LR B

HEFEI UNIVERSITY

OOP with Java
18. Visiblity, Encapsulation, [y, and Inner Classes

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HEZE
http://iao.hfuu.edu.cn

SRFR Mt R /@2 R
HEAE S B AR A

R AR ACHTE 7 P

T E 2y AT §.LR 230601
ZFEARFER 4845 KiE995



mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Visibility

@® Encapsulation

@O The final Keyword

@ Inner Classes

@ Summary

OOP with Java Thomas Weise



o If you write a program, usually you are not just doing it alone




o If you write a program, usually you are not just doing it alone

e Often, you work in a team




o If you write a program, usually you are not just doing it alone

e Often, you work in a team

e Or you write code to be used by other people




If you write a program, usually you are not just doing it alone

Often, you work in a team

e Or you write code to be used by other people

Packages and Classes are ways to structure your code




If you write a program, usually you are not just doing it alone

Often, you work in a team

e Or you write code to be used by other people

Packages and Classes are ways to structure your code

But how can we ensure that your code is used correctly?




e Java allows you to create classes inside a package with two levels of
visibility




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ
e are only visible to the code inside the same package




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ

e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ

e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ

e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ

e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ

® can be import ed and used from anywhere




e Java allows you to create classes inside a package with two levels of
visibility:
o package-private classes
e are declared in the form class XYZ

e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ

® can be import ed and used from anywhere

e This way, we can separate our code into




Class Visibility %\’

1AQ

e Java allows you to create classes inside a package with two levels of
visibility:
e package-private classes

e are declared in the form class XYZ
e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ

e can be import ed and used from anywhere

e This way, we can separate our code into
e a public APl and classes to be used by others (declared as public )

OOP with Java Thomas Weise 4/23



Class Visibility %

e Java allows you to create classes inside a package with two levels of
visibility:
e package-private classes

e are declared in the form class XYZ
e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ

e can be import ed and used from anywhere
e This way, we can separate our code into
e a public APl and classes to be used by others (declared as public )

and
e our internal helper classes which nobody should mess with

OOP with Java Thomas Weise 4/23



e Why separate code into private and public classes?




e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented




e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company




e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!




e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone




e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone

e Whenever you change it (API, behavior), that other guy's code will
stop working




Why? %\ .

1AQ

e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone
e Whenever you change it (API, behavior), that other guy's code will
stop working

e But not all of your code will be intended for other people to use,
some will really just be some internal stuff

OOP with Java Thomas Weise 5/23



Why? %\ .

1AQ

e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone

e Whenever you change it (API, behavior), that other guy's code will
stop working

e But not all of your code will be intended for other people to use,
some will really just be some internal stuff

e You make these classes package private

OOP with Java Thomas Weise 5/23



Why? %\ .

1AQ

e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone

e Whenever you change it (API, behavior), that other guy's code will
stop working

e But not all of your code will be intended for other people to use,
some will really just be some internal stuff

e You make these classes package private because only then you can
change them whenever and however you like.

OOP with Java Thomas Weise 5/23



Why? %\ .

1AQ

e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone

e Whenever you change it (API, behavior), that other guy's code will
stop working

e But not all of your code will be intended for other people to use,
some will really just be some internal stuff

e You make these classes package private because only then you can
change them whenever and however you like.

e (of course, someone could change your code to make a package
private class public , but then they break the specification and then
it is their problem)

OOP with Java Thomas Weise 5/23



e But we can do more than not just want to either expose or hide a
class completely




e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public APIl, some other may just
internal implementation and helpers




e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public APIl, some other may just
internal implementation and helpers

e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods)




Member Visibility %()

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public APIl, some other may just
internal implementation and helpers

e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

e private : only the methods of this very class can see the member

OOP with Java Thomas Weise 6/23



Member Visibility §\

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member

e (nothing specified): package private, the member can be seen by all
code in the same package

OOP with Java Thomas Weise 6/23



Member Visibility §\

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member
e (nothing specified): package private, the member can be seen by all
code in the same package
e protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package

OOP with Java Thomas Weise 6/23



Member Visibility §\

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member
e (nothing specified): package private, the member can be seen by all

code in the same package
e protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
e public : the member is visible to everybody

OOP with Java Thomas Weise 6/23



Member Visibility §\

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member
e (nothing specified): package private, the member can be seen by all

code in the same package
e protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
e public : the member is visible to everybody

e We always use the strictest visibility

OOP with Java Thomas Weise 6/23



Member Visibility §\

e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member
e (nothing specified): package private, the member can be seen by all

code in the same package
e protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
e public : the member is visible to everybody
e We always use the strictest visibility, because the bigger the visibility,
the more maintenance effort it will cost us later

