
OOP with Java
16. Inheritance and Overriding

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Extending Classes and Class Hierarchy

3 Multi-Level Inheritance

4 The Class Object

5 static vs. instance methods

6 Summary

OOP with Java Thomas Weise 2/23

w
e
b
s
it
e

Introduction

• So far, we have basically treated as objects as data structures and
used methods to work on them

OOP with Java Thomas Weise 3/23

Introduction

• So far, we have basically treated as objects as data structures and
used methods to work on them

• But Object-Oriented Programming is much more

OOP with Java Thomas Weise 3/23

Introduction

• So far, we have basically treated as objects as data structures and
used methods to work on them

• But Object-Oriented Programming is much more

• The true power of OOP arises from class inheritance and extension
(often called specialization)

OOP with Java Thomas Weise 3/23

Extending Classes

• A class Student can extend another class Person

OOP with Java Thomas Weise 4/23

Extending Classes

• A class Student can extend another class Person

• Student inherits all the fields and functionality of the original class
Person

OOP with Java Thomas Weise 4/23

Extending Classes

• A class Student can extend another class Person

• Student inherits all the fields and functionality of the original class
Person

• We specify this via class Student extends Person in the declaration
of class Student

OOP with Java Thomas Weise 4/23

Extending Classes

• A class Student can extend another class Person

• Student inherits all the fields and functionality of the original class
Person

• We specify this via class Student extends Person in the declaration
of class Student

• Student can add own, new data and methods

OOP with Java Thomas Weise 4/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

• We can store an instance of Student in a variable of type Person

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

• We can store an instance of Student in a variable of type Person

• With the keyword a instanceof X we can check if a variable a

stores a value compatible to type X

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

• We can store an instance of Student in a variable of type Person

• With the keyword a instanceof X we can check if a variable a

stores a value compatible to type X

• The special value null is compatible to all classes

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

• Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

• But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

• We can store an instance of Student in a variable of type Person

• With the keyword a instanceof X we can check if a variable a

stores a value compatible to type X

• The special value null is compatible to all classes

• Mathematically speaking, Student is a subset of Person , not all
Person s are Student s, but all Student s are Person s

OOP with Java Thomas Weise 5/23

Person class with toString

Listing: A Person class with toString Method

/** A class representing a person with constructor and toString method. */

public class Person {

/** the family name of the person */

String familyName;

/** the given name of the person */

String givenName;

/** create a person record and set its name */

Person(String _familyName , String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

}

/** return a string representation of this person record */

public String toString () {

return this.givenName + ' ' + this.familyName;

}

}

OOP with Java Thomas Weise 6/23

Student class extending Person

Listing: A Student Class extending class Person

/** A class representing a student */

public class Student extends Person { // class Student extends class Person

/** the id of the student */

String id; // Class student adds the new field 'id'

/** create a student record and set its name and student id */

Student(String _familyName , String _givenName , String _id) {

super(_familyName , _givenName); // invoke the inherited constructor of Person setting up the name

this.id = _id;

}

/** a new method */

void inLecture () { System.out.println("Student " + this.toString () + " fell asleep.");} //$NON -NLS -1$//$NON -NLS -2$

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Person("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(person); // print the result of person.toString ()

Student student = new Student("Chan", "Jacky", "S01"); //$NON -NLS -1$//$NON -NLS -2$//$NON -NLS -3$

System.out.println(student); // print the result of student.toString (): the inherited toString method

System.out.println(student.id); // print the value of the id field , namely "S01"

// System.out.println(person.id); // <- we cannot do that , because Person does not have such a field

student.inLecture (); // invoke the method inLecture implemented by class Student

// person.inLecture (); <- we cannot do this , because Person does not implement this method

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // false: variable person does not hold an instance of class Student

System.out.println(student instanceof Student); // true: every instance of Student is also an instance of Person

System.out.println(student instanceof Person); // true: hence , variable student also holds an instance of person

person = student; // we can do this , since variable student is guaranteed to hold an instance of Sstudent (or null)

// student = person; <- but we can never do this , as some persons (like Weise above) are no students

System.out.println(person); // print "Jacky Chan", the result of person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // true: variable person now also holds an instance of class Student

