LR B

HEFEI UNIVERSITY

OOP with Java

17. Packages and Import

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE
http://iao.hfuu.edu.cn

SMEFIE dmitHR R /E2R
TEMAE 5K A

&AL 5P
T E REE AF&T .4 X 230601
ZFHATRR 4% K895

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction
@ Packages

@ Canonical Class Names and import

O Summary

OOP with Java Thomas Weise

e Classes allow us to structure our program code

e Classes allow us to structure our program code

e A program is usually a big heap of data structures and algorithms

e Classes allow us to structure our program code
e A program is usually a big heap of data structures and algorithms

e We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

Introduction %()

e Classes allow us to structure our program code

e A program is usually a big heap of data structures and algorithms

e We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

e We can find related data structures and algorithms and try to
generalize them in order to put their common parts in common super
class

OOP with Java Thomas Weise 3/20

Introduction %\

e Classes allow us to structure our program code
e A program is usually a big heap of data structures and algorithms

e We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

e We can find related data structures and algorithms and try to
generalize them in order to put their common parts in common super
class

e This way, we can make the code shorter and structure the program
more clearly

OOP with Java Thomas Weise 3/20

e But even then, we might end up with a huge mess

e But even then, we might end up with a huge mess

e Classes can have dozens of methods

e But even then, we might end up with a huge mess
e Classes can have dozens of methods

e There may be hundreds of classes

But even then, we might end up with a huge mess

Classes can have dozens of methods

There may be hundreds of classes
Programs often have 1'000'000 to 10'000'000 lines of code

But even then, we might end up with a huge mess

Classes can have dozens of methods

There may be hundreds of classes
Programs often have 1'000'000 to 10'000'000 lines of code

We need more structure!

e A lot of classes are for entirely unrelated stuff

o A lot of classes are for entirely unrelated stuff:
e some classes represent the “business logic” of the software

o A lot of classes are for entirely unrelated stuff:

e some classes represent the “business logic” of the software
e others may be for 1/0, i.e, reading input and writing output

o A lot of classes are for entirely unrelated stuff:
e some classes represent the “business logic” of the software
e others may be for 1/0, i.e, reading input and writing output
e others may render a graphical user interface on the screen

o A lot of classes are for entirely unrelated stuff:

some classes represent the “business logic” of the software
others may be for 1/0, i.e, reading input and writing output
others may render a graphical user interface on the screen
yet others may be general algorithms such as sorting

o A lot of classes are for entirely unrelated stuff:

e some classes represent the “business logic” of the software
others may be for 1/0, i.e, reading input and writing output
others may render a graphical user interface on the screen
yet others may be general algorithms such as sorting

others may represent collections like lists or hash maps used

o A lot of classes are for entirely unrelated stuff:

e some classes represent the “business logic” of the software
e others may be for 1/0, i.e, reading input and writing output
e others may render a graphical user interface on the screen
o yet others may be general algorithms such as sorting

o others may represent collections like lists or hash maps used

e We should put these into different places

o A lot of classes are for entirely unrelated stuff:

some classes represent the “business logic” of the software
others may be for 1/0, i.e, reading input and writing output
others may render a graphical user interface on the screen
yet others may be general algorithms such as sorting

others may represent collections like lists or hash maps used

e We should put these into different places

e This is what packages are good for

e Packages offer something like a hierarchical file system for classes

o Packages offer something like a hierarchical file system for classes:
e imagine the unix file system with . instead of /

o Packages offer something like a hierarchical file system for classes:

e imagine the unix file system with . instead of /
e imagine the windows file system with . instead of \

o Packages offer something like a hierarchical file system for classes:
e imagine the unix file system with . instead of /
e imagine the windows file system with . instead of \
o packages then are like directories

e Packages offer something like a hierarchical file system for classes:
e imagine the unix file system with . instead of /
e imagine the windows file system with . instead of \
o packages then are like directories
o actually, they do 1:1 correspond to source folders!

