
OOP with Java
18. Visiblity, Encapsulation, final , and static Inner Classes

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Visibility

3 Encapsulation

4 The final Keyword

5 Inner Classes

6 Summary

OOP with Java Thomas Weise 2/23

w
e
b
s
it
e

Introduction

• If you write a program, usually you are not just doing it alone

OOP with Java Thomas Weise 3/23

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

OOP with Java Thomas Weise 3/23

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

OOP with Java Thomas Weise 3/23

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• Packages and Classes are ways to structure your code

OOP with Java Thomas Weise 3/23

Introduction

• If you write a program, usually you are not just doing it alone

• Often, you work in a team

• Or you write code to be used by other people

• Packages and Classes are ways to structure your code

• But how can we ensure that your code is used correctly?

OOP with Java Thomas Weise 3/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

• are decleared in the form public class XYZ

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

• are decleared in the form public class XYZ

• can be import ed and used from anywhere

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

• are decleared in the form public class XYZ

• can be import ed and used from anywhere

• This way, we can separate our code into

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

• are decleared in the form public class XYZ

• can be import ed and used from anywhere

• This way, we can separate our code into
• a public API and classes to be used by others (declared as public)

OOP with Java Thomas Weise 4/23

Class Visibility

• Java allows you to create classes inside a package with two levels of
visibility:

• package-private classes

• are declared in the form class XYZ

• are only visible to the code inside the same package
• cannot be refered to by their canonical name or import ed into from

any other package or subpackage

• public classes

• are decleared in the form public class XYZ

• can be import ed and used from anywhere

• This way, we can separate our code into
• a public API and classes to be used by others (declared as public)

and
• our internal helper classes which nobody should mess with

OOP with Java Thomas Weise 4/23

Why?

• Why separate code into private and public classes?

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

• Whenever you change it (API, behavior), that other guy’s code will
stop working

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

• Whenever you change it (API, behavior), that other guy’s code will
stop working

• But not all of your code will be intended for other people to use,
some will really just be some internal stuff

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

• Whenever you change it (API, behavior), that other guy’s code will
stop working

• But not all of your code will be intended for other people to use,
some will really just be some internal stuff

• You make these classes package private

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

• Whenever you change it (API, behavior), that other guy’s code will
stop working

• But not all of your code will be intended for other people to use,
some will really just be some internal stuff

• You make these classes package private because only then you can
change them whenever and however you like.

OOP with Java Thomas Weise 5/23

Why?

• Why separate code into private and public classes?

• All (exposed) APIs must be specified, maintained, and documented
because you are part of a team in a company

• Because the more code/API you expose, the more you have to
maintain!

• Whatever you make accessible might be used by someone

• Whenever you change it (API, behavior), that other guy’s code will
stop working

• But not all of your code will be intended for other people to use,
some will really just be some internal stuff

• You make these classes package private because only then you can
change them whenever and however you like.

• (of course, someone could change your code to make a package
private class public , but then they break the specification and then

it is their problem)

OOP with Java Thomas Weise 5/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods)

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

• (nothing specified): package private, the member can be seen by all
code in the same package

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

• (nothing specified): package private, the member can be seen by all
code in the same package

• protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

• (nothing specified): package private, the member can be seen by all
code in the same package

• protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
• public : the member is visible to everybody

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

• (nothing specified): package private, the member can be seen by all
code in the same package

• protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
• public : the member is visible to everybody

• We always use the strictest visibility

OOP with Java Thomas Weise 6/23

Member Visibility

• But we can do more than not just want to either expose or hide a
class completely

• Some part of a class may belong to a public API, some other may just
internal implementation and helpers

• Java provides four levels of visibility that can be applied to all class
members (instance variables, static variables, instance methods, static
methods):

• private : only the methods of this very class can see the member

• (nothing specified): package private, the member can be seen by all
code in the same package

• protected : the member can be accessed from code in this class and

all of its subclasses and all classes in the same package
• public : the member is visible to everybody

• We always use the strictest visibility, because the bigger the visibility,
the more maintenance effort it will cost us later

OOP with Java Thomas Weise 6/23

Collection Example

• Arrays in Java have a fixed length

OOP with Java Thomas Weise 7/23

Collection Example

• Arrays in Java have a fixed length

• We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

OOP with Java Thomas Weise 7/23

Collection Example

• Arrays in Java have a fixed length

• We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

• We internally use arrays to store their content and allocate new arrays
when needed

