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If you write a program, usually you are not just doing it alone

Often, you work in a team

e Or you write code to be used by other people

Packages and Classes are ways to structure your code

But how can we ensure that your code is used correctly?
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e Java allows you to create classes inside a package with two levels of
visibility:
e package-private classes

e are declared in the form class XYZ
e are only visible to the code inside the same package
e cannot be refered to by their canonical name or import ed into from

any other package or subpackage
e public classes
e are decleared in the form public class XYZ

e can be import ed and used from anywhere
e This way, we can separate our code into
e a public APl and classes to be used by others (declared as public )

and
e our internal helper classes which nobody should mess with
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e Why separate code into private and public classes?

o All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

e Because the more code/API you expose, the more you have to
maintain!

e Whatever you make accessible might be used by someone

e Whenever you change it (API, behavior), that other guy's code will
stop working

e But not all of your code will be intended for other people to use,
some will really just be some internal stuff

e You make these classes package private because only then you can
change them whenever and however you like.

e (of course, someone could change your code to make a package
private class public , but then they break the specification and then
it is their problem)
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e But we can do more than not just want to either expose or hide a
class completely

e Some part of a class may belong to a public API, some other may just
internal implementation and helpers
e Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):
e private : only the methods of this very class can see the member
e (nothing specified): package private, the member can be seen by all

code in the same package
e protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
e public : the member is visible to everybody
e We always use the strictest visibility, because the bigger the visibility,
the more maintenance effort it will cost us later

OOP with Java Thomas Weise 6/23
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e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

e We internally use arrays to store their content and allocate new arrays
when needed

e We define a base class with some public API

e We extend this base class for int , double , and float




Collection Example %}

e Arrays in Java have a fixed length

e We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

e We internally use arrays to store their content and allocate new arrays
when needed

e We define a base class with some public API
e We extend this base class for int , double, and float

e The variables actually representing the data are private , the lists
can only be manipulated via the public methods

OOP with Java Thomas Weise 7/23



Basic List Class: Package Private Constructor, Public AP }\\’

2
.

Listing: Basic List Class: Package Private Constructor, Public API

package cn.edu.hfuu.iao.collections;

/%% a base 2 f pub API but package g
public class List {

int size;

List() {
super () ;

}

public int size() {
return this.size;

public void reverse() { // do
¥

public Object toArray() {
return null;
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IntList Class: Implementation for int

ist Clas

Implementation fo

package cn.edu.htuu. iso. collections;

public class IntList extends List {

private int[] data;

public IntList(int[] _data) {
data;
this.size = _data.length;

public void append(final int valus) {
if(this.size >= this.data.length) {
int() newbata = neu int[this.sizes2];
<his. __copyTo(nasdata) ;
¢his.data = newData;

»
this.dacalthis.sizers] = value;

Goverride
public void reverseO {
for(int 3= ehissizes1; 1< 3; +ei, —-3) L

atalil;
this.datali) = this.data(y];
<his.davalj] = ¢

Goverrige

Goverride
public String toString() {

index = 0; index < this.size; ++index) {
(s 1= %) L8 e= T )

s += this.datalindex];
3
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A Program Using our IntList Class

Listi A Program Using our Int

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.IntList;

public class IntListTest {

public static void main(Stringl[] args) {
IntList list;

list = new IntList(mew int[] { 12, 3 });
System.out.println(list);
list.append(-4);
System.out.println(list);
list.reverse();
System.out.println(list);

System.out.println(list.size());

OOP with Java Thomas Weise
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ubleList Class: Implementati

package cn.edu.hfuu.iso.collections

public class DoubleList extends List {

private double[) data;

public Dout

£ (double D) data) ¢

ata.langen;

private final

sa

S o &)
his.size; (--index) >= 0 )
nis datalindex];

public final void append(final double value) {
if(this.size >= this.data.lengy

doublelenis.sizes2];

this.datalthis.size+s] = valus;
3

Goverride
public final

4 reverse() ¢

for(int this.size-l; i< 3 ++i, -3 {
4o atali);
s.dacali] = this.datalj];
¢his.aatalj] = t;
3
3
Goverride

