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Introduction

• So far, we have basically treated as objects as data structures and
used methods to work on them
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Introduction

• So far, we have basically treated as objects as data structures and
used methods to work on them

• But Object-Oriented Programming is much more

• The true power of OOP arises from class inheritance and extension
(often called specialization)
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• A class Student can extend another class Person
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Extending Classes

• A class Student can extend another class Person

• Student inherits all the fields and functionality of the original class
Person

• We specify this via class Student extends Person in the declaration
of class Student

• Student can add own, new data and methods

OOP with Java Thomas Weise 4/23



Inheritance and Compatibility
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Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

• We can store an instance of Student in a variable of type Person

• With the keyword a instanceof X we can check if a variable a

stores a value compatible to type X

• The special value null is compatible to all classes

• Mathematically speaking, Student is a subset of Person , not all
Person s are Student s, but all Student s are Person s
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Person class with toString

Listing: A Person class with toString Method

/** A class representing a person with constructor and toString method. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

Person(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** return a string representation of this person record */

public String toString () {

return this.givenName + ' ' + this.familyName;

}

}
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Student class extending Person

Listing: A Student Class extending class Person

/** A class representing a student */

public class Student extends Person { // class Student extends class Person

/** the id of the student */

String id; // Class student adds the new field 'id'

/** create a student record and set its name and student id */

Student(String _familyName , String _givenName , String _id) {

super(_familyName , _givenName); // invoke the inherited constructor of Person setting up the name

this.id = _id;

}

/** a new method */

void inLecture () { System.out.println("Student " + this.toString () + " fell asleep.");} //$NON -NLS -1$//$NON -NLS -2$

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Person("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(person); // print the result of person.toString ()

Student student = new Student("Chan", "Jacky", "S01"); //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

System.out.println(student); // print the result of student.toString (): the inherited toString method

System.out.println(student.id); // print the value of the id field , namely "S01"

// System.out.println(person.id); // <- we cannot do that , because Person does not have such a field

student.inLecture (); // invoke the method inLecture implemented by class Student

// person.inLecture (); <- we cannot do this , because Person does not implement this method

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // false: variable person does not hold an instance of class Student

System.out.println(student instanceof Student); // true: every instance of Student is also an instance of Person

System.out.println(student instanceof Person); // true: hence , variable student also holds an instance of person

person = student; // we can do this , since variable student is guaranteed to hold an instance of Sstudent (or null)

// student = person; <- but we can never do this , as some persons (like Weise above) are no students

System.out.println(person); // print "Jacky Chan", the result of person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // true: variable person now also holds an instance of class Student

}
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Inheritance and Constructors

• In the constructor of Student , we first invoke the super constructor:

the constructor inherited from Person

OOP with Java Thomas Weise 8/23
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Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

• tag the old method with @Override to mark it as overriding an
inherited method

• The new method can be called like the old method

• We can make a class Professor , override String toString() , and

store an instance of Professor in a variable person of type Person

• If we call person.toString() , it will call the implementation of

Professor.toString() , since person references an object of type

Professor !
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Professor class extending Person

Listing: A Professor Class extending class Person

/** A class representing a professor */

public class Professor extends Person { // class Processor extends class Person

/** create a person record and set its name */

Professor(String _familyName , String _givenName) {

super(_familyName , _givenName); // invoke the inherited constructor of Person setting up the name

}

/** return "Prof. " + the result of super.toString () = Person.toString () */

@Override // mark this method explicitly as overridden: explicitly remind programmers about this

public String toString () {

return "Prof. " + super.toString (); // "Prof. " + super implementation of toString () from Person //$NON -NLS -1$

}

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Person("Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(person); // print the result of person.toString ()

Professor professor = new Professor("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(professor); // print the result of professor.toString (): "Prof. " + the result of Person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Professor); // false: variable person does not hold an instance of class Professor

System.out.println(person instanceof Student); // false: variable person does not hold an instance of class Student

System.out.println(professor instanceof Professor); // true: every instance of Professor is also an instance of Person

// System.out.println(professor instanceof Student); // will always be false , but compiler sees this and warns us

System.out.println(professor instanceof Person); // true: hence , variable professor also holds an instance of person

person = professor; // we can do this , since variable professor is guaranteed to hold an instance of professor (or null)

// professor = person; <- but we can never do this , as some persons (like Weise above) are no professor

System.out.println(person); // print "Prof. Thomas Weise", the result of the toString () of the class Professor

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Professor); // true: variable person now also holds an instance of class Student

}

}
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Multi-Level Inheritance

• We can build a whole hierarchy of classes

• We can, e.g., create a new class ForeignExchangeStudent extending

Student

• We can then override any method inherited from Person , Student ,
or Object (see a bit later)

• Inheritance is transitive: All ForeignExchangeStudent s are Student s

and all Student s are Person s, then all ForeignExchangeStudent s are

also Person s
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ForeignExchangeStudent class extending Student

Listing: A ForeignExchangeStudent Class extending class Student

/** A class representing a foreign exchange student */

public class ForeignExchangeStudent extends Student { // class ForeignExchangeStudent extends class Student

/** the home country of the student */

String homeCountry; // we add a new field

/** create a student record and set its name , student id, and home country */

ForeignExchangeStudent(String _familyName , String _givenName , String _id , final String country) {

super(_familyName , _givenName , _id); // invoke the inherited constructor of Student setting up the name and id

this.homeCountry = country;

