
OOP with Java
20. Type Casts

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Explicit Type Cast

3 Summary

OOP with Java Thomas Weise 2/8

w
e
b
s
it
e

Introduction

• We know that we can assign an int to a variable of type a int .

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

• We know that we can assign a Object to a variable of type a Object .

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

• We know that we can assign a Object to a variable of type a Object .

• We know that we can assign an String to a variable of type a

Object too.

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

• We know that we can assign a Object to a variable of type a Object .

• We know that we can assign an String to a variable of type a

Object too.

• We cannot assign an Object to a variable of type a String .

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

• We know that we can assign a Object to a variable of type a Object .

• We know that we can assign an String to a variable of type a

Object too.

• We cannot assign an Object to a variable of type a String .

• But what if we want to? What if the Object variable actually points

to a String ?

OOP with Java Thomas Weise 3/8

Introduction

• We know that we can assign an int to a variable of type a int .

• We know that we can assign an int to a variable of type a double

too.

• We cannot assign an double to a variable of type a int .

• But what if we want to? What if the double has value 10d , i.e., is
an integer?

• We know that we can assign a Object to a variable of type a Object .

• We know that we can assign an String to a variable of type a

Object too.

• We cannot assign an Object to a variable of type a String .

• But what if we want to? What if the Object variable actually points

to a String ?

• For this, we have (explicit) type casts.

OOP with Java Thomas Weise 3/8

Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)

OOP with Java Thomas Weise 4/8

Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)

• int a = ((int)1.5d) stores the truncated floating point value 1.5 in
a , effectively storing a = 1

OOP with Java Thomas Weise 4/8

Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)

• int a = ((int)1.5d) stores the truncated floating point value 1.5 in
a , effectively storing a = 1

• You can do Object o = "Hallo"; and then store

String s = (String)o; , because o is actually a String

OOP with Java Thomas Weise 4/8

Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)

• int a = ((int)1.5d) stores the truncated floating point value 1.5 in
a , effectively storing a = 1

• You can do Object o = "Hallo"; and then store

String s = (String)o; , because o is actually a String

• Object o = new Object() and then String s = (String)o; will crash,

however, because o is not a String

OOP with Java Thomas Weise 4/8

Explicit Type Cast

• Simple syntax: An expression exp of type A becomes an expression

of type B by writing (B)(exp)

• int a = ((int)1.5d) stores the truncated floating point value 1.5 in
a , effectively storing a = 1

• You can do Object o = "Hallo"; and then store

String s = (String)o; , because o is actually a String

• Object o = new Object() and then String s = (String)o; will crash,

however, because o is not a String

• Use object type casts only together with instanceof

OOP with Java Thomas Weise 4/8

Example for Type-Casting Numbers

Listing: Example for Type-Casting Numbers

/** Type casting numerical values. */

public class NumberTypeCast {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

float floatVar = 10f; // floatVar is an integer value

System.out.println(floatVar); // prints 10.0

int intVar = (int)floatVar; // cast floatVar to int: truncate

System.out.println(intVar); // print 10

floatVar = 10.5f; // floatVar is not an integer value

System.out.println(floatVar); // prints 10.5

intVar = (int)floatVar; // cast floatVar to int: truncate to 10

System.out.println(intVar); // print 10

double doubleVar = Math.PI; // store the mathematical constant π in doubleVar

System.out.println(doubleVar); // prints 3.141592653589793

floatVar = (float) doubleVar; // cast to float: loss of precision

System.out.println(floatVar); // 3.1415927

long longVar = Long.MAX_VALUE;

System.out.println(longVar); // prints 9223372036854775807

intVar = (int) longVar; // cast to int: the first 32 bits of longVar are 1

System.out.println(intVar); // int now only contains these first 32 bits , we get -1

}

}

OOP with Java Thomas Weise 5/8

Example for Type-Casting Objects

Listing: Example for Type-Casting Objects

/** Type casting object values. */

public class ObjectTypeCast {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

String string = "Hello World!"; //$NON -NLS -1$

System.out.println(string); // print "Hello World !"

Object object = string; // object now points to a String

System.out.println(object); // print "Hello World !"

if(object instanceof String) { // is object pointing to a String?

string = (String) object; // yes , so we can type cast

System.out.println(string); // print "Hello World !"

}

object = new ObjectTypeCast (); // now object is definitely not a String

if(object instanceof String) { // is object pointing to a String?

string = (String) object; // no , we never get here

}

}

}

OOP with Java Thomas Weise 6/8

Summary

• We can cast values from floating point to integer values, potentially
losing precision due to truncation

• We can cast values from double to float , potentially losing
precision due to truncation

• We can cast larger integer types to smaller integer types, potentially
losing precision due to truncation

• We can cast from an object super class up to a subclass, not just
from subclass to super class

• In Lesson 29: Autoboxing, we will learn about some odd effects
caused by inadvertent type casts

OOP with Java Thomas Weise 7/8

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 8/8

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Explicit Type Cast
	Explicit Type Cast
	Example for Type-Casting Numbers
	Example for Type-Casting Objects

	Summary
	Summary

	Presentation End