00 toarrayO)
eu doublelthis.size]

soverride

public final String teString() {
sering =

fortint index = 0; index < tnis.size; ++index) {
if(a 1= =) { o

o100 thte dasaCindesd

¥

3

5 OOP with Java Thomas Weise 11/23
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package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.DoubleList;
public class DoubleListTest {
public static void main(Stringl[] args) {

DoubleList list;
list = new DoubleList(new double[] { 12d, 34 });
System.out.println(list);
list.append(-4d);
System.out.println(list);
list.reverse();

System.out.println(list);

System.out.println(list.size());

OOP with Java Thomas Weise
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— y

Listing: FloatList Class: Implementation for

package cn.edu.htuu. iso. collections;

public final class FloatList extends List {

private float() data;

public FloatLiat(flont(] date) {
this.data
i S

D el T el St o) §
for(int index = this.size; (--index) >= 0;
destlindex] = this.datalindex];

3

public final void append(final float value) {
1f(this.size >= this.data.lengeh) {
f1oat (] newbata = neu float[this.sizes2)
this. __copyTe
this.data = neudata;

this.datalthis.size+s] = valus;
Goverride
public £inal vod reverss() ¢
for(int 1 = thic.size-l; i< 3 ++, -3 {
float ¢ = 4

<his.davali]
¢his.aatalj] = t;

ide
ic finel float() tokrray() {
1oat(] res = new float[this.sizel;
this. _copyTo(res);

soverride
public final String teString() {
sering =

fortint index = 0; index < tnis.size; ++index) {

if(a 1= =) { 5
o100 thte s dasaCindesd
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Listi A Program Using our FloatList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.FloatList;

public class FloatListTest {

public static void main(Stringl[] args) {
FloatList 1list;

list = new FloatList(new float[] { 12f, 3f 1});
System.out.println(list);

list.append(-4f);

System.out.println(list);

list.reverse();

System.out.println(list);

System.out.println(list.size());
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e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do

e Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

e We should always aim for achieving encapsulation of the data

e Encapsulation means that the variables of an object can only be
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e Object = code + data

e It is always bad to let somebody else manipulate the data by directly
accessing the variables

e Because then you have no control about what they might do

e Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

e We should always aim for achieving encapsulation of the data

e Encapsulation means that the variables of an object can only be
accessed and manipulated via methods, i.e., are private
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An example for a class with complete encapsulation

D

1AQ2

Listing: Class represen

package cn.edu.hfuu.iao;
public class BankAccount {

private String accountNumber;

private long balance;

public BankAccount(String number){
this.accountlumber = numb:

3

public double getBalance() {
roturn this.balance;

public void deposit(long amount) {
if ((amount > OL) &k (amount < 1_000_000_00L)) {
this.balance += amount;

¥ else {
System.out.println("Invalid, deposit,amount,” + amount +
"Lforuaccounty’ + this)
¥

>

public void withdraw(long amount) {
4f ((amount > OL) k& (amount < 1_000_00L)) {
thic.balance -= amount;
} olse {
systen

t.println(”Invalid, vithdraval,asount.
Laccount " + th:

,* + amount +

b
y

public void transferTo(long amount, BankAccount other) {
if((other 1= mull) &k (other = this) &k

(amount > OL) &k (amount < 1.000.000_00L) &&
(amount < this.balance)) {

System.out.println("Cannot transfer.” + amount +

Lfrom,® + this + ",to," + other);
3

public String toString() {

return this.accountNumber + ":." + this.balance + ')';

OOP with Java Thomas Weise
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e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)
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e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
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e Besides “hiding” fields, we can also make them impossible to modify.
e For this, there exists final keyword.

e Declaring an XXX as final means...

e instance variable: you have to set its value in the constructor and
afterwards can never change it again

e static variable: you have to set its value right in the declarion, it's
the same as a constant

e instance method: subclasses cannot override it

e static method: subclasses cannot declare a static method with
same signature hiding it (always do this)

e local variable inside a method: the local variable can only be assigned
once

e method parameter: cannot be changed inside method — always do this,
changing parameter values in a method is confusing

e We should declare as much stuff as final as possible, because if
something can be changed, someone will change it, and this makes
debugging and maintenance harder
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Example for a class with encapsulation and fina1
[

