
OOP with Java
19. Documentation with Javadoc

Thomas Weise· d k �
tweise@hfuu.edu.cn· http://iao.hfuu.edu.cn

Hefei University, South Campus 2 � ¥ f b Ws V ! : / W2:
Faculty of Computer Science and Technology ¡ —: Ñ f � € / û

Institute of Applied Optimization ” (� � � v @
230601 Shushan District, Hefei, Anhui, China - ý ‰½ � � ¥ � � q : 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 Ï N € / � Ñ: & ã ' S 99÷

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Javadoc

3 Javadoc Generation

4 Summary

OOP with Java Thomas Weise 2/13

w
eb

si
te

Introduction

ˆ If you write a program, usually you are not just doing it alone

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are
ˆ You need to tell them what your member variables are storing andhow

they are used

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are
ˆ You need to tell them what your member variables are storing andhow

they are used

ˆ For this, we have comments

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are
ˆ You need to tell them what your member variables are storing andhow

they are used

ˆ For this, we have comments:
ˆ // marks the rest of the current line as comment

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are
ˆ You need to tell them what your member variables are storing andhow

they are used

ˆ For this, we have comments:
ˆ // marks the rest of the current line as comment
ˆ /* starts a possible multi-line comment that ends with*/

OOP with Java Thomas Weise 3/13

Introduction

ˆ If you write a program, usually you are not just doing it alone

ˆ Often, you work in a team

ˆ Or you write code to be used by other people
ˆ So you need to tell them what your code does:

ˆ You need to de�ne what a class does and what it is good for
ˆ You need to state what a method does and what the meaning of its

parameters are
ˆ You need to tell them what your member variables are storing andhow

they are used

ˆ For this, we have comments:
ˆ // marks the rest of the current line as comment
ˆ /* starts a possible multi-line comment that ends with*/
ˆ /** starts aJavadoccomment and */ ends it

OOP with Java Thomas Weise 3/13

Javadoc

ˆ Javadoc comments are comments following a speci�c structure

OOP with Java Thomas Weise 4/13

Javadoc

ˆ Javadoc comments are comments following a speci�c structure

ˆ A tool (called Javadoc) can convert them to HTML web pages

OOP with Java Thomas Weise 4/13

Javadoc

ˆ Javadoc comments are comments following a speci�c structure

ˆ A tool (called Javadoc) can convert them to HTML web pages

ˆ IDEs can use them to display information while programmers are
typing code

OOP with Java Thomas Weise 4/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

ˆ A Javadoc /** */ comment directly before astatic or instance
method

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

ˆ A Javadoc /** */ comment directly before astatic or instance
method

ˆ is used to describe what the method does

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

ˆ A Javadoc /** */ comment directly before astatic or instance
method

ˆ is used to describe what the method does
ˆ can contain a line starting with@param A meaningto describe the

meaning of parameterA

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

ˆ A Javadoc /** */ comment directly before astatic or instance
method

ˆ is used to describe what the method does
ˆ can contain a line starting with@param A meaningto describe the

meaning of parameterA
ˆ can contain a line starting with@return meaning to describe the

meaning of the return value if the method is a function

OOP with Java Thomas Weise 5/13

Usage

ˆ A Javadoc /** */ comment directly before aclass declaration is
used to describe what the class is good for

ˆ A Javadoc /** */ comment directly before astatic or instance
variable declaration is used to describe what the variable isgood for

ˆ A Javadoc /** */ comment directly before astatic or instance
method

ˆ is used to describe what the method does
ˆ can contain a line starting with@param A meaningto describe the

meaning of parameterA
ˆ can contain a line starting with@return meaning to describe the

meaning of the return value if the method is a function

ˆ A package can contain a �lepackage-info.java with a Javadoc

/** */ describing the meaning of the package

OOP with Java Thomas Weise 5/13

The ComplexNumber class with Javadoc Annotations

Listing: The ComplexNumber class with Javadoc Annotations
package cn .edu .hfuu . iao .math ;

/* * a class represent ing a complex number z 2 Cin rectangular form z = � + �i , now also implementing the math rout ines */
publ ic f inal class ComplexNumber {

/* * the real part � of the complex number */
private final double realPart ;
/* * the imaginary part � */
pr ivate final double imaginaryPart ;

/* * create a new complex number sett ing both real and imagina ry part
* @param _realPart the real part
* @param _imaginaryPart the imaginary part */

publ ic ComplexNumber (f inal double _realPart , f inal double _imaginaryPart) {
this . realPart = _realPart ;
this . imaginaryPart = _imaginaryPart ;

}

/* * return new complex number with result { @code this + x}
* @param x the complex number to add
* @return a new complex number with the result of the addit ion */

publ ic f inal ComplexNumber add(f inal ComplexNumber x) {
return new ComplexNumber ((this . realPart + x. realPart) , (this . imaginaryPart + x. imaginaryPart)) ; // (� x + � y) + (� x + � y)i