OOP with Java Thomas Weise 6/23



e Arrays in Java have a fixed length




e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length




e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

e We internally use arrays to store their content and allocate new arrays
when needed




Arrays in Java have a fixed length

We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

We internally use arrays to store their content and allocate new arrays
when needed

We define a base class with some public API




e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

e We internally use arrays to store their content and allocate new arrays
when needed

e We define a base class with some public API

e We extend this base class for int , double , and float




Collection Example %}

e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

e We internally use arrays to store their content and allocate new arrays
when needed

e We define a base class with some public API
e We extend this base class for int , double, and float

e The variables actually representing the data are private , the lists
can only be manipulated via the public methods

OOP with Java Thomas Weise 7/23



Basic List Class: Package Private Constructor, Public AP }\\’

2
.

Listing: Basic List Class: Package Private Constructor, Public API

package cn.edu.hfuu.iao.collections;

/%% a base 2 f pub API but package g
public class List {

int size;

List() {
super () ;

}

public int size() {
return this.size;

public void reverse() { // do
¥

public Object toArray() {
return null;

OOP with Java Thomas Weise 8/23



IntList Class: Implementation for int

ist Clas

Implementation fo

package cn.edu.htuu. iso. collections;

public class IntList extends List {

private int[] data;

public IntList(int[] _data) {
data;
this.size = _data.length;

public void append(final int valus) {
if(this.size >= this.data.length) {
int() newbata = neu int[this.sizes2];
<his. __copyTo(nasdata) ;
¢his.data = newData;

»
this.dacalthis.sizers] = value;

Goverride
public void reverseO {
for(int 3= ehissizes1; 1< 3; +ei, —-3) L

atalil;
this.datali) = this.data(y];
<his.davalj] = ¢

Goverrige

Goverride
public String toString() {

index = 0; index < this.size; ++index) {
(s 1= %) L8 e= T )

s += this.datalindex];
3

g OOP with Java Thomas Weise 9/23



A Program Using our IntList Class

Listi A Program Using our Int

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.IntList;

public class IntListTest {

public static void main(Stringl[] args) {
IntList list;

list = new IntList(mew int[] { 12, 3 });
System.out.println(list);
list.append(-4);
System.out.println(list);
list.reverse();
System.out.println(list);

System.out.println(list.size());

OOP with Java Thomas Weise

10/23



DoubleList Class: Implementation for poubie

ubleList Class: Implementati

package cn.edu.hfuu.iso.collections

public class DoubleList extends List {

private double[) data;

public Dout

£ (double D) data) ¢

ata.langen;

private final

sa

S o &)
his.size; (--index) >= 0 )
nis datalindex];

public final void append(final double value) {
if(this.size >= this.data.lengy

doublelenis.sizes2];

this.datalthis.size+s] = valus;
3

Goverride
public final

4 reverse() ¢

for(int this.size-l; i< 3 ++i, -3 {
4o atali);
s.dacali] = this.datalj];
¢his.aatalj] = t;
3
3
Goverride

00 toarrayO)
eu doublelthis.size]

soverride

public final String teString() {
sering =

fortint index = 0; index < tnis.size; ++index) {
if(a 1= =) { o

o100 thte dasaCindesd

¥

3

5 OOP with Java Thomas Weise 11/23




A Program Using our DoubleList Class

A Program Using our bleList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.DoubleList;
public class DoubleListTest {
public static void main(Stringl[] args) {

DoubleList list;
list = new DoubleList(new double[] { 12d, 34 });
System.out.println(list);
list.append(-4d);
System.out.println(list);
list.reverse();

System.out.println(list);

System.out.println(list.size());

OOP with Java Thomas Weise

12/23



FloatList Class: Implementation for rioat %\’

— y

Listing: FloatList Class: Implementation for

package cn.edu.htuu. iso. collections;

public final class FloatList extends List {

private float() data;

public FloatLiat(flont(] date) {
this.data
i S

D el T el St o) §
for(int index = this.size; (--index) >= 0;
destlindex] = this.datalindex];

3

public final void append(final float value) {
1f(this.size >= this.data.lengeh) {
f1oat (] newbata = neu float[this.sizes2)
this. __copyTe
this.data = neudata;

this.datalthis.size+s] = valus;
Goverride
public £inal vod reverss() ¢
for(int 1 = thic.size-l; i< 3 ++, -3 {
float ¢ = 4

<his.davali]
¢his.aatalj] = t;

ide
ic finel float() tokrray() {
1oat(] res = new float[this.sizel;
this. _copyTo(res);

soverride
public final String teString() {
sering =

fortint index = 0; index < tnis.size; ++index) {

if(a 1= =) { 5
o100 thte s dasaCindesd

o° OOP with Java Thomas Weise 13/23




A Program Using our FloatList Class %\’