OOP with Java Thomas Weise 7/23

Collection Example

• Arrays in Java have a fixed length

• We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

• We internally use arrays to store their content and allocate new arrays
when needed

• We define a base class with some public API

OOP with Java Thomas Weise 7/23

Collection Example

• Arrays in Java have a fixed length

• We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

• We internally use arrays to store their content and allocate new arrays
when needed

• We define a base class with some public API

• We extend this base class for int , double , and float

OOP with Java Thomas Weise 7/23

Collection Example

• Arrays in Java have a fixed length

• We want to implement some list classes which allow us to add
elements, i.e., have a dynamic length

• We internally use arrays to store their content and allocate new arrays
when needed

• We define a base class with some public API

• We extend this base class for int , double , and float

• The variables actually representing the data are private , the lists

can only be manipulated via the public methods

OOP with Java Thomas Weise 7/23

Basic List Class: Package Private Constructor, Public API

Listing: Basic List Class: Package Private Constructor, Public API

package cn.edu.hfuu.iao.collections;

/** a base class for lists: public API but package private constructor */

public class List {

/** package private variable holding list length */

int size;

/** package private constructor: only we can derive subclasses */

List() {

super();

}

/** get the size of this list */

public int size() {

return this.size;

}

/** reverse this list */

public void reverse () { // do nothing yet

}

/** return array representation of this list */

public Object toArray () {

return null;

}

}

OOP with Java Thomas Weise 8/23

IntList Class: Implementation for int

Listing: IntList Class: Implementation for int

package cn.edu.hfuu.iao.collections;

/** a list of integer values , based on class List */

public class IntList extends List {

/** the actual internal data */

private int[] data;

/** create an int list based on a data array */

public IntList(int[] _data) {

this.data = _data;

this.size = _data.length;

}

/** copy the data from this list to a destination array */

private void __copyTo(final int[] dest) {

for(int index = this.size; (--index) >= 0;) {

dest[index] = this.data[index];

}

}

/** add an integer value to the list */

public void append(final int value) {

if(this.size >= this.data.length) { // if capacity limit is reached

int[] newData = new int[this.size *2]; // allocate a much bigger array to avoid frequent re-allocation

this.__copyTo(newData); // copy data to new array

this.data = newData; // remember new array , old value of data becomes subject to GC

} // after this if-then body , we are sure that the data array is big enough to hold one more element

this.data[this.size ++] = value; // store value at the end of data and increment list length

}

/** reverse this list */

@Override

public void reverse () { // notice how we use two counters and two counter updates in the loop below

for(int i = 0, j = this.size -1; i < j; ++i, --j) { // we are allowed to do that , is that cool or what?

int t = this.data[i]; // copy value at index i

this.data[i] = this.data[j]; // store value from index j there

this.data[j] = t; // now store old value from index i at data[j]

}

}

/** Return the array representation of this list.

* Notice the usage of int[] instead of Object return value.

* We are allowed to do this , because int[] inherits (is subset of) Object. */

@Override

public int[] toArray () { // transform this list to an int[] array

int[] res = new int[this.size]; // allocate array of the right size

this.__copyTo(res); // use private __copyTo method to copy the contents of list to res

return res; // return res

}

/** create string representation of list */

@Override

public String toString () {

String s;

s = ""; //$NON -NLS -1$

for(int index = 0; index < this.size; ++ index) {

if(s != "") { s += ", "; } //$NON -NLS -1$ //$NON -NLS -2$

s += this.data[index];

}

return s;

}

} OOP with Java Thomas Weise 9/23

A Program Using our IntList Class

Listing: A Program Using our IntList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.IntList;

/** a class where we use int lists */

public class IntListTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

IntList list;

list = new IntList(new int[] { 12, 3 }); // create list with contents 12, 3

System.out.println(list); // prints 12, 3

list.append (-4); // appends -4 to the list

System.out.println(list); // prints 12, 3, -4

list.reverse (); // reverse list

System.out.println(list); // print -4, 3, 12

// list.__copyTo(new int [100]); // this is not possible , __copyTo is not visible

System.out.println(list.size()); // this is allowed , prints 3

// System.out.println(list.size); // not allowed , variable size is package private

}

}

OOP with Java Thomas Weise 10/23

DoubleList Class: Implementation for Double

Listing: DoubleList Class: Implementation for Double

package cn.edu.hfuu.iao.collections;

/** A list of double values , based on class List.

