final String compute(String in) {

String current = in; // start at the current string c

for(StringFunction function : this) { // for each function f in this ArrayList

current = function.compute(current); // set c←− f(c)
}

return current; // return the resulting string

}

/** implement addAtEnd from interface Addable */

@Override

public void addAtEnd(StringFunction value) {

this.add(value); // add value to the list of functions to carry out

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

MapFunction map = new MapFunction (); // create a MapFunction

map.put("teacher.", "Prof. Weise."); // replace "teacher ." with "Prof. Weise" //$NON -NLS -1$//$NON -NLS -2$

map.put("me ,", "your teacher ,"); // replace "me ," with "your teacher" //$NON -NLS -1$//$NON -NLS -2$

ConcatenatedFunction func = new ConcatenatedFunction (); // create a concatenated function

func.addAtEnd(map); // tell it to first perform the map function

func.addAtEnd(new UpperCase ()); // and then to convert the result to upper case

StringFunction.mapAndPrint(new String [] { // allocate an array containing 8 strings and appy the function to them

"Hello", "World!", "It's", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"me ,", "your", "good", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"old", "teacher." //$NON -NLS -1$//$NON -NLS -2$

}, func); // HELLO WORLD! IT'S YOUR TEACHER , YOUR GOOD OLD PROF. WEISE.

}

} OOP with Java Thomas Weise 9/21

An example for an interface subclassing another one

Listing: An example for an interface subclassing another one

/** An interface extending StringFunction by an additional function */

public interface InvertibleStringFunction extends StringFunction {

/** get a string function which is the inverse of this one , i.e.,

* if this function maps "A" to "B", the resulting function should

* map "B" to "A" */

public StringFunction invert ();

}

OOP with Java Thomas Weise 10/21

An class implementing that interface

Listing: An class implementing that interface

import java.util.HashMap;

/** A map function transforms a string according to a map , able to create an inverse function.

* This class implements InvertibleStringFunction and thus also implements its super -interface

* StringFunction. */

public class ReversibleMapFunction extends HashMap <String , String > implements InvertibleStringFunction {

/** the serial version uid , do not worry about this , just ignore it */

private static final long serialVersionUID = 1L;

/** If a mapping is defined for the string in, return the mapping.

* Otherwise , return the string in.*/

@Override

public final String compute(String in) { // Obtain the mapping for "in" stored in

String replacement = this.get(in); // this hash map. If there is one stored ,

return (replacement != null) ? replacement : in; // return it, otherwise return "in"

}

/** return the inverse function (notice the more specific return type) */

@Override

public ReversibleMapFunction invert () { // create an inverse function

ReversibleMapFunction inverse = new ReversibleMapFunction (); // allocate the object

for(Entry <String ,String > entry : this.entrySet ()) { // iterate over all key -value entries in the map

inverse.put(entry.getValue (), entry.getKey ()); // for each A -> B mapping in this function

} // add a B -> A mapping in the new function

return inverse; // and return the result

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

ReversibleMapFunction map = new ReversibleMapFunction (); // create the reversible map function

map.put("teacher.", "Prof. Weise."); // replace "teacher ." with "Prof. Weise" //$NON -NLS -1$//$NON -NLS -2$

map.put("me ,", "your teacher ,"); // replace "me ," with "your teacher" //$NON -NLS -1$//$NON -NLS -2$

ConcatenatedFunction func = new ConcatenatedFunction (); // create a concatenated function

func.add(map); // add function

func.add(map.invert ()); // add inverse function

StringFunction.mapAndPrint(new String [] {//

"Hello", "World!", "It's", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"me ,", "your", "good", //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

"old", "teacher." //$NON -NLS -1$//$NON -NLS -2$

}, func); // Hello World! It's me , your good old teacher.

}

}
OOP with Java Thomas Weise 11/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot
• classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot
• classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

• classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot
• classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

• classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

• classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot
• classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

• classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

• classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

• classes can implement methods, while interfaces cannot

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

• So we have seen quite a few examples for using interfaces.