1AQ

Listi A Program Using our FloatList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.FloatList;

public class FloatListTest {

public static void main(Stringl[] args) {
FloatList 1list;

list = new FloatList(new float[] { 12f, 3f 1});
System.out.println(list);

list.append(-4f);

System.out.println(list);

list.reverse();

System.out.println(list);

System.out.println(list.size());

OOP with Java Thomas Weise 14/23



e Object = code + data




e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables




e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do




Object = code + data

It is always bad to let somebody else manipulate the data by directly
accessing the variables

Because then you have no control about what they might do

Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis 7




e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do

e Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis 7

e We should always aim for achieving encapsulation of the data




Encapsulation %ﬁ)

e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do

e Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

e We should always aim for achieving encapsulation of the data

e Encapsulation means that the variables of an object can only be
accessed and manipulated via methods

OOP with Java Thomas Weise 15/23



Encapsulation %ﬁ)

e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do

e Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

e We should always aim for achieving encapsulation of the data

e Encapsulation means that the variables of an object can only be
accessed and manipulated via methods, i.e., are private

OOP with Java Thomas Weise 15/23



An example for a class with complete encapsulation

D

1AQ2

Listing: Class represen

package cn.edu.hfuu.iao;
public class BankAccount {

private String accountNumber;

private long balance;

public BankAccount(String number){
this.accountlumber = numb:

3

public double getBalance() {
roturn this.balance;

public void deposit(long amount) {
if ((amount > OL) &k (amount < 1_000_000_00L)) {
this.balance += amount;

¥ else {
System.out.println("Invalid, deposit,amount,” + amount +
"Lforuaccounty’ + this)
¥

>

public void withdraw(long amount) {
4f ((amount > OL) k& (amount < 1_000_00L)) {
thic.balance -= amount;
} olse {
systen

t.println(”Invalid, vithdraval,asount.
Laccount " + th:

,* + amount +

b
y

public void transferTo(long amount, BankAccount other) {
if((other 1= mull) &k (other = this) &k

(amount > OL) &k (amount < 1.000.000_00L) &&
(amount < this.balance)) {

System.out.println("Cannot transfer.” + amount +

Lfrom,® + this + ",to," + other);
3

public String toString() {

return this.accountNumber + ":." + this.balance + ')';

OOP with Java Thomas Weise

bank accounts: we need sani

16/23




e Besides “hiding” fields, we can also make them impossible to modify.




e Besides “hiding” fields, we can also make them impossible to modify.

e For this, there exists final keyword.




e Besides “hiding” fields, we can also make them impossible to modify.

e For this, there exists final keyword.

e Declaring an XXX as final means




e Besides “hiding” fields, we can also make them impossible to modify.

e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again




e Besides “hiding” fields, we can also make them impossible to modify.

e For this, there exists final keyword.

e Declaring an XXX as final means...
e instance variable: you have to set its value in the constructor and
afterwards can never change it again
e static variable: you have to set its value right in the declarion, it's
the same as a constant




e Besides “hiding” fields, we can also make them impossible to modify.

e For this, there exists final keyword.

e Declaring an XXX as final means...
e instance variable: you have to set its value in the constructor and
afterwards can never change it again
e static variable: you have to set its value right in the declarion, it's
the same as a constant
e instance method: subclasses cannot override it




The fina1 Keyword %0,

e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

OOP with Java Thomas Weise 17/23



The fina1 Keyword %0,

e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

e local variable inside a method: the local variable can only be assigned
once

OOP with Java Thomas Weise 17/23



The rfina1 Keyword %()

e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

e local variable inside a method: the local variable can only be assigned
once

e method parameter: cannot be changed inside method — always do this,
changing parameter values in a method is confusing

OOP with Java Thomas Weise 17/23



The rfina1 Keyword %()

e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

e local variable inside a method: the local variable can only be assigned
once

e method parameter: cannot be changed inside method — always do this,
changing parameter values in a method is confusing

e We should declare as much stuff as final as possible

OOP with Java Thomas Weise 17/23



The rfina1 Keyword %()

e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

e local variable inside a method: the local variable can only be assigned
once

e method parameter: cannot be changed inside method — always do this,
changing parameter values in a method is confusing

e We should declare as much stuff as final as possible, because if
something can be changed, someone will change it, and this makes
debugging and maintenance harder

