LR BT

HEFEI UNIVERSITY

OOP with Java

16. Inheritance and Overriding
Thomas Weise - % Z &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &/E%

% AR B2

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST %.L X 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction
@ Extending Classes and Class Hierarchy
@® Multi-Level Inheritance

@ The Class object

@ =tatic vs. instance methods

@ Summary

OOP with Java Thomas Weise

e So far, we have basically treated as objects as data structures and
used methods to work on them

e So far, we have basically treated as objects as data structures and
used methods to work on them

e But Object-Oriented Programming is much more

e So far, we have basically treated as objects as data structures and
used methods to work on them

e But Object-Oriented Programming is much more

e The true power of OOP arises from class inheritance and extension
(often called specialization)

e A class Student can extend another class Person

e A class Student can extend another class Person

e Student inherits all the fields and functionality of the original class

Person

e A class Student can extend another class Person

e Student inherits all the fields and functionality of the original class

Person

e We specify this via class Student extends Person in the declaration
of class Student

A class Student can extend another class Person

Student inherits all the fields and functionality of the original class

Person

We specify this via class Student extends Person in the declaration
of class Student

e Student can add own, new data and methods

e Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

e Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

e But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

e Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

e But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

e We can store an instance of Student in a variable of type Person

Inheritance and Compatibility %()

e Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

e But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

e We can store an instance of Student in a variable of type Person

e With the keyword a instanceof X we can check if a variable a
stores a value compatible to type x

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility §\

e Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

e But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

e We can store an instance of Student in a variable of type Person

e With the keyword a instanceof X we can check if a variable a
stores a value compatible to type x

e The special value null is compatible to all classes

OOP with Java Thomas Weise 5/23

Inheritance and Compatibility

”

>
<

Instances of Student can be used in any expression where instances
of type Person are expected, as they inherit all the fields and
methods from Person

But not the other way around: instances Person cannot be used
when instances of Student are expected, as they may have less
fields/functionality

We can store an instance of Student in a variable of type Person

With the keyword a instanceof X we can check if a variable a
stores a value compatible to type x

The special value null is compatible to all classes

Mathematically speaking, Student is a subset of Person , not all
Person S areé Student S, but all Student s are Person s

OOP with Java Thomas Weise 5/23

Person class with toString

Listi A Person class with toStri

public class Person {
String familyName;

String givenName;

Person(String _familyName, String _givenName) {

this.familyName = _familyName;

this.givenName = _givenName;

public String toString() {
return this.givenName + 'y' + this.familyName;
}
}

OOP with Java Thomas Weise 6/23

Student class extending Person

AQ!

Listi dent Class extending class Pers

public class Student extends Person {
String id;
Student (String _familyName, String _givenName, String _id) {

super (_familyName, _givenName);
this.id = _id;

void inLecture() { System.out.println("Student," + this.toString() + ", fell,asleep.");}

public static void main(String[] args) {
Person person = new Person("Weise", "Thomas");
System.out.println(person);

Student student = new Student("Chan", "Jacky", "S01");
System.out.println(student);
System.out.println(student.id);
student.inLecture ();
System.out.println(person instanceof Person);
System.out.println(person instanceof Student);
System.out.println(student instanceof Student);
System.out.println(student instanceof Person);
person = student;
System.out.println(person);
System.out.println(person instanceof Person);
System.out.println(person instanceof Student);

) OOP with Java Thomas Weise

7/23

e In the constructor of Student , we first invoke the super constructor:
the constructor inherited from Person

e OK, we can inherit and override constructors

e OK, we can inherit and override constructors
e But we can do more: We can inherit and override methods as well!

e OK, we can inherit and override constructors
e But we can do more: We can inherit and override methods as well!
e just implement the same method y() as already implemented in the

extended super class again
o inside the method, we can invoke the old implementation by doing

super.y()

e OK, we can inherit and override constructors

e But we can do more: We can inherit and override methods as well!
e just implement the same method y() as already implemented in the
extended super class again
o inside the method, we can invoke the old implementation by doing
super.y()

o tag the old method with @Override to mark it as overriding an
inherited method

e OK, we can inherit and override constructors

e But we can do more: We can inherit and override methods as well!
e just implement the same method y() as already implemented in the
extended super class again
o inside the method, we can invoke the old implementation by doing
super.y()
o tag the old method with @Override to mark it as overriding an
inherited method

e The new method can be called like the old method

Inheritance and Overrides

”

