
OOP with Java
19. Documentation with Javadoc

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Javadoc

3 Javadoc Generation

4 Summary

OOP with Java Thomas Weise 2/13

w
e
b
s
it
e

Introduction

• If you write a program, usually you are not just doing it alone

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are
• You need to tell them what your member variables are storing and how

they are used

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are
• You need to tell them what your member variables are storing and how

they are used

• For this, we have comments

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are
• You need to tell them what your member variables are storing and how

they are used

• For this, we have comments:
• // marks the rest of the current line as comment

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are
• You need to tell them what your member variables are storing and how

they are used

• For this, we have comments:
• // marks the rest of the current line as comment

• /* starts a possible multi-line comment that ends with */

OOP with Java Thomas Weise 3/13

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• So you need to tell them what your code does:
• You need to define what a class does and what it is good for
• You need to state what a method does and what the meaning of its

parameters are
• You need to tell them what your member variables are storing and how

they are used

• For this, we have comments:
• // marks the rest of the current line as comment

• /* starts a possible multi-line comment that ends with */

• /** starts a Javadoc comment and */ ends it

OOP with Java Thomas Weise 3/13

Javadoc

• Javadoc comments are comments following a specific structure

OOP with Java Thomas Weise 4/13

Javadoc

• Javadoc comments are comments following a specific structure

• A tool (called Javadoc) can convert them to HTML web pages

OOP with Java Thomas Weise 4/13

Javadoc

• Javadoc comments are comments following a specific structure

• A tool (called Javadoc) can convert them to HTML web pages

• IDEs can use them to display information while programmers are
typing code

OOP with Java Thomas Weise 4/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

• A Javadoc /** */ comment directly before a static or instance
method

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

• A Javadoc /** */ comment directly before a static or instance
method

• is used to describe what the method does

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

• A Javadoc /** */ comment directly before a static or instance
method

• is used to describe what the method does
• can contain a line starting with @param A meaning to describe the

meaning of parameter A

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

• A Javadoc /** */ comment directly before a static or instance
method

• is used to describe what the method does
• can contain a line starting with @param A meaning to describe the

meaning of parameter A

• can contain a line starting with @return meaning to describe the

meaning of the return value if the method is a function

OOP with Java Thomas Weise 5/13

Usage

• A Javadoc /** */ comment directly before a class declaration is
used to describe what the class is good for

• A Javadoc /** */ comment directly before a static or instance
variable declaration is used to describe what the variable is good for

• A Javadoc /** */ comment directly before a static or instance
method

• is used to describe what the method does
• can contain a line starting with @param A meaning to describe the

meaning of parameter A

• can contain a line starting with @return meaning to describe the

meaning of the return value if the method is a function

• A package can contain a file package-info.java with a Javadoc

/** */ describing the meaning of the package

OOP with Java Thomas Weise 5/13

The ComplexNumber class with Javadoc Annotations

Listing: The ComplexNumber class with Javadoc Annotations

package cn.edu.hfuu.iao.math;

/** a class representing a complex number z ∈ Cin rectangular form z = α+ βi, now also implementing the math routines */

public final class ComplexNumber {

/** the real part α of the complex number */

private final double realPart;

/** the imaginary part β */

private final double imaginaryPart;

/** create a new complex number setting both real and imaginary part

* @param _realPart the real part

* @param _imaginaryPart the imaginary part */

public ComplexNumber(final double _realPart , final double _imaginaryPart) {

this.realPart = _realPart;

this.imaginaryPart = _imaginaryPart;

}

/** return new complex number with result {@code this + x}

* @param x the complex number to add

* @return a new complex number with the result of the addition */

public final ComplexNumber add(final ComplexNumber x) {

return new ComplexNumber ((this.realPart + x.realPart), (this.imaginaryPart + x.imaginaryPart)); // (αx + αy) + (βx + βy)i
}

/** return new complex number with result {@code this - x}

* @param x the number to subtract

* @return the result of the subtraction of {@code this - x} in a new complex number */

public final ComplexNumber subtract(final ComplexNumber x) {

return new ComplexNumber ((this.realPart - x.realPart), (this.imaginaryPart - x.imaginaryPart)); // (αx − αy) + (βx − βy)i
}

