LR B

HEFEI UNIVERSITY

OOP with Java

24. Interfaces

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://iao.hfuu.edu.cn

& he
i HALA

AR R /2R
HEARA

& A AEACEE 7T
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction
@ Interfaces: Definition, Usage
@ Default Methods

@ Interfaces in Java

@ Summary

OOP with Java Thomas Weise

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class

has exactly one super-class that it extends (except for Object , which
has none)

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which
has none)

e This means that if we want to define multiple independent APlIs (in
different abstract classes) and implement them in one class

Introduction %\

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which
has none)

e This means that if we want to define multiple independent APlIs (in
different abstract classes) and implement them in one class, we have
a problem

OOP with Java Thomas Weise 3/21

Introduction %\

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which
has none)

e This means that if we want to define multiple independent APlIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

OOP with Java Thomas Weise 3/21

Introduction %\

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which
has none)

e This means that if we want to define multiple independent APlIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

e But this is actually not an uncommon case

OOP with Java Thomas Weise 3/21

Introduction %\

e With abstract classes we can now define an “API" which can be
implemented by subclasses in different ways

e In Java, we have “single inheritance”, which means that each class
has exactly one super-class that it extends (except for Object , which
has none)

e This means that if we want to define multiple independent APlIs (in
different abstract classes) and implement them in one class, we have
a problem, because this is not possible

e But this is actually not an uncommon case

e For this, there exist interfaces

OOP with Java Thomas Weise 3/21

e An interface is a type, similar to a class

e An interface is a type, similar to a class, that can contain only
constants

e An interface is a type, similar to a class, that can contain only
constants, method signatures

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

e For now, let us just focus on method signatures, i.e., abstract
methods

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

e For now, let us just focus on method signatures, i.e., abstract
methods

o Interfaces are declared in the same way as classes, using the keyword
interface instead of class

An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

For now, let us just focus on method signatures, i.e., abstract
methods

Interfaces are declared in the same way as classes, using the keyword
interface instead of class

An interface A with one method void print() is defined as

interface A { void print(); }

Interfaces

”

>
<

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

e For now, let us just focus on method signatures, i.e., abstract
methods

o Interfaces are declared in the same way as classes, using the keyword
interface instead of class

e An interface A with one method void print() is defined as

interface A { void print(); }

o Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

OOP with Java Thomas Weise 4/21

Interfaces %\

1AQ

e An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

e For now, let us just focus on method signatures, i.e., abstract
methods

o Interfaces are declared in the same way as classes, using the keyword
interface instead of class

e An interface A with one method void print() is defined as
interface A { void print(); }

o Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

e An interface A can be implemented by a class B by declaring it as
class B implements A and implementing (overriding) all of the
interface methods

OOP with Java Thomas Weise 4/21

Interfaces %\

1AQ

An interface is a type, similar to a class, that can contain only
constants, method signatures, default methods, static methods, and
nested types

For now, let us just focus on method signatures, i.e., abstract
methods

Interfaces are declared in the same way as classes, using the keyword
interface instead of class

An interface A with one method void print() is defined as
interface A { void print(); }

Like classes, interfaces can inherit from each other via extends , but
an interface can have multiple super-interfaces

An interface A can be implemented by a class B by declaring it as
class B implements A and implementing (overriding) all of the
interface methods

A class can implement any number of interfaces

OOP with Java Thomas Weise 4/21

An example for an interface %\’

1AQ

Listing: An example for an StringFunction

public interface StringFunction {

public String compute(final String in);

public static void mapAndPrint (String[] strings, StringFunction func) {
for (String string : strings) {
System.out.print (func.compute (string));
System.out.print (', ');
¥
¥
¥

OOP with Java Thomas Weise 5/21

An example implementation of the interface %\’

1AQ

Listing: An example implementation of the StringFunction

public class UpperCase implements StringFunction {

@0verride
public final String compute(String in) {
return in.toUpperCase();

}

public static final void main(String[] args) {
StringFunction.mapAndPrint (new Stringl[] {
"Hello", "World!", "It's",

