
OOP with Java
17. Packages and Import

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Packages

3 Canonical Class Names and import

4 Summary

OOP with Java Thomas Weise 2/20

w
e
b
s
it
e

Introduction

• Classes allow us to structure our program code

OOP with Java Thomas Weise 3/20

Introduction

• Classes allow us to structure our program code

• A program is usually a big heap of data structures and algorithms

OOP with Java Thomas Weise 3/20

Introduction

• Classes allow us to structure our program code

• A program is usually a big heap of data structures and algorithms

• We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

OOP with Java Thomas Weise 3/20

Introduction

• Classes allow us to structure our program code

• A program is usually a big heap of data structures and algorithms

• We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

• We can find related data structures and algorithms and try to
generalize them in order to put their common parts in common super
class

OOP with Java Thomas Weise 3/20

Introduction

• Classes allow us to structure our program code

• A program is usually a big heap of data structures and algorithms

• We can take the algorithms that work on one specific data structure
and put the data structure and algorithm into one single class
together

• We can find related data structures and algorithms and try to
generalize them in order to put their common parts in common super
class

• This way, we can make the code shorter and structure the program
more clearly

OOP with Java Thomas Weise 3/20

Introduction

• But even then, we might end up with a huge mess

OOP with Java Thomas Weise 4/20

Introduction

• But even then, we might end up with a huge mess

• Classes can have dozens of methods

OOP with Java Thomas Weise 4/20

Introduction

• But even then, we might end up with a huge mess

• Classes can have dozens of methods

• There may be hundreds of classes

OOP with Java Thomas Weise 4/20

Introduction

• But even then, we might end up with a huge mess

• Classes can have dozens of methods

• There may be hundreds of classes

• Programs often have 1’000’000 to 10’000’000 lines of code

OOP with Java Thomas Weise 4/20

Introduction

• But even then, we might end up with a huge mess

• Classes can have dozens of methods

• There may be hundreds of classes

• Programs often have 1’000’000 to 10’000’000 lines of code

• We need more structure!

OOP with Java Thomas Weise 4/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output
• others may render a graphical user interface on the screen

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output
• others may render a graphical user interface on the screen
• yet others may be general algorithms such as sorting

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output
• others may render a graphical user interface on the screen
• yet others may be general algorithms such as sorting
• others may represent collections like lists or hash maps used

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output
• others may render a graphical user interface on the screen
• yet others may be general algorithms such as sorting
• others may represent collections like lists or hash maps used

• We should put these into different places

OOP with Java Thomas Weise 5/20

Packages: What are they good for?

• A lot of classes are for entirely unrelated stuff:
• some classes represent the “business logic” of the software
• others may be for I/O, i.e, reading input and writing output
• others may render a graphical user interface on the screen
• yet others may be general algorithms such as sorting
• others may represent collections like lists or hash maps used

• We should put these into different places

• This is what packages are good for

OOP with Java Thomas Weise 5/20

Packages: What are Packages?

• Packages offer something like a hierarchical file system for classes

OOP with Java Thomas Weise 6/20

Packages: What are Packages?

• Packages offer something like a hierarchical file system for classes:
• imagine the unix file system with . instead of /

OOP with Java Thomas Weise 6/20

Packages: What are Packages?

• Packages offer something like a hierarchical file system for classes:
• imagine the unix file system with . instead of /

• imagine the windows file system with . instead of \

OOP with Java Thomas Weise 6/20

Packages: What are Packages?

• Packages offer something like a hierarchical file system for classes:
• imagine the unix file system with . instead of /

• imagine the windows file system with . instead of \
• packages then are like directories

OOP with Java Thomas Weise 6/20

Packages: What are Packages?

• Packages offer something like a hierarchical file system for classes:
• imagine the unix file system with . instead of /

• imagine the windows file system with . instead of \
• packages then are like directories
• actually, they do 1:1 correspond to source folders!

OOP with Java Thomas Weise 6/20

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization:

• Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization:

• Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

• We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization:

• Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

• We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute

• This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization:

• Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

• We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute

• This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

• We then put the “Person” class hierarchy into sub-package
cn.edu.hfuu.iao.person (equivalent to folder

src/cn/edu/hfuu/person)

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

• We make a more elaborate example based on our “Person” classes
from Lesson 14: Objects, Instance Variables, and new

• In Java, you usually choose a base package which represents your
organization:

• Usually, this is the server part of the URL of your organization in
reverse, so that the structure is globally unique

• We thus choose cn.edu.hfuu.iao , since http://iao.hfuu.edu.cn/
is the URL of my institute

• This means our code’s root folder is not just the src folder in the

Eclipse project, but src/cn/edu/hfuu/iao

• We then put the “Person” class hierarchy into sub-package
cn.edu.hfuu.iao.person (equivalent to folder

src/cn/edu/hfuu/person)

• We add some I/O classes in sub-package cn.edu.hfuu.iao.io

(equivalent to folder src/cn/edu/hfuu/io)

