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Introduction

• We know that we can assign an int to a variable of type a int .
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• We know that we can assign a Object to a variable of type a Object .

• We know that we can assign an String to a variable of type a

Object too.

• We cannot assign an Object to a variable of type a String .

• But what if we want to? What if the Object variable actually points

to a String ?

• For this, we have (explicit) type casts.
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Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)
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Example for Type-Casting Numbers

Listing: Example for Type-Casting Numbers

/** Type casting numerical values. */

public class NumberTypeCast {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

float floatVar = 10f; // floatVar is an integer value

System.out.println(floatVar); // prints 10.0

int intVar = (int)floatVar; // cast floatVar to int: truncate

System.out.println(intVar); // print 10

floatVar = 10.5f; // floatVar is not an integer value

System.out.println(floatVar); // prints 10.5

intVar = (int)floatVar; // cast floatVar to int: truncate to 10

System.out.println(intVar); // print 10

double doubleVar = Math.PI; // store the mathematical constant π in doubleVar

System.out.println(doubleVar); // prints 3.141592653589793

floatVar = (float) doubleVar; // cast to float: loss of precision

System.out.println(floatVar); // 3.1415927

long longVar = Long.MAX_VALUE;

System.out.println(longVar); // prints 9223372036854775807

intVar = (int) longVar; // cast to int: the first 32 bits of longVar are 1

System.out.println(intVar); // int now only contains these first 32 bits , we get -1

}

}
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Example for Type-Casting Objects

Listing: Example for Type-Casting Objects

/** Type casting object values. */

public class ObjectTypeCast {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

String string = "Hello World!"; //$NON -NLS -1$

System.out.println(string); // print "Hello World !"

Object object = string; // object now points to a String

System.out.println(object); // print "Hello World !"

if(object instanceof String) { // is object pointing to a String?

string = (String) object; // yes , so we can type cast

System.out.println(string); // print "Hello World !"

}

object = new ObjectTypeCast (); // now object is definitely not a String

if(object instanceof String) { // is object pointing to a String?

string = (String) object; // no , we never get here

}

}

}
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Summary

• We can cast values from floating point to integer values, potentially
losing precision due to truncation

• We can cast values from double to float , potentially losing
precision due to truncation

• We can cast larger integer types to smaller integer types, potentially
losing precision due to truncation

• We can cast from an object super class up to a subclass, not just
from subclass to super class

• In Lesson 29: Autoboxing, we will learn about some odd effects
caused by inadvertent type casts
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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