}

} OOP with Java Thomas Weise 7/23

Inheritance and Constructors

• In the constructor of Student , we first invoke the super constructor:

the constructor inherited from Person

OOP with Java Thomas Weise 8/23

Inheritance and Overrides

• OK, we can inherit and override constructors

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

• tag the old method with @Override to mark it as overriding an
inherited method

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

• tag the old method with @Override to mark it as overriding an
inherited method

• The new method can be called like the old method

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

• tag the old method with @Override to mark it as overriding an
inherited method

• The new method can be called like the old method

• We can make a class Professor , override String toString() , and

store an instance of Professor in a variable person of type Person

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

• OK, we can inherit and override constructors

• But we can do more: We can inherit and override methods as well!
• just implement the same method y() as already implemented in the

extended super class again
• inside the method, we can invoke the old implementation by doing

super.y()

• tag the old method with @Override to mark it as overriding an
inherited method

• The new method can be called like the old method

• We can make a class Professor , override String toString() , and

store an instance of Professor in a variable person of type Person

• If we call person.toString() , it will call the implementation of

Professor.toString() , since person references an object of type

Professor !

OOP with Java Thomas Weise 9/23

Professor class extending Person

Listing: A Professor Class extending class Person

/** A class representing a professor */

public class Professor extends Person { // class Processor extends class Person

/** create a person record and set its name */

Professor(String _familyName , String _givenName) {

super(_familyName , _givenName); // invoke the inherited constructor of Person setting up the name

}

/** return "Prof. " + the result of super.toString () = Person.toString () */

@Override // mark this method explicitly as overridden: explicitly remind programmers about this

public String toString () {

return "Prof. " + super.toString (); // "Prof. " + super implementation of toString () from Person //$NON -NLS -1$

}

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Person("Chan", "Jacky"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(person); // print the result of person.toString ()

Professor professor = new Professor("Weise", "Thomas"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(professor); // print the result of professor.toString (): "Prof. " + the result of Person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Professor); // false: variable person does not hold an instance of class Professor

System.out.println(person instanceof Student); // false: variable person does not hold an instance of class Student

System.out.println(professor instanceof Professor); // true: every instance of Professor is also an instance of Person

// System.out.println(professor instanceof Student); // will always be false , but compiler sees this and warns us

System.out.println(professor instanceof Person); // true: hence , variable professor also holds an instance of person

person = professor; // we can do this , since variable professor is guaranteed to hold an instance of professor (or null)

// professor = person; <- but we can never do this , as some persons (like Weise above) are no professor

System.out.println(person); // print "Prof. Thomas Weise", the result of the toString () of the class Professor

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Professor); // true: variable person now also holds an instance of class Student

}

}

OOP with Java Thomas Weise 10/23

Multi-Level Inheritance

• We can build a whole hierarchy of classes

OOP with Java Thomas Weise 11/23

Multi-Level Inheritance

• We can build a whole hierarchy of classes

• We can, e.g., create a new class ForeignExchangeStudent extending

Student

OOP with Java Thomas Weise 11/23

Multi-Level Inheritance

• We can build a whole hierarchy of classes

• We can, e.g., create a new class ForeignExchangeStudent extending

Student

• We can then override any method inherited from Person , Student ,
or Object (see a bit later)

OOP with Java Thomas Weise 11/23

Multi-Level Inheritance

• We can build a whole hierarchy of classes

• We can, e.g., create a new class ForeignExchangeStudent extending

Student

• We can then override any method inherited from Person , Student ,
or Object (see a bit later)

• Inheritance is transitive: All ForeignExchangeStudent s are Student s

and all Student s are Person s, then all ForeignExchangeStudent s are

also Person s

OOP with Java Thomas Weise 11/23

ForeignExchangeStudent class extending Student

Listing: A ForeignExchangeStudent Class extending class Student

/** A class representing a foreign exchange student */

public class ForeignExchangeStudent extends Student { // class ForeignExchangeStudent extends class Student

/** the home country of the student */

String homeCountry; // we add a new field

/** create a student record and set its name , student id, and home country */

ForeignExchangeStudent(String _familyName , String _givenName , String _id , final String country) {

super(_familyName , _givenName , _id); // invoke the inherited constructor of Student setting up the name and id

this.homeCountry = country;