"me,", ‘"your", "good",
"old", "teacher."
}, new UpperCase());

}
}

OOP with Java Thomas Weise 6/21

Implementation of the interface based on HashMap %\’

1AQ

Listing: Implementation of the based on HashMap

import java.util.HashMap;

public class MapFunction extends HashMap<String, String> implements StringFunction {

private static final long serialVersionUID = 1L;

@Qverride
public final String compute(String in) {
String replacement = this.get(in);
return (replacement != null) ? replacement : in;

}

public static final void main(String[] args) {
MapFunction map = new MapFunction();
map.put ("teacher.", "Prof. Weise.");
map .put ("me,", "your,teacher,");

StringFunction.mapAndPrint (new String[] {

"Hello", "World!", "It's",
"me," "your", "good",
"o0ld", "teacher."
}, map);
—_— 7 —

OOP with Java Thomas Weise 7/21

An example for a generic interface %\’

Listing: A generic allowing to add elements

/** a generic interface allowing to add elements.
* @param <T> the type of elements to add */
public interface Addable<T> {

/** add a value */
public void addAtEnd(final T value);

OOP with Java Thomas Weise 8/21

An class implementing two interfaces

AQ!

Listi class implementing two interfaces

import java.util.Arraylist;

public class ConcatenatedFunction extends ArrayList<StringFunction> implements
private static final long serialVersionUID = 1L;
@O0verride
public final String compute(String in) {
String current = in;

for(StringFunction function : this) {
current = function.compute(current);

return current;

}

Q0verride

public void addAtEnd (StringFunction value) {
this.add(value);

}

public static final void main(String[] args) {
MapFunction map = new MapFunction();
map.put ("teacher.", "Prof. Weise.");
map.put ("me,", "youryteacher,");

ConcatenatedFunction func = new ConcatenatedFunction();
func.addAtEnd (map) ;
func.addAtEnd (new UpperCase());

StringFunction.mapAndPrint (new String[] {
"Hello", "World!", "It's",
"me,", "your", "good",
"old", “teacher."
}, func);
}
OOP with Java Thomas Weise

StringFunction,

Addable <StringFunction> {

9/21

An example for an interface subclassing another one %\’
IAG>

Listing: An example for an interface subclassing another one

/** An interface extending StringFunction by an additional function */
public interface InvertibleStringFunction extends StringFunction {

/%% get a string function which <¢s the inverse of this one, t.e.,
* 4f this function maps "A" to "B", the resulting function should
* map "B" to "A" */

public StringFunction invert();

}

OOP with Java Thomas Weise 10/21

An class implementing that interface

class implementing that interface

import java.util.HashMap;

public class ReversibleMapFunction extends HashMap<String, String> implements InvertibleStringFunction {

private static final long serialVersionUID = 1iL;

e0verride
public final String compute(String in) {
String replacement = this.get(in);
return (replacement != null) ? replacement : in;

b

@Override
public ReversibleMapFunction imvert() {
ReversibleMapFunction inverse = new ReversibleMapFunction();
for (Entry<String,String> entry : this.entrySet()) {
inverse.put(entry.getValue(), entry.getKey());

return inverse;

}

public static final void main(String(] args) {
ReversibleMapFunction map = new ReversibleMapFunction();
map.put("teacher.", "Prof. Weise.");
nap.put ("me, ", "your,teacher,");
ConcatenatedFunction func = new ConcatematedFunction();
func.add (map) ;
func.add(map.invert ());

StringFunction.mapAndPrint (new String(] {

"Hello", "World!", "It's",
"me,", “your", "good",
"old", "teacher."
}, func);
¥

OOP with Java Thomas Weise 11/21

e So we have seen quite a few examples for using interfaces.

e So we have seen quite a few examples for using interfaces.
o Interfaces and abstract classes have a lot in common

e So we have seen quite a few examples for using interfaces.

e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation

e So we have seen quite a few examples for using interfaces.

e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables

e So we have seen quite a few examples for using interfaces.

e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables

o they can extend another class / interface, respectively

e So we have seen quite a few examples for using interfaces.