* Notice how all methods are marked with final so they cannot be overriden. A subclass can only add new methods. */

public class DoubleList extends List {

/** the actual internal data */

private double [] data;

/** create an double list based on a data array */

public DoubleList(double [] _data) {

this.data = _data;

this.size = _data.length;

}

/** copy the data from this list to a destination array */

private final void __copyTo(final double [] dest) {

for(int index = this.size; (--index) >= 0;) {

dest[index] = this.data[index];

}

}

/** add an double value to the list */

public final void append(final double value) {

if(this.size >= this.data.length) { // if capacity limit is reached

double [] newData = new double[this.size *2]; // allocate a much bigger array to avoid frequent re-allocation

this.__copyTo(newData); // copy data to new array

this.data = newData; // remember new array , old value of data becomes subject to GC

} // after this if-then body , we are sure that the data array is big enough to hold one more element

this.data[this.size ++] = value; // store value at the end of data and increment list length

}

/** reverse this list */

@Override

public final void reverse () { // notice how we use two counters and two counter updates in the loop below

for(int i = 0, j = this.size -1; i < j; ++i, --j) { // we are allowed to do that , is that cool or what?

double t = this.data[i]; // copy value at index i

this.data[i] = this.data[j]; // store value from index j there

this.data[j] = t; // now store old value from index i at data[j]

}

}

/** Return the array representation of this list.

* Notice the usage of double [] instead of Object return value.

* We are allowed to do this , because double [] inherits (is subset of) Object. */

@Override

public final double [] toArray () { // transform this list to an double [] array

double [] res = new double[this.size]; // allocate array of the right size

this.__copyTo(res); // use private __copyTo method to copy the contents of list to res

return res; // return res

}

/** create string representation of list */

@Override

public final String toString () {

String s;

s = ""; //$NON -NLS -1$

for(int index = 0; index < this.size; ++ index) {

if(s != "") { s += ", "; } //$NON -NLS -1$ //$NON -NLS -2$

s += this.data[index];

}

return s;

}

} OOP with Java Thomas Weise 11/23

A Program Using our DoubleList Class

Listing: A Program Using our DoubleList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.DoubleList;

/** a class where we use float lists */

public class DoubleListTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

DoubleList list;

list = new DoubleList(new double [] { 12d, 3d }); // create list with contents 12.0,

3.0

System.out.println(list); // prints 12.0, 3.0

list.append(-4d); // appends -4.0 to the list

System.out.println(list); // prints 12.0, 3.0, -4.0

list.reverse (); // reverse list

System.out.println(list); // print -4.0, 3.0, 12.0

// list.__copyTo(new double [100]); // this is not possible , __copyTo is not visible

System.out.println(list.size()); // this is allowed , prints 3

// System.out.println(list.size); // not allowed , variable size is package private

}

}

OOP with Java Thomas Weise 12/23

FloatList Class: Implementation for Float

Listing: FloatList Class: Implementation for Float

package cn.edu.hfuu.iao.collections;

/** A list of float values , based on class List.

* Notice how the class is marked as final , so it cannot be subclassed. */

public final class FloatList extends List {

/** the actual internal data */

private float[] data;

/** create an float list based on a data array */

public FloatList(float [] _data) {

this.data = _data;

this.size = _data.length;

}

/** copy the data from this list to a destination array */

private final void __copyTo(final float[] dest) {

for(int index = this.size; (--index) >= 0;) {

dest[index] = this.data[index];

}

}

/** add an float value to the list */

public final void append(final float value) {

if(this.size >= this.data.length) { // if capacity limit is reached

float [] newData = new float[this.size *2]; // allocate a much bigger array to avoid frequent re-allocation

this.__copyTo(newData); // copy data to new array

this.data = newData; // remember new array , old value of data becomes subject to GC

} // after this if-then body , we are sure that the data array is big enough to hold one more element

this.data[this.size ++] = value; // store value at the end of data and increment list length

}

/** reverse this list */

@Override

public final void reverse () { // notice how we use two counters and two counter updates in the loop below

for(int i = 0, j = this.size -1; i < j; ++i, --j) { // we are allowed to do that , is that cool or what?

float t = this.data[i]; // copy value at index i

this.data[i] = this.data[j]; // store value from index j there

this.data[j] = t; // now store old value from index i at data[j]

}

}

/** Return the array representation of this list.

* Notice the usage of float[] instead of Object return value.