OOP with Java Thomas Weise 17/23



Example for a class with encapsulation and fina1
[

Listing: Class representing bank accounts usin

package cn.edu.hfuu.iao;

public final class BamkAccountFimal {

private final String accountNumber;

private long balance;

public BankAccountFinal(final String mumber){
this.accountlumber = number

public final double getBalance() {
return this.balance

public final void deposit(final long amount)
e 5 () (4 eeorrs & A-CH R &
this.balance += amount;
3 else {
Systen.out .printin(*Invalidudoposituamounty” + amount +
foruaccounty® + this)

public final void withdraw(final long amount) {
4f ((amount > OL) &k (amount < 1.000_00L)) {
thic.balance -= amount;
} olse {
System.out printin(*Invalidvithdraval amounty’ + amount +
" for account," + this);

public final void tramsferTo(fimal long amount, final BankAccountFinal other) {
if ((other 1= mull) k (other = this) &k
(amount > OL) &k (amount < 1.000.000_00L) &&
(amount < this.balance)) {

System.out.printin("Cannot transfer,” + amount +
Lfrom.t + this + ",to," + other);
¥
)
public final String toString() {
return '(' + this.accountNusber + ":." + this.balance + ')';
3

OOP with Java Thomas Weise 18/23

V.




e Besides putting a class into a package, we can also put it inside
another class




e Besides putting a class into a package, we can also put it inside
another class

e This treats the outer class basically as a package




e Besides putting a class into a package, we can also put it inside
another class

e This treats the outer class basically as a package

o It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it




Besides putting a class into a package, we can also put it inside
another class

This treats the outer class basically as a package

It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

Inner classes can be static, i.e., unrelated to any instance of the
outer class (we look only at this case)




Inner Classes %\

e Besides putting a class into a package, we can also put it inside
another class

e This treats the outer class basically as a package

o It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

e Inner classes can be static, i.e., unrelated to any instance of the
outer class (we look only at this case)

e They can also be non- static instance classes and need a
surrounding instance of the outer class ... let's ignore this for now

OOP with Java Thomas Weise 19/23



Example for a class with an inner class: A Map

Listing: Class representing a Map using Inner Class for Map Entries

package cn.edu.hfuu.iso.collactions;
public final class Map {
private Entry[l emtries;

public Map() {

this.entries = new Entry[32];
¥

public final void put(fimal Object key, final Object value) {
for (int index = 0; index < this.enmtries.length; index++) {
if (this.entries[index] == null) {
this.entries[index] = new Entry(key,
return;
¥
if (this.entries[index].ke:
this.entries [index].valu
return;

value);

Key) {
value;

3

Entry[] newEntries = neu Entry[this.entries.length
for(int i = this.entries.length; (--1i) >=
newEntries[this.entries.length]
this.entries

¥

) { newEntries(i]
= nmew Entry(key, value);

this.entries[il; }

newEntries;

public final String toString() {
String string = "";
for (Emtry entry : this.entries) {
if (entry == null) { return string; }
if (string != "") { string += ",u";
string += entry.key + '=' + entry.value;

Teturn string;

private static final class Eatry {
final Object key;
Object value;

Entry(final Object _key
this.key = _key;
this.value = _value;

»

¥ OOP with Java

, final Object _value) {

N Thomas Weise

20/23



Example for Using our Map

Class using our Map class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.Map;

public class MapTest {

public static void main(Stringl(] args) {
Map map = new Map();

map.put("Hello", "World!");
System.out.println(map);

map . put ("Country", "China");
System.out.println(map);

map . put ("Computer, Science", "Fun");
System.out.println(map);

map.put ("Hello", "Class!");
System.out.println(map);

map.put ("This, Course", "Nice");
System.out.println(map);

map.put ("This Course", "so-so");
System.out.println(map);

OOP with Java Thomas Weise

21/23




Summary %\

e If we contribute code to a project or team, be aware that:

e everything which is visible will be used by someone (and any change
you apply to it later may break other code)

e every variable which is visible and can be changed will be changed by
someone (and you will not have any control over how it will be
changed)

e any classes that can be subclassed and methods that can be overridden
will eventually be subclassed/overridden

o Always apply the tightest possible visibility to any variable or method,
ideally private , which makes them visible only to the current class

o If a variable does not need to be changed, mark it as final

e |f a method does not need to be overridden or a class does not need
to be subclassed, mark them as final

e Inner classes allow us to make classes private to an enclosing class

OOP with Java Thomas Weise 22/23



il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip


mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Visibility
	Class Visibility
	Why?
	Member Visibility
	Collection Example
	Basic List Class: Package Private Constructor, Public API
	IntList Class: Implementation for int
	A Program Using our IntList Class
	DoubleList Class: Implementation for Double
	A Program Using our DoubleList Class
	FloatList Class: Implementation for Float
	A Program Using our FloatList Class

	Encapsulation
	Encapsulation
	An example for a class with complete encapsulation

	The final Keyword
	The final Keyword
	Example for a class with encapsulation and final

	Inner Classes
	Inner Classes
	Example for a class with an inner class: A Map
	Example for Using our Map

	Summary
	Summary

	Presentation End