e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation

e they can have static methods and public static final variables

o they can extend another class / interface, respectively

o they can have arbitrarily many subclasses / sub-interfaces extending them, respectively

e So we have seen quite a few examples for using interfaces.

e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation

e they can have static methods and public static final variables

o they can extend another class / interface, respectively

o they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
o they can be generic

e So we have seen quite a few examples for using interfaces.
o Interfaces and abstract classes have a lot in common:

they can have method specifications (signatures) without implementation

they can have static methods and public static final variables

they can extend another class / interface, respectively

they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic

a variable of a class type can be assigned as value any of the type's sub-classes and
a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e So we have seen quite a few examples for using interfaces.
o Interfaces and abstract classes have a lot in common:

they can have method specifications (signatures) without implementation

they can have static methods and public static final variables

they can extend another class / interface, respectively

they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic

a variable of a class type can be assigned as value any of the type's sub-classes and
a variable of an interface type can be assigned as value any of the type's
sub-interfaces

o But they also differ in many ways

e So we have seen quite a few examples for using interfaces.
o Interfaces and abstract classes have a lot in common:

they can have method specifications (signatures) without implementation

they can have static methods and public static final variables

they can extend another class / interface, respectively

they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic

a variable of a class type can be assigned as value any of the type's sub-classes and
a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e But they also differ in many ways:

classes can have instance variables, interfaces cannot

Interfaces vs. Classes

W

B>
[/

e So we have seen quite a few examples for using interfaces.
e Interfaces and abstract classes have a lot in common:
e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables
they can extend another class / interface, respectively
they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic
a variable of a class type can be assigned as value any of the type's sub-classes and

a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e But they also differ in many ways:

e classes can have instance variables, interfaces cannot
o classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

W

>
<

e So we have seen quite a few examples for using interfaces.
e Interfaces and abstract classes have a lot in common:

e they can have method specifications (signatures) without implementation

e they can have static methods and public static final variables
they can extend another class / interface, respectively
they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic
a variable of a class type can be assigned as value any of the type's sub-classes and
a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e But they also differ in many ways:
e classes can have instance variables, interfaces cannot
o classes can have private , package-private, or protected methods, while interfaces
can have only public methods (regardless whether static or not)

o classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

W

>
<

e So we have seen quite a few examples for using interfaces.
e Interfaces and abstract classes have a lot in common:
e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables
they can extend another class / interface, respectively
they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic
a variable of a class type can be assigned as value any of the type's sub-classes and

a variable of an interface type can be assigned as value any of the type's
sub-interfaces
e But they also differ in many ways:

e classes can have instance variables, interfaces cannot
o classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

o classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

o classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

W

>
<

e So we have seen quite a few examples for using interfaces.
e Interfaces and abstract classes have a lot in common:
e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables
they can extend another class / interface, respectively
they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic
a variable of a class type can be assigned as value any of the type's sub-classes and

a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e But they also differ in many ways:

e classes can have instance variables, interfaces cannot
o classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

o classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

o classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

e classes can implement methods, while interfaces cannot

OOP with Java Thomas Weise 12/21

Interfaces vs. Classes

W

>
<

e So we have seen quite a few examples for using interfaces.
e Interfaces and abstract classes have a lot in common:
e they can have method specifications (signatures) without implementation
e they can have static methods and public static final variables
they can extend another class / interface, respectively
they can have arbitrarily many subclasses / sub-interfaces extending them, respectively
they can be generic
a variable of a class type can be assigned as value any of the type's sub-classes and

a variable of an interface type can be assigned as value any of the type's
sub-interfaces

e But they also differ in many ways:

e classes can have instance variables, interfaces cannot
o classes can have private , package-private, or protected methods, while interfaces

can have only public methods (regardless whether static or not)

o classes must extend exactly one superclass, interfaces can extend arbitrarily many
super-interfaces (or none), but no classes

o classes can implement arbitrarily many interfaces, while interfaces cannot implement
anything

o classes can implement methods, while interfaces cannot ... well, actually ...