* We are allowed to do this , because float[] inherits (is subset of) Object. */

@Override

public final float [] toArray () { // transform this list to an float [] array

float[] res = new float[this.size]; // allocate array of the right size

this.__copyTo(res); // use private __copyTo method to copy the contents of list to res

return res; // return res

}

/** create string representation of list */

@Override

public final String toString () {

String s;

s = ""; //$NON -NLS -1$

for(int index = 0; index < this.size; ++ index) {

if(s != "") { s += ", "; } //$NON -NLS -1$ //$NON -NLS -2$

s += this.data[index];

}

return s;

}

} OOP with Java Thomas Weise 13/23

A Program Using our FloatList Class

Listing: A Program Using our FloatList Class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.FloatList;

/** a class where we use double lists */

public class FloatListTest {

/** The main routine

* @param args we ignore this parameter */

public static void main(String [] args) {

FloatList list;

list = new FloatList(new float [] { 12f, 3f }); // create list with contents 12.0, 3.0

System.out.println(list); // prints 12.0, 3.0

list.append(-4f); // appends -4.0 to the list

System.out.println(list); // prints 12.0, 3.0, -4.0

list.reverse (); // reverse list

System.out.println(list); // print -4.0, 3.0, 12.0

// list.__copyTo(new float [100]); // this is not possible , __copyTo is not visible

System.out.println(list.size()); // this is allowed , prints 3

// System.out.println(list.size); // not allowed , variable size is package private

}

}

OOP with Java Thomas Weise 14/23

Encapsulation

• Object = code + data

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

• Because then you have no control about what they might do

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

• Because then you have no control about what they might do

• Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

• Because then you have no control about what they might do

• Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

• We should always aim for achieving encapsulation of the data

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

• Because then you have no control about what they might do

• Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

• We should always aim for achieving encapsulation of the data

• Encapsulation means that the variables of an object can only be
accessed and manipulated via methods

OOP with Java Thomas Weise 15/23

Encapsulation

• Object = code + data

• It is always bad to let somebody else manipulate the data by directly
accessing the variables

• Because then you have no control about what they might do

• Imagine what kind of bugs could result from someone directly working
on the data and size fields of our IntLis ?

• We should always aim for achieving encapsulation of the data

• Encapsulation means that the variables of an object can only be
accessed and manipulated via methods, i.e., are private

OOP with Java Thomas Weise 15/23

An example for a class with complete encapsulation

Listing: Class representing bank accounts: we need sanity checks!

package cn.edu.hfuu.iao;

/** A class for a bank account with complete encapsulation */

public class BankAccount {

/** the account number: clearly private */

private String accountNumber;

/** the amount of money in the account in cents: also private */

private long balance; // we use long , not double , because an account cannot have "fractional" cents

/** create a new bank account with balance 0 */

public BankAccount(String number){

this.accountNumber = number;

}

/** get the account 's balance */

public double getBalance () {

return this.balance;

}

/** add some money to the bank account */

public void deposit(long amount) {

if((amount > 0L) && (amount < 1_000_000_00L)) { // sanity check: you can only deposit a positive amount

this.balance += amount; // of money , and anything above 1 million is probably an error

} else { // an invalid amount cannot be put into the account

System.out.println("Invalid deposit amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

/** withdraw some money from the bank account */

public void withdraw(long amount) {

if((amount > 0L) && (amount < 1_000_00L)) { // sanity check: you can only withdraw a positive amount of

this.balance -= amount; // money and at most 1000 RMB at once

} else {

System.out.println("Invalid withdrawal amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

/** transfer some money from this account to another one */

public void transferTo(long amount , BankAccount other) {

if((other != null) && (other != this) && // the other bank account must not be null and different

(amount > 0L) && (amount < 1_000_000_00L) && // you can only transfer a positive amount in 0..1 million RMB

(amount < this.balance)) { // and you must have enough money for the transfer

this.balance -= amount;

other.balance += amount;

} else {

System.out.println("Cannot transfer " + amount + //$NON -NLS -1$

" from " + this + " to " + other); //$NON -NLS -1$ //$NON -NLS -2$

}

}

public String toString () {

return '(' + this.accountNumber + ": " + this.balance + ')'; //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 16/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it
• static method: subclasses cannot declare a static method with

same signature hiding it (always do this)

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it
• static method: subclasses cannot declare a static method with

same signature hiding it (always do this)
• local variable inside a method: the local variable can only be assigned

once

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it
• static method: subclasses cannot declare a static method with

same signature hiding it (always do this)
• local variable inside a method: the local variable can only be assigned

once
• method parameter: cannot be changed inside method – always do this,

changing parameter values in a method is confusing

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it
• static method: subclasses cannot declare a static method with

same signature hiding it (always do this)
• local variable inside a method: the local variable can only be assigned

once
• method parameter: cannot be changed inside method – always do this,

changing parameter values in a method is confusing

• We should declare as much stuff as final as possible

OOP with Java Thomas Weise 17/23

The final Keyword

• Besides “hiding” fields, we can also make them impossible to modify.