}

/** override method inLecture () from Student */

@Override

public void inLecture () { super.inLecture (); System.out.println("Then wakes up."); super.inLecture ();} //$NON -NLS -1$

/** override toString () from Person */

@Override

public String toString () { return super.toString () + " from " + this.homeCountry; }//$NON -NLS -1$

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

ForeignExchangeStudent student = new ForeignExchangeStudent("Onegin", "Eugene", //$NON -NLS -1$//$NON -NLS -2$

"S02", "Russia"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(student); // print the result of student.toString (): the inherited toString method

System.out.println(student.id); // print the value of the id field , namely "S02"

System.out.println(student.homeCountry); // print the value of the home country d field , namely "Russia"

student.inLecture (); // invoke method inLecture originally overridden by class ForeignExchangeStudent over class Student

System.out.println(student instanceof ForeignExchangeStudent); // true: ForeignExchangeStudent instances are instances of Student

System.out.println(student instanceof Student); // true: instances of Student are instances of Person

System.out.println(student instanceof Person); // true: hence , variable student also holds an instance of person

Person person = student; // we can do this , variable student is guaranteed to hold an instance of ForeignExchangeStudent (or null)

// student = person; <- but we can never do this , as some persons are no students

System.out.println(person); // print "Eugene Onegin from Russia", the result of person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // true: variable person now holds an instance of class Student

System.out.println(person instanceof ForeignExchangeStudent); // true: variable person holds an instance of class ForeignStudent

}
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The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

• The class Object provides the method String toString() , which

returns the String representation of the object

• All instances of all classes can be stored in a variable of type Object

• All arrays are instance of Object

• String s are instances of Object
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Variables of Type Object

Listing: Variables of Type Object

/** test the interplay of Strings and objects in the class hierarchy */

public class ObjectTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Professor("Weise", "Thomas"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(person); // "Prof. Thomas Weise"

String text = person.toString ();

System.out.println(text); // "Prof. Thomas Weise"

Object object = person; // store person in an object variable

System.out.println(object); // "Prof. Thomas Weise"

System.out.println(person == object);// true , both variables reference same object

System.out.println(text == object);// false , text references a String , object is a Professor

object = text;

System.out.println(person == object);// false , object is now a String , person is a Professor

System.out.println(text == object);// true , text and object reference the same object

object = new int [34];

System.out.println(person == object);// false , object is now an int array , person is a Professor

System.out.println(text == object);// false , object is now an int array , text is a String

}

}
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static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.
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static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

• Overriding an inherited method from a super class works by defining a
method with the same signature

• Inherited instance methods can be overridden this way

• inherited static methods cannot be overriden, but are hidden this
way

• Let us check examples
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Instance Methods: The Classes

Listing: Base Class A implementing instance method

/** A base class used for demonstrating instance method overriding */

public class A {

void doSomething () {

System.out.println('A');

}

}

Listing: Subclass B overriding instance method

/** A subclass used for demonstrating instance method overriding */

public class B extends A { // B extends A and overrides its method

void doSomething () {

System.out.println('B');

}

}
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Instance Methods: The Test

Listing: Testing the Instance Method Overriding

/** Test classes A and B */

public class ABTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

A a = new A(); // create an instance of A

a.doSomething (); // print 'A'

B b = new B(); // create an instance of B

b.doSomething (); // print 'B'

a = b; // this is allowed , since B inherits from A

a.doSomething (); // print 'B', since a now contains instance of B

}

}
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static Methods: The Classes

Listing: Base Class C implementing static method

/** A base class used for demonstrating static method hiding */

public class C {

static void doSomething () {

System.out.println('C');

}

}

Listing: Subclass D overriding static method

/** A subclass used for demonstrating static method overriding */

public class D extends C { // D extends C and overrides its method

static void doSomething () {

System.out.println('D');

}

}
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static Methods: The Test

Listing: Testing the static Method Hiding

/** Test classes C and D */

public class CDTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

C c = new C(); // create an instance of C

c.doSomething (); // print 'C'

// ^- the Eclipse compiler will complain about that (and rightly so!)

D d = new D(); // create an instance of D

d.doSomething (); // print 'D'

// ^- the Eclipse compiler will complain about that (and rightly so!)

c = d; // this is allowed , since D inherits from C

c.doSomething (); // print still 'C', since static methods are not

overridden

// ^- the Eclipse compiler will complain about that (and rightly so!)

}

}
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static Methods: What Actually Happens

Listing: static Method Hiding: What Happens

/** Test classes C and D: what actually happens */

public class CDActual {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

C c = new C(); // create an instance of C, but never actually use it

// ^- the Eclipse compiler will complain about that (and rightly so!)

C.doSomething (); // print 'C'

D d = new D(); // create an instance of D, but never actually use it

D.doSomething (); // print 'D'

c = d; // this is allowed , since D inherits from C

C.doSomething (); // print still 'C', since static methods are not

overridden

}

}
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static vs. instance methods

• That was a tricky one
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static vs. instance methods

• That was a tricky one

• Summary: You cannot override static methods.
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Summary

• We have learned about the inheritance / subclassing / extends .

• It allows us to define a hierarchy of classes

• A subclass inherits methods and variabes from its super class

• It can add new methods and new variables

• It can override instance methods (but not static ones)

• All classes inherit from Object , so each object is an

instanceof Object

• The class hierarchy allows us to share common variables and code and
reduce program complexity
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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