}

/* * return new complex number with result { @code this - x}
* @param x the number to subtract
* @return the result of the subtract ion of { @code this - x} in a new complex number */

publ ic f inal ComplexNumber subtract (f inal ComplexNumber x) {
return new ComplexNumber ((this . realPart - x. realPart) , (this . imaginaryPart - x. imaginaryPart)) ; // (� x � � y) + (� x � � y)i

}

/* * return new complex number with result { @code this *x}
* @param x the number to mult iply with
* @return the result of the mult ip l icat ion of { @code this *x} in a new complex number */

publ ic f inal ComplexNumber mult iply (f inal ComplexNumber x) {
double a1 = this . realPart , b1 = this . imaginaryPart , a2 = x. realPart , b2 = x. imaginaryPart ;
return new ComplexNumber (((a1 * a2) - (b1 * b2)) , ((a1 * b2) + (b1 * a2))) ; // (� x � y � � x � y) + (� x � y + � x � y)i

}

/* * return new complex number with { @code this /x}
* @param x the number to divide by
* @return the result of the division of { @code this /x} in a new complex number */

publ ic ComplexNumber divide (f inal ComplexNumber x) {
double a1 = this . realPart , b1 = this . imaginaryPart , a2 = x. realPart , b2 = x. imaginaryPart ;

return new ComplexNumber ((((a1 * a2) + (b1 * b2)) / ((a2 * a2) + (b2 * b2))) , // � x � y + � x � y
� 2

y + � 2
y

(((a2 * b1) - (b2 * a1)) / ((a2 * a2) + (b2 * b2)))) ; // � y � x � � y � x
� 2

y + � 2
y

i

}

/* * print this complex number */
publ ic void print ln () {

System .out . print (this . realPart) ; System .out . print (" + ") ; // $NON -NLS -1$
System .out . print (this . imaginaryPart) ; System .out . print ln (' i ') ;

}
} OOP with Java Thomas Weise 6/13

The ComplexNumberTest class with Javadoc Annotations

Listing: The ComplexNumberTest class with Javadoc Annotations

package cn .edu .hfuu . iao .math ;

/* * test ing the new complex number class : almost the same as i n last lesson , just with instance methods and toStr ing */
publ ic class ComplexNumberTest {

/* * The main routine
* @param args
* we ignore this parameter */

publ ic stat ic f inal void main (Str ing [] args) {
ComplexNumber a , b , res ;

a = new ComplexNumber (20d , 0d); // instant iate a = 20 + 0 i
a. print ln () ; // print 20 + 0i

b = new ComplexNumber (1d , -2d) ; // create b = 1 � 2i
b. print ln () ; // print 1 + 2 i

(res = a. mult iply (b)) . pr int ln () ; // set res = a � b = 20 � (1 � 2i) = 20 � 40i and print

res = a. mult iply (b) . subtract (b) ; // we can chain methods by applying subtract to the result of m ult iply
res . print ln () ; // print the result of the above computat ion : (20 � (1 � 2i)) � (1 � 2i) = 19 � (1 � 2i) = 19 � 38i

res . divide (b) . print ln () ; // print the result of 19� 38i
1� 2i = 19 = 19 + 0 i , but don ' t store it :

// created object becomes immediately subject to GC (same as a. mult iply (b) above)

res . mult iply (res) . divide (res . mult iply (// (19 � 38 i) � (19 � 38 i)
(19 � 38 i) � (1 � i) = 28 :5 � 9:5i

new ComplexNumber (1d , -1d))) . pr int ln () ;
}

}

OOP with Java Thomas Weise 7/13

An Example package-info.java File

Listing: An Examplepackage-info.java File

/* * This package contains a mathematical class . */
package cn .edu .hfuu . iao .math ;

OOP with Java Thomas Weise 8/13

Pop-Up Infos in Eclipse based on JavaDoc

OOP with Java Thomas Weise 9/13

Pop-Up Infos in Eclipse based on JavaDoc

OOP with Java Thomas Weise 9/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

Generating Javadoc from Eclipse

OOP with Java Thomas Weise 10/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

The Generated Javadoc

OOP with Java Thomas Weise 11/13

Summary

ˆ In order to make our code useful, we need to document it

ˆ Good programmers write the documentation while they are coding,
because you arenevergoing to do it afterwards, even though you
think/claim you would

ˆ Javadoc allows us to write comments in a structured way

ˆ IDEs can exploit this structured information to display useful pop-up
infos to the programmer

ˆ We can also generate HTML documentations from the documented
code via the javadoc tool

ˆ Style checkers can automatically whether all code is properly
documented

OOP with Java Thomas Weise 12/13

Caspar David Friedrich, !Der Wanderer über dem Nebelmeer", 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

"""" ""
Thank you

Thomas Weise [d k �]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization

Shushan District, Hefei, Anhui,
China

OOP with Java Thomas Weise 13/13

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Javadoc
	Javadoc
	Usage
	The ComplexNumber class with Javadoc Annotations
	The ComplexNumberTest class with Javadoc Annotations
	An Example package-info.java File
	Pop-Up Infos in Eclipse based on JavaDoc

	Javadoc Generation
	Generating Javadoc from Eclipse
	The Generated Javadoc

	Summary
	Summary