/** return new complex number with result {@code this*x}

* @param x the number to multiply with

* @return the result of the multiplication of {@code this*x} in a new complex number */

public final ComplexNumber multiply(final ComplexNumber x) {

double a1 = this.realPart , b1 = this.imaginaryPart , a2 = x.realPart , b2 = x.imaginaryPart;

return new ComplexNumber (((a1 * a2) - (b1 * b2)), ((a1 * b2) + (b1 * a2))); // (αxαy − βxβy) + (αxβy + βxαy)i
}

/** return new complex number with {@code this/x}

* @param x the number to divide by

* @return the result of the division of {@code this/x} in a new complex number */

public ComplexNumber divide(final ComplexNumber x) {

double a1 = this.realPart , b1 = this.imaginaryPart , a2 = x.realPart , b2 = x.imaginaryPart;

return new ComplexNumber ((((a1 * a2) + (b1 * b2)) / ((a2 * a2) + (b2 * b2))), //
αxαy+βxβy

α2
y
+β2

y

(((a2 * b1) - (b2 * a1)) / ((a2 * a2) + (b2 * b2)))); //
αyβx−βyαx

α2
y
+β2

y

i

}

/** print this complex number */

public void println () {

System.out.print(this.realPart); System.out.print(" + "); //$NON -NLS -1$

System.out.print(this.imaginaryPart); System.out.println('i');

}

} OOP with Java Thomas Weise 6/13

The ComplexNumberTest class with Javadoc Annotations

Listing: The ComplexNumberTest class with Javadoc Annotations

package cn.edu.hfuu.iao.math;

/** testing the new complex number class: almost the same as in last lesson , just with instance methods and toString */

public class ComplexNumberTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

ComplexNumber a, b, res;

a = new ComplexNumber (20d, 0d); // instantiate a = 20 + 0i
a.println (); // print 20 + 0i

b = new ComplexNumber (1d, -2d); // create b = 1− 2i
b.println (); // print 1 + 2i

(res = a.multiply(b)).println (); // set res = a ∗ b = 20 ∗ (1− 2i) = 20− 40i and print

res = a.multiply(b).subtract(b); // we can chain methods by applying subtract to the result of multiply

res.println (); // print the result of the above computation: (20 ∗ (1− 2i))− (1− 2i) = 19 ∗ (1− 2i) = 19− 38i

res.divide(b).println ();// print the result of 19−38i
1−2i

= 19 = 19 + 0i, but don't store it:

// created object becomes immediately subject to GC (same as a.multiply(b) above)

res.multiply(res).divide(res.multiply(//
(19−38i)∗(19−38i)
(19−38i)∗(1−i)

= 28.5− 9.5i

new ComplexNumber (1d, -1d))).println ();

}

}

OOP with Java Thomas Weise 7/13

An Example package-info.java File

Listing: An Example package-info.java File

/** This package contains a mathematical class. */

package cn.edu.hfuu.iao.math;

OOP with Java Thomas Weise 8/13

Pop-Up Infos in Eclipse based on JavaDoc

OOP with Java Thomas Weise 9/13

Pop-Up Infos in Eclipse based on JavaDoc

OOP with Java Thomas Weise 9/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

Summary

• In order to make our code useful, we need to document it

• Good programmers write the documentation while they are coding,
because you are never going to do it afterwards, even though you
think/claim you would

• Javadoc allows us to write comments in a structured way

• IDEs can exploit this structured information to display useful pop-up
infos to the programmer

• We can also generate HTML documentations from the documented
code via the javadoc tool

• Style checkers can automatically whether all code is properly
documented

OOP with Java Thomas Weise 12/13

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 13/13

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Javadoc
	Javadoc
	Usage
	The ComplexNumber class with Javadoc Annotations
	The ComplexNumberTest class with Javadoc Annotations
	An Example package-info.java File
	Pop-Up Infos in Eclipse based on JavaDoc

	Javadoc Generation
	Generating Javadoc from Eclipse
	The Generated Javadoc

	Summary
	Summary

	Presentation End