• Interfaces and abstract classes have a lot in common:
• they can have method specifications (signatures) without implementation
• they can have static methods and public static final variables

• they can extend another class / interface, respectively
• they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
• they can be generic
• a variable of a class type can be assigned as value any of the type’s sub-classes and

a variable of an interface type can be assigned as value any of the type’s
sub-interfaces

• But they also differ in many ways:
• classes can have instance variables, interfaces cannot
• classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

• classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

• classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

• classes can implement methods, while interfaces cannot . . . well, actually . . .

OOP with Java Thomas Weise 12/21

Default Methods

• Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

OOP with Java Thomas Weise 13/21

Default Methods

• Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

• This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

OOP with Java Thomas Weise 13/21

Default Methods

• Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

• This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

• This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

OOP with Java Thomas Weise 13/21

Default Methods

• Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

• This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

• This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

• Default implementations of methods are declared in the form
public default ...rest-of-signature and then must have a function
body

OOP with Java Thomas Weise 13/21

Default Methods

• Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

• This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

• This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

• Default implementations of methods are declared in the form
public default ...rest-of-signature and then must have a function
body

• They can still be implemented by classes implementing the interface,
but do not need to be implemented

OOP with Java Thomas Weise 13/21

An interface with a default method

Listing: An interface with a default method

/** an interface allowing us to read some text */

public interface TextSource {

/** read a single character , returning -1 if no more text is available */

public int readChar ();

/** read a full line of text , returns a non -empty string or, if there is no

* more text , {@code null} */

public default String readLine () {

int chr;

String line = "";//$NON -NLS -1$

for (;;) { // repeat until we got a line

switch (chr = this.readChar ()) { // read the next character (into variable chr)

case '\n': // newline

case '\r': { // (used in windows \r\n)

line = line.trim(); // remove leading and trailing spaces

if (line.length () <= 0) { // if line is empty ,

continue; // then let's try again (deal with \r\n)

} // otherwise ...

} // no return/break: fall -through to handling -1

//$FALL -THROUGH$ // falling through from above

case -1: { // -1 means we have reached the end of the text

return (line.length () <= 0) ? null : line; // if line is empty , return null

} // otherwise return line. null only happens at end

default: { // if we get here , there was neither \r, \n\ nor -1

line += ((char) chr); // so we add the character we read to the line

}

}

}

}

}
OOP with Java Thomas Weise 14/21

An implementation of this interface

Listing: An implementation of this interface

/** a string -based text source */

public class StringTextSource implements TextSource {

/** the string */

String string;

/** the current index */

int index;

/** create the text source */

StringTextSource(final String _string) {

this.string = _string; // store the string , index will be 0

}

/** read a character */

@Override

public int readChar () {

if (this.index < this.string.length ()) { // if we did not reach end of string ,

return this.string.charAt(this.index ++); // return character at index , then increase index

}

return -1; // we have reached end: return -1

}

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

TextSource source = new StringTextSource(// create text source with 3 non -white -space lines of text as 1 string

"Hello World!\n It is me!\n \r\nYour friendly teacher!"); //$NON -NLS -1$

String current;

while ((current = source.readLine ()) != null) { // as long as we did not yet reach the end

System.out.println(current); // print the current string

}

}

}

OOP with Java Thomas Weise 15/21

Interfaces for APIs

• Interfaces are a great way to specify an API

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

• The implementors of such an API can use whatever base classes and
external libraries they like

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

• The implementors of such an API can use whatever base classes and
external libraries they like

• They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

• The implementors of such an API can use whatever base classes and
external libraries they like

• They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

• APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

• The implementors of such an API can use whatever base classes and
external libraries they like

• They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

• APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

• A user can switch from one implementation to another one without
problems

OOP with Java Thomas Weise 16/21

Interfaces for APIs

• Interfaces are a great way to specify an API

• The users of such an API just see the interfaces and do not need to
care about the implementation

• They will never feel tempted to look into code, instance variables, etc,
since there are none

• The implementors of such an API can use whatever base classes and
external libraries they like

• They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

• APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

• A user can switch from one implementation to another one without
problems

• Java’s standard classes massively make use of interfaces

OOP with Java Thomas Weise 16/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