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

http://iao.hfuu.edu.cn/

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

e In Java, you usually choose a base package which represents your
organization

http://iao.hfuu.edu.cn/

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

e In Java, you usually choose a base package which represents your
organization:

o Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

http://iao.hfuu.edu.cn/

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

e In Java, you usually choose a base package which represents your
organization:

o Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

e We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute

http://iao.hfuu.edu.cn/

Elaborate Example %0,

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new
e In Java, you usually choose a base package which represents your
organization:
e Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique
e We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute
e This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

”

1AQ

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new
e In Java, you usually choose a base package which represents your
organization:
e Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique
e We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute
e This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

e We then put the “Person” class hierarchy into sub-package
cn.edu.hfuu.iao.person (equivalent to folder

src/cn/edu/hfuu/person)

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example §\

1AQ

e We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new
e In Java, you usually choose a base package which represents your
organization:
e Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique
e We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute
e This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

e We then put the “Person” class hierarchy into sub-package
cn.edu.hfuu.iao.person (equivalent to folder

src/cn/edu/hfuu/person)

e We add some I/O classes in sub-package cn.edu.hfuu.iao.io
(equivalent to folder src/cn/edu/hfuu/io)

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

javaExamples - Java - Eclipse

- H @™ i

=S

1
L

2 Package Explorer 5 |

*i417_packages_and_import [javaExamples master]
> Berc

* [1} ForeignExchangeStudentReader.java
* [} PersonReader.java
* [1} ProfessorReader.java
* [} StudentReader.java
~ A person
» [} ForeignExchangeStudent.java
* [Z} Person.java
» [Professor.java
» [J} Student.java
¥ il Test. java

cn.edu.hfuu.iao-17_packages_and_import/src

| Quick Access | |

IFlp @1 BCcx

A L

B R &

= O

OOP with Java Thomas Weise

http://iao.hfuu.edu.cn/

N SR
i 2 Bronto | Wome- | [B [Bowns B
: i Copy path- s ¥ [Zedit 75 select none
Co Paste I - Tew Propetties
£ [3] Paste shorteut @Copyto =L RERAme foid_!:r p' |®Hlstory Eg\nvertselectlon

Clipboard Craanize [dpen Select

v (-.'.- | Search person pm

4 j 1?_packag_es_-and_:import Marre B
P.H tin _| ForeignExchangeStudent java
B * HE D Person.java
‘ IH cn. __| Prafessor.java
< d edu D Studentjava
4 | hfuu
Ll .H iao
ia
|_H persan

4 iterns

http://iao.hfuu.edu.cn/

o If | put a class into a package a.b.c, then the first line in the Java
file must be package a.b.c;

Package Declaration in Class

W

1AQ

Listing: A Person class in package cn.edu.hfuu.iao.person

o If | put a class into a package a.b.c, then the first line in the Java

file must be package a.b.c;

package cn.edu.hfuu.iao.person;

public class Person {

}

String

String

public

this.
this.

}

public

return this.givenName +

}

familyName;

givenName;

Person(String _familyName,
familyName = _familyName;
givenName = _givenName;

String toString() {

String _givenName) {

'y' + this.familyName;

OOP with Java

Thomas Weise

8/20

Professor Class

/*% A

public class Professor extends Person {

/** cr t it

public Professor(String _familyName,
super (_familyName, _givenName);

}

/**% return

@Override // mark < L
public String toStrlng() {
return "Prof._," + super.toString();

}

ate a person record and sel 1its

String _glvenName) {

OOP with Java

Thomas Weise

9/20

Student Class %\’

udent class in pack cn.edu.hfuu

package cn.edu.hfuu.iao.person;

public class Student extends Person {

String id;

public Student (String _familyName, String _givenName, String _id) {
super (_familyName, _givenName);
this.id = _id;

@0verride
public String toString() {
return "student," + super.toString();
}
&

OOP with Java Thomas Weise 10/20

Foreign Exchange Student Class

package cn.edu.hfuu.iao.person;

public class ForeignExchangeStudent extends Student {

String homeCountry;

public ForeignExchangeStudent (String _familyName, String _givenName,

String _id, String country) {
super (_familyName, _givenName, _id);
this.homeCountry = country;
}
@0verride

public String toString() {
return super.toString() + ", from," + this.homeCountry;