>
<

e OK, we can inherit and override constructors
e But we can do more: We can inherit and override methods as well!
e just implement the same method y() as already implemented in the

extended super class again
e inside the method, we can invoke the old implementation by doing
super.y()

e tag the old method with @Override to mark it as overriding an
inherited method

e The new method can be called like the old method
e We can make a class Professor , override String toString() , and
store an instance of Professor in a variable person of type Person

OOP with Java Thomas Weise 9/23

Inheritance and Overrides

”

>
<

e OK, we can inherit and override constructors
e But we can do more: We can inherit and override methods as well!
e just implement the same method y() as already implemented in the

extended super class again
e inside the method, we can invoke the old implementation by doing
super.y()

e tag the old method with @Override to mark it as overriding an
inherited method

e The new method can be called like the old method

e We can make a class Professor , override String toString() , and
store an instance of Professor in a variable person of type Person

o If we call person.toString() , it will call the implementation of

Professor.toString() , since person references an object of type

Professor !

OOP with Java Thomas Weise 9/23

Professor class extending Person

AQ!

Listi A Professor Class extending class Perso

public class Professor extends Person {

Professor (String _familyName, String _givenName) {
super (_familyName, _givenName);

¥

@Override
public String toString() {
return "Prof.," + super.toString();

¥

public static void main(String[] args) {
Person person = new Person("Chan", "Jacky");
System.out.println(person);

Professor professor = new Professor('Weise", "Thomas");
System.out.println(professor);

System.out.println(person instanceof Person);
System.out.println(person instanceof Professor);
System.out.println(person instanceof Student);
System.out.println(professor instanceof Professor);
System.out.println(professor instanceof Person);
person = professor;

System.out.println(person);

System.out.println(person instanceof Person);
System.out.println(person instanceof Professor);

OOP with Java Thomas Weise

10/23

e We can build a whole hierarchy of classes

e We can build a whole hierarchy of classes

e We can, e.g., create a new class ForeignExchangeStudent extending

Student

e We can build a whole hierarchy of classes

e We can, e.g., create a new class ForeignExchangeStudent extending

Student

e We can then override any method inherited from Person, Student ,
or Object (see a bit later)

We can build a whole hierarchy of classes

We can, e.g., create a new class ForeignExchangeStudent extending

Student

We can then override any method inherited from Person, Student ,
or Object (see a bit later)

Inheritance is transitive: All ForeignExchangeStudent S are Student S

and all Student s are Person s, then all ForeignExchangeStudent S are

also Person S

ForeignExchangeStudent class extending Student

public class ForeignExchangeStudent extends Student {

String homeCountry;

ForeignExchangeStudent (String _familyName, String _givenName, String _id, finmal String country) {
super (_familyName, _givenName, _id);
this.homeCountry = country;

I

@Override
public void inLecture() { super.inLecture(); System.out.println("Then,wakes up."); super.inLecture();}

Q0verride
public String toString() { return super.toString() + ", from, " + this.homeCountry; }

public static void main(String[] args) {
ForeignExchangeStudent student = new ForeignExchangeStudent ("Onegin', "Eugene",
"S02", "Russia");

System.out.println(student);
System.out.println(student.id);
System.out.println(student.homeCountry);

student . inLecture () ;

System.out.println(student instanceof ForeignExchangeStudent);
System.out.println(student instanceof Student)
System.out.println(student instanceof Person);

Person person = student;

System.out.println(person);

System.out.println(person instanceof Person);

System.out.println(person instanceof Student);
System.out.println(person instanceof ForeignExchangeStudent);

’ OOP with Java Thomas Weise

12/23

e The class 0Object is the base class in Java, the root of the class
hierarchy

e The class 0Object is the base class in Java, the root of the class
hierarchy

e If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

e The class 0Object is the base class in Java, the root of the class
hierarchy

e If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

e The class 0Object provides the method String toString() , which
returns the String representation of the object

The class 0bject is the base class in Java, the root of the class
hierarchy

If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

The class Object provides the method String toString() , which
returns the String representation of the object