OOP with Java Thomas Weise 12/21

e Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

e Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

e This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

Default Methods §\

e Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

e This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

e This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

OOP with Java Thomas Weise 13/21

Default Methods §\

1AQ

e Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

e This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

e This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

e Default implementations of methods are declared in the form

public default ...rest-of-signature and then must have a function
body

OOP with Java Thomas Weise 13/21

Default Methods §\

1AQ

e Since Java 8, an interface can not just specify a method’s
signature, but also a default implementation

e This is mainly intended for situations where an interface provides
some very basic functionality and higher-level functions on top of that
which could be implemented only using the basic functions

e This higher-level functionality then goes into a default method and in
an implementing class, we just need to override the methods with the
basic functionality

e Default implementations of methods are declared in the form

public default ...rest-of-signature and then must have a function
body

e They can still be implemented by classes implementing the interface,
but do not need to be implemented

OOP with Java Thomas Weise 13/21

An interface with a defauit method

Listin

n interface wi

public interface TextSource {

public int readChar();

public default String readLine() {
int chr;

String line = "";

for (;;) {
switch (chr = this.readChar()) {
case '\n':
case '\r': {
line = line.trim();
if (line.length() <= 0) {
continue;

case -1: {
return (line.length() <= 0) 7 null : line;

default: {
line += ((char) chr);
3
}
¥
I
}
OOP with Java Thomas Weise

14/21

An implementation of this interface }\o

Listin n implementation of this interface

public class StringTextSource implements TextSource {
String string;
int index;
StringTextSource (final String _string) {

this.string = _string;

}

@Override
public int readChar () {
if (this.index < this.string.length()) {
return this.string.charAt(this.index++);

return -1;

public static final void main(String[] args) {

TextSource source = new StringTextSource(
"Hello,World!\n Ity is me!\n,\r\nYour friendly teacher!");

String current;
while ((curremt = source.readLine()) != null) {
System.out.println(current);

OOP with Java Thomas Weise 15/21

o Interfaces are a great way to specify an API

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

o They will never feel tempted to look into code, instance variables, etc,
since there are none

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

o They will never feel tempted to look into code, instance variables, etc,
since there are none

e The implementors of such an APl can use whatever base classes and
external libraries they like

Interfaces for APls %()

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

e They will never feel tempted to look into code, instance variables, etc,
since there are none

e The implementors of such an APl can use whatever base classes and
external libraries they like

e They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

OOP with Java Thomas Weise 16/21

Interfaces for APls §\

1AQ

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

e They will never feel tempted to look into code, instance variables, etc,
since there are none

e The implementors of such an APl can use whatever base classes and
external libraries they like

e They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

o APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

OOP with Java Thomas Weise 16/21

Interfaces for APls §\

1AQ

o Interfaces are a great way to specify an API

e The users of such an API just see the interfaces and do not need to
care about the implementation

e They will never feel tempted to look into code, instance variables, etc,
since there are none

e The implementors of such an APl can use whatever base classes and
external libraries they like

e They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

o APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

e A user can switch from one implementation to another one without
problems

OOP with Java Thomas Weise 16/21

Interfaces for APlIs §\

Interfaces are a great way to specify an API

The users of such an API just see the interfaces and do not need to
care about the implementation

They will never feel tempted to look into code, instance variables, etc,
since there are none

The implementors of such an APl can use whatever base classes and
external libraries they like

They only need to make sure to fulfill the interface specification and
don’t need to worry about anything else

APIs specified via interfaces can be implemented several times, using
different approaches and classes, by different people

A user can switch from one implementation to another one without
problems

Java's standard classes massively make use of interfaces

OOP with Java Thomas Weise 16/21

e The Java collection framework is actually specified as set of interfaces

e The Java collection framework is actually specified as set of interfaces:
e java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

e The Java collection framework is actually specified as set of interfaces:
e java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

e java.util.Set is the same for sets and java.util.Map for maps

e The Java collection framework is actually specified as set of interfaces:
e java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList
e java.util.Set is the same for sets and java.util.Map for maps

e java.util.Collection is a super-interface of java.util.Set and

java.util.List defining just a collection of objects

1AQ

Example: Interfaces and Collections %\’

e The Java collection framework is actually specified as set of interfaces:
e java.util.List is an interface describing the list functionality and is
implemented (indirectly) by, e.g., java.util.ArrayList
e java.util.Set is the same for sets and java.util.Map for maps
e java.util.Collection is a super-interface of java.util.Set and
java.util.List defining just a collection of objects

e java.util.Iterator represents a one-time iteration over a sequence

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

”