}
}

OOP with Java Thomas Weise

11/20

e A class MyClass is specified doing class MyClass { ... }

e A class MyClass is specified doing class MyClass { ... }

e MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

e A class MyClass is specified doing class MyClass { ... }

e MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

o |f the class is in package a.b.c, then its canonical name becomes

a.b.c.MyClass

A class MyClass is specified doing class MyClass { ... }

e MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

If the class is in package a.b.c, then its canonical name becomes
a.b.c.MyClass

The canonical name of our new Person class is

cn.edu.hfuu.iao.person.Person

A class MyClass is specified doing class MyClass { ... }

e MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

If the class is in package a.b.c, then its canonical name becomes
a.b.c.MyClass

The canonical name of our new Person class is

cn.edu.hfuu.iao.person.Person

e You can use classes in different packages by using their canonical
name

Using Canonical Class Names: A Person Reader %\’

Person Reader in package cn.edu.

package cn.edu.hfuu.iao.io;

public class PersonReader {

public PersonReader (){
}

public cn.edu.hfuu.iao.person.Person read(java.util.Scanner scanner) {
System.err.println("Enter person's,family name:");

String familyName = scanner.nextLine();
System.err.println("Enter person'sygiven name:");
String givenName = scanner.nextLine();

return new cn.edu.hfuu.iao.person.Person(familyName, givenName);

OOP with Java Thomas Weise 13/20

e If aclass A isin the same package as your class B, then you can use
it by its simple name

e If aclass A isin the same package as your class B, then you can use
it by its simple name

e Otherwise, you have to use its canonical name

e If aclass A isin the same package as your class B, then you can use
it by its simple name

e Otherwise, you have to use its canonical name

o Always writing canonical names makes the code hard to read

If a class A is in the same package as your class B, then you can use
it by its simple name

Otherwise, you have to use its canonical name

Always writing canonical names makes the code hard to read

e You can “import” a class MyClass by its canonical name
a.b.c.MyClass into your class by doing import a.b.c.MyClass

If a class A is in the same package as your class B, then you can use
it by its simple name

Otherwise, you have to use its canonical name

Always writing canonical names makes the code hard to read

e You can “import” a class MyClass by its canonical name
a.b.c.MyClass into your class by doing import a.b.c.MyClass

You then can refer to imported classes by their simple name

import %‘)

e If a class A is in the same package as your class B, then you can use
it by its simple name

e Otherwise, you have to use its canonical name

o Always writing canonical names makes the code hard to read

e You can “import” a class MyClass by its canonical name
a.b.c.MyClass into your class by doing import a.b.c.MyClass

e You then can refer to imported classes by their simple name

e This is just a shorthand syntax, the compiled code is identical to
using the canonical name

OOP with Java Thomas Weise 14/20

import

”

>
<

e If a class A is in the same package as your class B, then you can use
it by its simple name

e Otherwise, you have to use its canonical name

o Always writing canonical names makes the code hard to read

e You can “import” a class MyClass by its canonical name
a.b.c.MyClass into your class by doing import a.b.c.MyClass

e You then can refer to imported classes by their simple name

e This is just a shorthand syntax, the compiled code is identical to
using the canonical name

e You cannot import two classes with the same simple name and you
cannot import a class with the same simple name as your class

OOP with Java Thomas Weise 14/20

Using import : A Professor Reader %\’

Listing: Professor Reader in package cn.edu

package cn.edu.hfuu.iao.io;

import java.util.Scanner;

import cn.edu.hfuu.iao.person.Professor;

public class ProfessorReader extends PersonReader {

public ProfessorReader (){
}

@Override
public Professor read(Scanner scanner) {
System.err.println(“Enteruprofessor'sufamilyuname:”);

String familyName = scanner.nextLine();
System.err.println("Enter professor's, givengname:");
String givenName = scanner.nextLine();

return new Professor(familyName, givenName);