• For this, there exists final keyword.

• Declaring an XXX as final means. . .
• instance variable: you have to set its value in the constructor and

afterwards can never change it again
• static variable: you have to set its value right in the declarion, it’s

the same as a constant
• instance method: subclasses cannot override it
• static method: subclasses cannot declare a static method with

same signature hiding it (always do this)
• local variable inside a method: the local variable can only be assigned

once
• method parameter: cannot be changed inside method – always do this,

changing parameter values in a method is confusing

• We should declare as much stuff as final as possible, because if
something can be changed, someone will change it, and this makes
debugging and maintenance harder

OOP with Java Thomas Weise 17/23

Example for a class with encapsulation and final

Listing: Class representing bank accounts using final

package cn.edu.hfuu.iao;

/** A class for a bank account with complete encapsulation and the final keyword */

public final class BankAccountFinal { // we declare the class final , we don't allow subclassing

/** the account number: clearly private , clearly never changes , so it should be final */

private final String accountNumber;

/** the amount of money in the account in cents: also private */

private long balance; // we use long , not double , because an account cannot have "fractional" cents

/** create a new bank account with balance 0 */

public BankAccountFinal(final String number){ // number parameter is final , it cannot be changed inside constructor

this.accountNumber = number; // why would we want to change it anyway ..

}

/** get the account 's balance */

public final double getBalance () { // the method is marked as final. If the class was not already marked as final ,

return this.balance; // then it would still not be possible to override the method

}

/** add some money to the bank account */

public final void deposit(final long amount) {

if((amount > 0L) && (amount < 1_000_000_00L)) { // sanity check: you can only deposit a positive amount

this.balance += amount; // of money , and anything above 1 million is probably an error

} else { // an invalid amount cannot be put into the account

System.out.println("Invalid deposit amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

/** withdraw some money from the bank account */

public final void withdraw(final long amount) {

if((amount > 0L) && (amount < 1_000_00L)) { // sanity check: you can only withdraw a positive amount of

this.balance -= amount; // money and at most 1000 RMB at once

} else {

System.out.println("Invalid withdrawal amount " + amount + //$NON -NLS -1$

" for account " + this); //$NON -NLS -1$

}

}

/** transfer some money from this account to another one */

public final void transferTo(final long amount , final BankAccountFinal other) {

if((other != null) && (other != this) && // the other bank account must not be null and different

(amount > 0L) && (amount < 1_000_000_00L) && // you can only transfer a positive amount in 0..1 million RMB

(amount < this.balance)) { // and you must have enough money for the transfer

this.balance -= amount;

other.balance += amount;

} else {

System.out.println("Cannot transfer " + amount + //$NON -NLS -1$

" from " + this + " to " + other); //$NON -NLS -1$ //$NON -NLS -2$

}

}

public final String toString () {

return '(' + this.accountNumber + ": " + this.balance + ')'; //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 18/23

Inner Classes

• Besides putting a class into a package, we can also put it inside
another class

OOP with Java Thomas Weise 19/23

Inner Classes

• Besides putting a class into a package, we can also put it inside
another class

• This treats the outer class basically as a package

OOP with Java Thomas Weise 19/23

Inner Classes

• Besides putting a class into a package, we can also put it inside
another class

• This treats the outer class basically as a package

• It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

OOP with Java Thomas Weise 19/23

Inner Classes

• Besides putting a class into a package, we can also put it inside
another class

• This treats the outer class basically as a package

• It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

• Inner classes can be static , i.e., unrelated to any instance of the
outer class (we look only at this case)

OOP with Java Thomas Weise 19/23

Inner Classes

• Besides putting a class into a package, we can also put it inside
another class

• This treats the outer class basically as a package

• It allows us to specify an internal helper class as private , i.e., to be
more strict than “package private” with it

• Inner classes can be static , i.e., unrelated to any instance of the
outer class (we look only at this case)