Listing: Class representing bank accounts usin

package cn.edu.hfuu.iao;

public final class BamkAccountFimal {

private final String accountNumber;

private long balance;

public BankAccountFinal(final String mumber){
this.accountlumber = number

public final double getBalance() {
return this.balance

public final void deposit(final long amount)
e 5 () (4 eeorrs & A-CH R &
this.balance += amount;
3 else {
Systen.out .printin(*Invalidudoposituamounty” + amount +
foruaccounty® + this)

public final void withdraw(final long amount) {
4f ((amount > OL) &k (amount < 1.000_00L)) {
thic.balance -= amount;
} olse {
System.out printin(*Invalidvithdraval amounty’ + amount +
" for account," + this);

public final void tramsferTo(fimal long amount, final BankAccountFinal other) {
if ((other 1= mull) k (other = this) &k
(amount > OL) &k (amount < 1.000.000_00L) &&
(amount < this.balance)) {

System.out.printin("Cannot transfer,” + amount +
Lfrom.t + this + ",to," + other);
¥
)
public final String toString() {
return '(' + this.accountNusber + ":." + this.balance + ')';
3

OOP with Java Thomas Weise 18/23
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Inner Classes %\

e Besides putting a class into a package, we can also put it inside
another class

e This treats the outer class basically as a package

o It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

e Inner classes can be static, i.e., unrelated to any instance of the
outer class (we look only at this case)

e They can also be non- static instance classes and need a
surrounding instance of the outer class ... let's ignore this for now
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Example for a class with an inner class: A Map

Listing: Class representing a Map using Inner Class for Map Entries

package cn.edu.hfuu.iso.collactions;
public final class Map {
private Entry[l emtries;

public Map() {

this.entries = new Entry[32];
¥

public final void put(fimal Object key, final Object value) {
for (int index = 0; index < this.enmtries.length; index++) {
if (this.entries[index] == null) {
this.entries[index] = new Entry(key,
return;
¥
if (this.entries[index].ke:
this.entries [index].valu
return;

value);

Key) {
value;

3

Entry[] newEntries = neu Entry[this.entries.length
for(int i = this.entries.length; (--1i) >=
newEntries[this.entries.length]
this.entries

¥

) { newEntries(i]
= nmew Entry(key, value);

this.entries[il; }

newEntries;

public final String toString() {
String string = "";
for (Emtry entry : this.entries) {
if (entry == null) { return string; }
if (string != "") { string += ",u";
string += entry.key + '=' + entry.value;

Teturn string;

private static final class Eatry {
final Object key;
Object value;

Entry(final Object _key
this.key = _key;
this.value = _value;

»

¥ OOP with Java

, final Object _value) {
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Example for Using our Map

Class using our Map class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.Map;

public class MapTest {

public static void main(Stringl(] args) {
Map map = new Map();

map.put("Hello", "World!");
System.out.println(map);

map . put ("Country", "China");
System.out.println(map);

map . put ("Computer, Science", "Fun");
System.out.println(map);

map.put ("Hello", "Class!");
System.out.println(map);

map.put ("This, Course", "Nice");
System.out.println(map);

map.put ("This Course", "so-so");
System.out.println(map);
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Summary %\

e If we contribute code to a project or team, be aware that:

e everything which is visible will be used by someone (and any change
you apply to it later may break other code)

e every variable which is visible and can be changed will be changed by
someone (and you will not have any control over how it will be
changed)

e any classes that can be subclassed and methods that can be overridden
will eventually be subclassed/overridden

o Always apply the tightest possible visibility to any variable or method,
ideally private , which makes them visible only to the current class

o If a variable does not need to be changed, mark it as final

e |f a method does not need to be overridden or a class does not need
to be subclassed, mark them as final

e Inner classes allow us to make classes private to an enclosing class
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Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip


mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Visibility
	Class Visibility
	Why?
	Member Visibility
	Collection Example
	Basic List Class: Package Private Constructor, Public API
	IntList Class: Implementation for int
	A Program Using our IntList Class
	DoubleList Class: Implementation for Double
	A Program Using our DoubleList Class
	FloatList Class: Implementation for Float
	A Program Using our FloatList Class

	Encapsulation
	Encapsulation
	An example for a class with complete encapsulation

	The final Keyword
	The final Keyword
	Example for a class with encapsulation and final

	Inner Classes
	Inner Classes
	Example for a class with an inner class: A Map
	Example for Using our Map

	Summary
	Summary

	Presentation End