OOP with Java Thomas Weise 15/20 y

Using import : A Student Reader %\’

package cn.edu.hfuu.iao.io;

import java.util.Scanner;

import cn.edu.hfuu.iao.person.Student;

public class StudentReader extends PersonReader {

public StudentReader (){
}

@0verride
public Student read(Scanner scanner) {
System.err.println("Enter_ student's family_ name:");

String familyName = scanner.nextLine();
System.err.println("Enter student's,given name:");
String givenName = scanner.nextLine();
System.err.println("Enter student 's, ID:");

String id = scanner.nextLine();

return new Student(familyName, givenName, id);

} OOP with Java Thomas Weise 16/20

Using import : A Foreign Exchange Student Reader

Listing: Foreign Exc i cn.edu.hfuu

package cn.edu.hfuu.iao.io;
import java.util.Scanner;

import cn.edu.hfuu.iao.person.ForeignExchangeStudent;

public class ForeignExchangeStudentReader extends PersonReader {

public ForeignExchangeStudentReader (){
¥

@Override

public ForeignExchangeStudent read(Scanner scanner) {
System.err.println("Enter exchange student's, family, name:");
String familyName = scanner.nextLine();
System.err.println("Enter exchange student's, given name:");
String givenName = scanner.nextLine();
System.err.println("Enter exchangeystudent's ID:");
String id = scanner.nextLine();
System.err.println("Enter exchange, student's home,country:");
String country = scanner.nextLine();

return new ForeignExchangeStudent (familyName, givenName, id, country);

QOP with layg Thomas \\eise

20

A Main Class Reading and Printing Person Records

=

Main class

package cn.edu.hfuu.iao;

import java.util.Scanner;

import cn.
import cn.
import cn.
import cn.
import cn.

public class Main {

edu.
edu.
edu.
edu.
edu.

hfuu.
hfuu.
hfuu.
hfuu.
hfuu.

iao.
iao.
iao.
iao.
iao.

io.
io.
io.
io.

in package cn.edu.hfuu.iao

ForeignExchangeStudentReader;
PersonReader;
ProfessorReader;
StudentReader;

person.Person;

public static void main(String[] args) {
PersonReader reader;

Scanner scanner

System

switch

.err.println("Do,you,want to,read,(p)rofessors, (s)tudents, or,(e)change students:,");

new

Scanner (System.in) ;

(scanner.nextLine () .charAt (0)) {

case 'p': { reader = new ProfessorReader (); break; }
case 's': { reader = new StudentReader (); break; }
default: { reader = new ForeignExchangeStudentReader (); break;
3
for (55) {
Person person = reader.read(scanner);
System.out.println("You,entered:, " + person);
System.out.println("Type,enter,to,continue, Ctrl-Dy to exit.");
if (scanner.hasNextLine()) {
scanner.nextLine ();
continue;
b
return;
SR 3
b OOP with Java Thomas Weise

}

18/20

Summary %\

1AQ

e We have learned about packages:

e which are something like a folder structure (with . instead of /) to
arrange our code and
e actually correspond to folders

e They allow us to cleanly organize even large projects.

e By using the server part of the URL (with . instead of /) of our
organization as root package, we can achieve globally unique
canonical class names.

e This allows us to mix our code with code from arbitrary other sources.

e Canonical class names have the form
“packagename.simpleClassName”, where simpleClassName is the
name we specify after the class keyword.

e We can refer to classes in other packages using their canonical name

e We can import classes via their canonical name and then refer to
them using their simple name

OOP with Java Thomas Weise 19/20

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Introduction

	Packages
	Packages: What are they good for?
	Packages: What are Packages?
	Elaborate Example
	Package Declaration in Class
	Professor Class
	Student Class
	Foreign Exchange Student Class

	Canonical Class Names and import
	Canonical Class Names
	Using Canonical Class Names: A Person Reader
	import
	Using import: A Professor Reader
	Using import: A Student Reader
	Using import: A Foreign Exchange Student Reader
	A Main Class Reading and Printing Person Records

	Summary
	Summary

	Presentation End