}

/** override method inLecture () from Student */

@Override

public void inLecture () { super.inLecture (); System.out.println("Then wakes up."); super.inLecture ();} //$NON -NLS -1$

/** override toString () from Person */

@Override

public String toString () { return super.toString () + " from " + this.homeCountry; }//$NON -NLS -1$

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

ForeignExchangeStudent student = new ForeignExchangeStudent("Onegin", "Eugene", //$NON -NLS -1$//$NON -NLS -2$

"S02", "Russia"); //$NON -NLS -1$//$NON -NLS -2$

System.out.println(student); // print the result of student.toString (): the inherited toString method

System.out.println(student.id); // print the value of the id field , namely "S02"

System.out.println(student.homeCountry); // print the value of the home country d field , namely "Russia"

student.inLecture (); // invoke method inLecture originally overridden by class ForeignExchangeStudent over class Student

System.out.println(student instanceof ForeignExchangeStudent); // true: ForeignExchangeStudent instances are instances of Student

System.out.println(student instanceof Student); // true: instances of Student are instances of Person

System.out.println(student instanceof Person); // true: hence , variable student also holds an instance of person

Person person = student; // we can do this , variable student is guaranteed to hold an instance of ForeignExchangeStudent (or null)

// student = person; <- but we can never do this , as some persons are no students

System.out.println(person); // print "Eugene Onegin from Russia", the result of person.toString ()

System.out.println(person instanceof Person); // true: variable person holds an instance of class Person

System.out.println(person instanceof Student); // true: variable person now holds an instance of class Student

System.out.println(person instanceof ForeignExchangeStudent); // true: variable person holds an instance of class ForeignStudent

}

} OOP with Java Thomas Weise 12/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

OOP with Java Thomas Weise 13/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

OOP with Java Thomas Weise 13/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

• The class Object provides the method String toString() , which

returns the String representation of the object

OOP with Java Thomas Weise 13/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

• The class Object provides the method String toString() , which

returns the String representation of the object

• All instances of all classes can be stored in a variable of type Object

OOP with Java Thomas Weise 13/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

• The class Object provides the method String toString() , which

returns the String representation of the object

• All instances of all classes can be stored in a variable of type Object

• All arrays are instance of Object

OOP with Java Thomas Weise 13/23

The Class Object

• The class Object is the base class in Java, the root of the class
hierarchy

• If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

• The class Object provides the method String toString() , which

returns the String representation of the object

• All instances of all classes can be stored in a variable of type Object

• All arrays are instance of Object

• String s are instances of Object

OOP with Java Thomas Weise 13/23

Variables of Type Object

Listing: Variables of Type Object

/** test the interplay of Strings and objects in the class hierarchy */

public class ObjectTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

Person person = new Professor("Weise", "Thomas"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.println(person); // "Prof. Thomas Weise"

String text = person.toString ();

System.out.println(text); // "Prof. Thomas Weise"

Object object = person; // store person in an object variable

System.out.println(object); // "Prof. Thomas Weise"

System.out.println(person == object);// true , both variables reference same object

System.out.println(text == object);// false , text references a String , object is a Professor

object = text;

System.out.println(person == object);// false , object is now a String , person is a Professor

System.out.println(text == object);// true , text and object reference the same object

object = new int [34];

System.out.println(person == object);// false , object is now an int array , person is a Professor

System.out.println(text == object);// false , object is now an int array , text is a String

}

}

OOP with Java Thomas Weise 14/23

static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

OOP with Java Thomas Weise 15/23

static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

• Overriding an inherited method from a super class works by defining a
method with the same signature

OOP with Java Thomas Weise 15/23

static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

• Overriding an inherited method from a super class works by defining a
method with the same signature

• Inherited instance methods can be overridden this way

OOP with Java Thomas Weise 15/23

static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

• Overriding an inherited method from a super class works by defining a
method with the same signature

• Inherited instance methods can be overridden this way

• inherited static methods cannot be overriden, but are hidden this
way

OOP with Java Thomas Weise 15/23

static vs. instance methods

• Oh god, this is a tricky one. Prepare yourself.