>
<

e The Java collection framework is actually specified as set of interfaces:
e java.util.List is an interface describing the list functionality and is

implemented (indirectly) by, e.g., java.util.ArrayList

e java.util.Set is the same for sets and java.util.Map for maps

e java.util.Collection is a super-interface of java.util.Set and
java.util.List defining just a collection of objects

e java.util.Iterator represents a one-time iteration over a sequence

e java.lang.Iterable can be implemented by anything which can be
iterated over (which can create an instance of java.util.Iterator

on its elements)

OOP with Java Thomas Weise 17/21

Example: Interfaces and Collections

”

>
<

e The Java collection framework is actually specified as set of interfaces:

e java.util.List is an interface describing the list functionality and is
implemented (indirectly) by, e.g., java.util.ArrayList

e java.util.Set is the same for sets and java.util.Map for maps

e java.util.Collection is a super-interface of java.util.Set and
java.util.List defining just a collection of objects

e java.util.Iterator represents a one-time iteration over a sequence

e java.lang.Iterable can be implemented by anything which can be
iterated over (which can create an instance of java.util.Iterator

on its elements), it is a super-interface of java.util.Collection

Java supports java.lang.Iterable : for(T x: ...) works not just

with arrays, but also iterates over an iterator provided by Iterable

OOP with Java Thomas Weise 17/21

: Using Collections and the interface java.util.Iterator

import java.util.ArrayList;
import java.util.Iterator;

public class IteratorTest {

public static final void main(Stringl[] args) {
ArrayList<String> list = new ArrayList<>();

list.add("Hello"); list.add("World!");
list.add("It's"); 1list.add("me");
list.add("your"); 1list.add("teacher.");

Iterator<String> iterator = list.iterator();

while (iterator.hasNext ()) {
System.out.print (iterator.next ());
System.out.print('y');
¥
¥
¥

OOP with Java Thomas Weise 18/21

Using the Simplified Syntax for Iterations

Listing: Using the Simplified Syntax for Iterations via java.lang.Iterable

import java.util.ArrayList;
import java.util.Iterator;

public class IterableTest {

public static final void main(Stringl[] args) {
ArraylList<String> list = new ArrayList<>();

list.add("Hello"); list.add("World!");
list.add("It's"); 1list.add("me");
list.add("your"); 1list.add("teacher.");

for (String string : list) {
System.out.print (string);
System.out.print(',');
}
}
}

OOP with Java Thomas Weise

19/21

Summary %\

We have learned about interfaces

Interfaces allow us to specify API contracts in form of method
signatures which must be implemented by an implementor and can be
used by a user (both programmers, obviously)

Interfaces have many similarities with classes, but also several
differences

Interfaces cannot be instantiated directly (well, actually ... but let's
leave this for later) and instead need to be implemented

Interfaces can inherit from multiple other interfaces
Classes can implement multiple interfaces
Since Java 8, interfaces can have default method implementations

Java massively uses interfaces in its API, for example in the
Collections API

OOP with Java Thomas Weise 20/21

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Interfaces: Definition, Usage
	Interfaces
	An example for an interface
	An example implementation of the interface
	Implementation of the interface based on HashMap
	An example for a generic interface
	An class implementing two interfaces
	An example for an interface subclassing another one
	An class implementing that interface
	Interfaces vs. Classes

	Default Methods
	Default Methods
	An interface with a default method
	An implementation of this interface

	Interfaces in Java
	Interfaces for APIs
	Example: Interfaces and Collections
	Using Collections and the interface java.util.Iterator
	Using the Simplified Syntax for Iterations

	Summary
	Summary

	Presentation End