• java.util.Set is the same for sets and java.util.Map for maps

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

• java.util.Set is the same for sets and java.util.Map for maps

• java.util.Collection is a super-interface of java.util.Set and

java.util.List defining just a collection of objects

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

• java.util.Set is the same for sets and java.util.Map for maps

• java.util.Collection is a super-interface of java.util.Set and

java.util.List defining just a collection of objects

• java.util.Iterator represents a one-time iteration over a sequence

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

• java.util.Set is the same for sets and java.util.Map for maps

• java.util.Collection is a super-interface of java.util.Set and

java.util.List defining just a collection of objects

• java.util.Iterator represents a one-time iteration over a sequence

• java.lang.Iterable can be implemented by anything which can be

iterated over (which can create an instance of java.util.Iterator

on its elements)

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

• The Java collection framework is actually specified as set of interfaces:
• java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

• java.util.Set is the same for sets and java.util.Map for maps

• java.util.Collection is a super-interface of java.util.Set and

java.util.List defining just a collection of objects

• java.util.Iterator represents a one-time iteration over a sequence

• java.lang.Iterable can be implemented by anything which can be

iterated over (which can create an instance of java.util.Iterator

on its elements), it is a super-interface of java.util.Collection

• Java supports java.lang.Iterable : for(T x: ...) works not just

with arrays, but also iterates over an iterator provided by Iterable

OOP with Java Thomas Weise 17/21

Using Collections and the interface java.util.Iterator

Listing: Using Collections and the interface java.util.Iterator

import java.util.ArrayList;

import java.util.Iterator;

/** we use ArrayList and an Iterator on its elements */

public class IteratorTest {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

ArrayList <String > list = new ArrayList <>();

list.add("Hello"); list.add("World!"); //$NON -NLS -1$//$NON -NLS -2$

list.add("It's"); list.add("me"); //$NON -NLS -1$//$NON -NLS -2$

list.add("your"); list.add("teacher."); //$NON -NLS -1$//$NON -NLS -2$

// create the iterator: this method is inherited from Iterable

Iterator <String > iterator = list.iterator ();

while(iterator.hasNext ()) { // hasNext returns true = there are more elements

System.out.print(iterator.next()); // next returns the next element

System.out.print(' ');

} // Hello World! It's me your teacher.

}

}

OOP with Java Thomas Weise 18/21

Using the Simplified Syntax for Iterations

Listing: Using the Simplified Syntax for Iterations via java.lang.Iterable

import java.util.ArrayList;

import java.util.Iterator;

/** we use ArrayList and test the syntactical sugar; equivalent to IteatorTest */

public class IterableTest {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

ArrayList <String > list = new ArrayList <>();

list.add("Hello"); list.add("World!"); //$NON -NLS -1$//$NON -NLS -2$

list.add("It's"); list.add("me"); //$NON -NLS -1$//$NON -NLS -2$

list.add("your"); list.add("teacher."); //$NON -NLS -1$//$NON -NLS -2$

// this creates an iterator by using list.iterator , and then iterates

for(String string : list) { // over the list , storing the elements in string

System.out.print(string); // one by one , and here we print them

System.out.print(' ');

} // Hello World! It's me your teacher.

}

}

OOP with Java Thomas Weise 19/21

Summary

• We have learned about interfaces

• Interfaces allow us to specify API contracts in form of method
signatures which must be implemented by an implementor and can be
used by a user (both programmers, obviously)

• Interfaces have many similarities with classes, but also several
differences

• Interfaces cannot be instantiated directly (well, actually . . . but let’s
leave this for later) and instead need to be implemented

• Interfaces can inherit from multiple other interfaces

• Classes can implement multiple interfaces

• Since Java 8, interfaces can have default method implementations

• Java massively uses interfaces in its API, for example in the
Collections API

OOP with Java Thomas Weise 20/21

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 21/21

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Interfaces: Definition, Usage
	Interfaces
	An example for an interface
	An example implementation of the interface
	Implementation of the interface based on HashMap
	An example for a generic interface
	An class implementing two interfaces
	An example for an interface subclassing another one
	An class implementing that interface
	Interfaces vs. Classes

	Default Methods
	Default Methods
	An interface with a default method
	An implementation of this interface

	Interfaces in Java
	Interfaces for APIs
	Example: Interfaces and Collections
	Using Collections and the interface java.util.Iterator
	Using the Simplified Syntax for Iterations

	Summary
	Summary

	Presentation End