• Overriding an inherited method from a super class works by defining a
method with the same signature

• Inherited instance methods can be overridden this way

• inherited static methods cannot be overriden, but are hidden this
way

• Let us check examples

OOP with Java Thomas Weise 15/23

Instance Methods: The Classes

Listing: Base Class A implementing instance method

/** A base class used for demonstrating instance method overriding */

public class A {

void doSomething () {

System.out.println('A');

}

}

Listing: Subclass B overriding instance method

/** A subclass used for demonstrating instance method overriding */

public class B extends A { // B extends A and overrides its method

void doSomething () {

System.out.println('B');

}

}

OOP with Java Thomas Weise 16/23

Instance Methods: The Test

Listing: Testing the Instance Method Overriding

/** Test classes A and B */

public class ABTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

A a = new A(); // create an instance of A

a.doSomething (); // print 'A'

B b = new B(); // create an instance of B

b.doSomething (); // print 'B'

a = b; // this is allowed , since B inherits from A

a.doSomething (); // print 'B', since a now contains instance of B

}

}

OOP with Java Thomas Weise 17/23

static Methods: The Classes

Listing: Base Class C implementing static method

/** A base class used for demonstrating static method hiding */

public class C {

static void doSomething () {

System.out.println('C');

}

}

Listing: Subclass D overriding static method

/** A subclass used for demonstrating static method overriding */

public class D extends C { // D extends C and overrides its method

static void doSomething () {

System.out.println('D');

}

}

OOP with Java Thomas Weise 18/23

static Methods: The Test

Listing: Testing the static Method Hiding

/** Test classes C and D */

public class CDTest {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

C c = new C(); // create an instance of C

c.doSomething (); // print 'C'

// ^- the Eclipse compiler will complain about that (and rightly so!)

D d = new D(); // create an instance of D

d.doSomething (); // print 'D'

// ^- the Eclipse compiler will complain about that (and rightly so!)

c = d; // this is allowed , since D inherits from C

c.doSomething (); // print still 'C', since static methods are not

overridden

// ^- the Eclipse compiler will complain about that (and rightly so!)

}

}

OOP with Java Thomas Weise 19/23

static Methods: What Actually Happens

Listing: static Method Hiding: What Happens

/** Test classes C and D: what actually happens */

public class CDActual {

/** The main routine

* @param args

* we ignore this parameter */

public static void main(String [] args) {

C c = new C(); // create an instance of C, but never actually use it

// ^- the Eclipse compiler will complain about that (and rightly so!)

C.doSomething (); // print 'C'

D d = new D(); // create an instance of D, but never actually use it

D.doSomething (); // print 'D'

c = d; // this is allowed , since D inherits from C

C.doSomething (); // print still 'C', since static methods are not

overridden

}

}

OOP with Java Thomas Weise 20/23

static vs. instance methods

• That was a tricky one

OOP with Java Thomas Weise 21/23

static vs. instance methods

• That was a tricky one

• Summary: You cannot override static methods.

OOP with Java Thomas Weise 21/23

Summary

• We have learned about the inheritance / subclassing / extends .

• It allows us to define a hierarchy of classes

• A subclass inherits methods and variabes from its super class

• It can add new methods and new variables

• It can override instance methods (but not static ones)

• All classes inherit from Object , so each object is an

instanceof Object

• The class hierarchy allows us to share common variables and code and
reduce program complexity

OOP with Java Thomas Weise 22/23

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 23/23

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Extending Classes and Class Hierarchy
	Extending Classes
	Inheritance and Compatibility
	Person class with toString
	Student class extending Person
	Inheritance and Constructors
	Inheritance and Overrides
	Professor class extending Person

	Multi-Level Inheritance
	Multi-Level Inheritance
	ForeignExchangeStudent class extending Student

	The Class Object
	The Class Object
	Variables of Type Object

	static vs. instance methods
	static vs. instance methods
	Instance Methods: The Classes
	Instance Methods: The Test
	static Methods: The Classes
	static Methods: The Test
	static Methods: What Actually Happens
	static vs. instance methods

	Summary
	Summary

	Presentation End