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Elaborate Example

OOP with Java Thomas Weise 7/20

http://iao.hfuu.edu.cn/

Package Declaration in Class

• If I put a class into a package a.b.c , then the first line in the Java
file must be package a.b.c;

OOP with Java Thomas Weise 8/20

Package Declaration in Class

• If I put a class into a package a.b.c , then the first line in the Java
file must be package a.b.c;

Listing: A Person class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a person with constructor and toString method. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

public Person(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** return a string representation of this person record */

public String toString () {

return this.givenName + ' ' + this.familyName;

}

}

OOP with Java Thomas Weise 8/20

Professor Class

Listing: A Professor class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a professor */

public class Professor extends Person { // class Processor extends class Person

/** create a person record and set its name */

public Professor(String _familyName , String _givenName) {

super(_familyName , _givenName);

}

/** return "Prof. " + result of super.toString () = Person.toString () */

@Override // mark this method explicitly as overridden

public String toString () {

return "Prof. " + super.toString (); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 9/20

Student Class

Listing: A Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a student */

public class Student extends Person { // class Student extends class Person

/** the id of the student */

String id;

/** create a student record and set its name and student id */

public Student(String _familyName , String _givenName , String _id) {

super(_familyName , _givenName);

this.id = _id;

}

/** return a string representation of this student record */

@Override // mark this method explicitly as overridden

public String toString () {

return "student " + super.toString (); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 10/20

Foreign Exchange Student Class

Listing: A Foreign Exchange Student class in package cn.edu.hfuu.iao.person

package cn.edu.hfuu.iao.person; // declare the package cn.edu.hfuu.iao.person

/** A class representing a foreign exchange student */

public class ForeignExchangeStudent extends Student {

/** the home country of the student */

String homeCountry; // we add a new field

/** create a student record and set its name , student id, and home country */

public ForeignExchangeStudent(String _familyName , String _givenName ,

String _id , String country) {

super(_familyName , _givenName , _id);

this.homeCountry = country;

}

/** override toString () from Person */

@Override // mark this method explicitly as overridden

public String toString () {

return super.toString () + " from " + this.homeCountry;//$NON -NLS -1$

}

}

OOP with Java Thomas Weise 11/20

Canonical Class Names

• A class MyClass is specified doing class MyClass { ... }

OOP with Java Thomas Weise 12/20

Canonical Class Names

• A class MyClass is specified doing class MyClass { ... }

• MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

OOP with Java Thomas Weise 12/20

Canonical Class Names

• A class MyClass is specified doing class MyClass { ... }

• MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

• If the class is in package a.b.c , then its canonical name becomes
a.b.c.MyClass

OOP with Java Thomas Weise 12/20

Canonical Class Names

• A class MyClass is specified doing class MyClass { ... }

• MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

• If the class is in package a.b.c , then its canonical name becomes
a.b.c.MyClass

• The canonical name of our new Person class is
cn.edu.hfuu.iao.person.Person

OOP with Java Thomas Weise 12/20

Canonical Class Names

• A class MyClass is specified doing class MyClass { ... }

• MyClass is the simple name of the class, used as type, used for
calling constructors, and for invoking static methods

• If the class is in package a.b.c , then its canonical name becomes
a.b.c.MyClass

• The canonical name of our new Person class is
cn.edu.hfuu.iao.person.Person

• You can use classes in different packages by using their canonical
name

OOP with Java Thomas Weise 12/20

Using Canonical Class Names: A Person Reader

Listing: Person Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

/** a class to read a person record from stdin: using canonical class names */

public class PersonReader {

/** the constructor */

public PersonReader (){

}

/** Read a person record from stdin. All class names are specified canonically

* @return the new person record */

public cn.edu.hfuu.iao.person.Person read(java.util.Scanner scanner) {

System.err.println("Enter person 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter person 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new cn.edu.hfuu.iao.person.Person(familyName , givenName);

}

}

OOP with Java Thomas Weise 13/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

• Always writing canonical names makes the code hard to read

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

• Always writing canonical names makes the code hard to read

• You can “import” a class MyClass by its canonical name

a.b.c.MyClass into your class by doing import a.b.c.MyClass

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

• Always writing canonical names makes the code hard to read

• You can “import” a class MyClass by its canonical name

a.b.c.MyClass into your class by doing import a.b.c.MyClass

• You then can refer to imported classes by their simple name

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

• Always writing canonical names makes the code hard to read

• You can “import” a class MyClass by its canonical name

a.b.c.MyClass into your class by doing import a.b.c.MyClass

• You then can refer to imported classes by their simple name

• This is just a shorthand syntax, the compiled code is identical to
using the canonical name

OOP with Java Thomas Weise 14/20

import

• If a class A is in the same package as your class B , then you can use
it by its simple name

• Otherwise, you have to use its canonical name

• Always writing canonical names makes the code hard to read

• You can “import” a class MyClass by its canonical name

a.b.c.MyClass into your class by doing import a.b.c.MyClass

• You then can refer to imported classes by their simple name

• This is just a shorthand syntax, the compiled code is identical to
using the canonical name

• You cannot import two classes with the same simple name and you
cannot import a class with the same simple name as your class