• They can also be non- static instance classes and need a
surrounding instance of the outer class . . . let’s ignore this for now

OOP with Java Thomas Weise 19/23

Example for a class with an inner class: A Map

Listing: Class representing a Map using Inner Class for Map Entries

package cn.edu.hfuu.iao.collections;

/** a map which stores key -value relationships */

public final class Map {

/** the entry list: see the private class Entry below */

private Entry[] entries;

/** create a map */

public Map() { // create the map

this.entries = new Entry [32]; // with space for some entries

}

/** store that key should now be related to value */

public final void put(final Object key , final Object value) {

for (int index = 0; index < this.entries.length; index ++) { // first check all stored keys

if (this.entries[index] == null) { // if we get here , we have reached the end of the map

this.entries[index] = new Entry(key , value); // since we did not find key , just put a new entry

return; // and we can exit

}

if (this.entries[index].key == key) { // check if there already is an entry for the specified key

this.entries[index].value = value; // if so, we need to change its associated value

return; // and can exit

}

} // if we get to after the loop , this means that the entry list is full , but does not contain key

Entry[] newEntries = new Entry[this.entries.length * 2]; // so we need to allocate a larger entry list

for(int i = this.entries.length; (--i) >= 0;) { newEntries[i] = this.entries[i]; } // copy all existing entries

newEntries[this.entries.length] = new Entry(key , value); // and at the end of this list , we put the new entry

this.entries = newEntries; // and store the new entry list

}

/** transform to string */

public final String toString () {

String string = ""; //$NON -NLS -1$

for (Entry entry : this.entries) { // fast iteration over all entries

if (entry == null) { return string; } // end of list reached

if (string != "") { string += ", "; } //$NON -NLS -1$ //$NON -NLS -2$

string += entry.key + "=" + entry.value; //add key -value relationship //$NON -NLS -1$

}

return string; // return string

}

/** an inner class storing a map entry: This class is ONLY visible inside the Map class */

private static final class Entry {

/** the key , can never be changed and only accessed from enclosing class */

final Object key;

/** the value stored in the entry , can be changed (only from enclosing class) */

Object value;

/** create an entry */

Entry(final Object _key , final Object _value) {

this.key = _key;

this.value = _value;

}

}

}
OOP with Java Thomas Weise 20/23

Example for Using our Map

Listing: Class using our Map class

package cn.edu.hfuu.iao;

import cn.edu.hfuu.iao.collections.Map;

/** a class where we use our map */

public class MapTest {

/**

* The main routine

*

* @param args

* we ignore this parameter

*/

public static void main(String [] args) {

Map map = new Map();

map.put("Hello", "World!"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=World!

map.put("Country", "China"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=World!, Country=China

map.put("Computer Science", "Fun"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=World!, Country=China , Computer Science=Fun

map.put("Hello", "Class!"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=Class!, Country=China , Computer Science=Fun

map.put("This Course", "Nice"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=Class!, Country=China , Computer Science=Fun , This Course=Nice

map.put("This Course", "so -so"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(map); // Hello=Class!, Country=China , Computer Science=Fun , This Course=so-so

}

}

OOP with Java Thomas Weise 21/23

Summary

• If we contribute code to a project or team, be aware that:
• everything which is visible will be used by someone (and any change

you apply to it later may break other code)
• every variable which is visible and can be changed will be changed by

someone (and you will not have any control over how it will be
changed)

• any classes that can be subclassed and methods that can be overridden
will eventually be subclassed/overridden

• Always apply the tightest possible visibility to any variable or method,
ideally private , which makes them visible only to the current class

• If a variable does not need to be changed, mark it as final

• If a method does not need to be overridden or a class does not need
to be subclassed, mark them as final

• Inner classes allow us to make classes private to an enclosing class

OOP with Java Thomas Weise 22/23

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 23/23

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Visibility
	Class Visibility
	Why?
	Member Visibility
	Collection Example
	Basic List Class: Package Private Constructor, Public API
	IntList Class: Implementation for int
	A Program Using our IntList Class
	DoubleList Class: Implementation for Double
	A Program Using our DoubleList Class
	FloatList Class: Implementation for Float
	A Program Using our FloatList Class

	Encapsulation
	Encapsulation
	An example for a class with complete encapsulation

	The final Keyword
	The final Keyword
	Example for a class with encapsulation and final

	Inner Classes
	Inner Classes
	Example for a class with an inner class: A Map
	Example for Using our Map

	Summary
	Summary

	Presentation End