OOP with Java Thomas Weise 14/20

Using import : A Professor Reader

Listing: Professor Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Professor from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Professor;

/** a class to read a professor record from stdin */

public class ProfessorReader extends PersonReader {

/** the constructor */

public ProfessorReader (){

}

/** read a profesor record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Professor read(Scanner scanner) {

System.err.println("Enter professor 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter professor 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

return new Professor(familyName , givenName);

}

}

OOP with Java Thomas Weise 15/20

Using import : A Student Reader

Listing: Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class Student from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.Student;

/** a class to read a student record from stdin */

public class StudentReader extends PersonReader {

/** the constructor */

public StudentReader (){

}

/** read a student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public Student read(Scanner scanner) {

System.err.println("Enter student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

return new Student(familyName , givenName , id);

}

} OOP with Java Thomas Weise 16/20

Using import : A Foreign Exchange Student Reader

Listing: Foreign Exchange Student Reader in package cn.edu.hfuu.iao.io

package cn.edu.hfuu.iao.io;

import java.util.Scanner; // import class Scanner from java.util

// import class ForeignExchangeStudent from package cn.edu.hfuu.iao.person

import cn.edu.hfuu.iao.person.ForeignExchangeStudent;

/** a class to read a student record from stdin */

public class ForeignExchangeStudentReader extends PersonReader {

/** the constructor */

public ForeignExchangeStudentReader (){

}

/** read a foreign exchange student record from scanner (pointing to stdin)

* @return the new person record */

@Override

public ForeignExchangeStudent read(Scanner scanner) {

System.err.println("Enter exchange student 's family name:"); //$NON -NLS -1$

String familyName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's given name:"); //$NON -NLS -1$

String givenName = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's ID:"); //$NON -NLS -1$

String id = scanner.nextLine (); // read a string from scanner

System.err.println("Enter exchange student 's home country:"); //$NON -NLS -1$

String country = scanner.nextLine (); // read a string from scanner

return new ForeignExchangeStudent(familyName , givenName , id, country);

}

}

OOP with Java Thomas Weise 17/20

A Main Class Reading and Printing Person Records

Listing: Main class in package cn.edu.hfuu.iao

package cn.edu.hfuu.iao;

import java.util.Scanner; // import class Scanner from the java.util package

import cn.edu.hfuu.iao.io.ForeignExchangeStudentReader; // import all needed data structure

import cn.edu.hfuu.iao.io.PersonReader; // and I/O classes from our sub -packages

import cn.edu.hfuu.iao.io.ProfessorReader;

import cn.edu.hfuu.iao.io.StudentReader;

import cn.edu.hfuu.iao.person.Person;

/** testing our package structure */

public class Main {

/** The main routine reading person records of a certain type from stdin

* @param args we ignore this parameter */

public static void main(String [] args) {

PersonReader reader;

Scanner scanner = new Scanner(System.in); // create a structured text reader

System.err.println("Do you want to read (p)rofessors , (s)tudents , or (e)change students: "); //$NON -NLS -1$

switch (scanner.nextLine ().charAt (0)) { // check the first character entered by the user

case 'p': { reader = new ProfessorReader (); break; } // p -> read professors

case 's': { reader = new StudentReader (); break; } // s -> read students

default: { reader = new ForeignExchangeStudentReader (); break; } // otherwise: read exchange students

}

for (;;) { // loop forever , see loop condition at bottom of loop

Person person = reader.read(scanner); // use the person read to read a person

System.out.println("You entered: " + person); // print person.toString //$NON -NLS -1$

System.out.println("Type enter to continue , Ctrl -D to exit."); //$NON -NLS -1$

if (scanner.hasNextLine ()) { // if user pressed enter

scanner.nextLine (); // we read the line and continue

continue; // and do another iteration

} // if she instead pressed Ctrl -D or stdin ends , there is

return; // no next line and we exit the main routine

}

}

}
OOP with Java Thomas Weise 18/20

Summary

• We have learned about packages:
• which are something like a folder structure (with . instead of /) to

arrange our code and
• actually correspond to folders

• They allow us to cleanly organize even large projects.

• By using the server part of the URL (with . instead of /) of our
organization as root package, we can achieve globally unique
canonical class names.

• This allows us to mix our code with code from arbitrary other sources.

• Canonical class names have the form
“packagename.simpleClassName”, where simpleClassName is the
name we specify after the class keyword.

• We can refer to classes in other packages using their canonical name

• We can import classes via their canonical name and then refer to
them using their simple name

OOP with Java Thomas Weise 19/20

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 20/20

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Introduction

	Packages
	Packages: What are they good for?
	Packages: What are Packages?
	Elaborate Example
	Package Declaration in Class
	Professor Class
	Student Class
	Foreign Exchange Student Class

	Canonical Class Names and import
	Canonical Class Names
	Using Canonical Class Names: A Person Reader
	import
	Using import: A Professor Reader
	Using import: A Student Reader
	Using import: A Foreign Exchange Student Reader
	A Main Class Reading and Printing Person Records

	Summary
	Summary

	Presentation End