All instances of all classes can be stored in a variable of type 0Object

The Class object %()

e The class Object is the base class in Java, the root of the class
hierarchy

e If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

e The class Object provides the method String toString() , which
returns the string representation of the object

o All instances of all classes can be stored in a variable of type 0Object

o All arrays are instance of Object

OOP with Java Thomas Weise 13/23

The Class object %ﬁ)

e The class Object is the base class in Java, the root of the class
hierarchy

e If we do not specify extends when creating a class (as we did until
this lesson), the class extends Object

e The class Object provides the method String toString() , which
returns the string representation of the object

o All instances of all classes can be stored in a variable of type 0Object
o All arrays are instance of Object

e String s are instances of Object

OOP with Java Thomas Weise 13/23

Variables of Type object

Variables of Type

public class ObjectTest {

public static void main(String[] args) {
Person person = new Professor("Weise", "Thomas");
System.out.println(person);

String text = person.toString();
System.out.println(text);

Object object = person;
System.out.println(object);

System.out.println(person == object);
System.out.println(text == object);

object = text;
System.out.println(person == object);
System.out.println(text == object);

object = new int[34];
System.out.println(person == object);
System.out.println(text == object);

OOP with Java Thomas Weise 14/23

e Oh god, this is a tricky one. Prepare yourself.

e Oh god, this is a tricky one. Prepare yourself.

e Overriding an inherited method from a super class works by defining a
method with the same signature

_

e Oh god, this is a tricky one. Prepare yourself.

e Overriding an inherited method from a super class works by defining a
method with the same signature

e Inherited instance methods can be overridden this way

e Oh god, this is a tricky one. Prepare yourself.

e Overriding an inherited method from a super class works by defining a
method with the same signature

e Inherited instance methods can be overridden this way

e inherited static methods cannot be overriden, but are hidden this
way

e Oh god, this is a tricky one. Prepare yourself.

e Overriding an inherited method from a super class works by defining a
method with the same signature

e Inherited instance methods can be overridden this way

e inherited static methods cannot be overriden, but are hidden this
way

e Let us check examples

Instance Methods: The Classes §\,

Listing: Base Class A implementing instance method

public class A {
void doSomething () {
System.out.println('A');
}
}

Listing: Subclass B overriding instance method

public class B extends A {
void doSomething () {
System.out.println('B');
¥
}

OOP with Java Thomas Weise 16/23

Instance Methods: The Test §\’

1AQ

Listing: Testing the Instance Method Overriding

/** Test classes A and B */
public class ABTest {
/** The main Toutine
* @param args

* we ignore this parameter */
public static void main(String[] args) {
A a = new AQ); // create an instance of A

a.doSomething (); // print A
B b = new B(); // create an instance of B
b.doSomething (); // print 'B'

a =b; // this is allowed, since B inherits from A
a.doSomething(); // print 'B', since a mow contains instance of B

OOP with Java Thomas Weise 17/23

static Methods: The Classes

Listing: Base Class C implementing

public class C {
static void doSomething() {
System.out.println('C');
}
}

Listing: Subclass D overriding method

public class D extends C {
static void doSomething() {
System.out.println('D"');
¥
}

OOP with Java

Thomas Weise

18/23

static Methods: The Test %\)’

1AQ

Listing: Testing the Method Hiding

public class CDTest {

public static void main(Stringl[]l args) {
C c = new CQ);
c.doSomething () ;

D d = new DO);
d.doSomething () ;

c = d;
c.doSomething () ;

OOP with Java Thomas Weise 19/23

static Methods: What Actually Happens %\’

/**% Test classe C and D: what actually happens */
public class CDActual {
/** The main routine

* @param args

* we ignore this parameter */
public static void main(Stringl[] args) {
C ¢c = new C(); // create an instance of C, but mnever actually use it
// - the Eclipse compiler will complain about that (and rightly so!)
C.doSomething (); // print 'C'

o

d = new D(Q); // create an instance of D, but mever actually use it
D.doSomething (); // print 'D'

c =d; // this is allowed,
C.doSomething(); // print still 'C', since static methods are not

nce D inherits from C

overridden

OOP with Java Thomas Weise 20/23

e That was a tricky one

e That was a tricky one

e Summary: You cannot override static methods.

Summary %ﬁ)

e We have learned about the inheritance / subclassing / extends .
o It allows us to define a hierarchy of classes
e A subclass inherits methods and variabes from its super class
e It can add new methods and new variables
e It can override instance methods (but not static ones)
e All classes inherit from 0bject , so each object is an
instanceof Object

e The class hierarchy allows us to share common variables and code and
reduce program complexity

OOP with Java Thomas Weise 22/23

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction

	Extending Classes and Class Hierarchy
	Extending Classes
	Inheritance and Compatibility
	Person class with toString
	Student class extending Person
	Inheritance and Constructors
	Inheritance and Overrides
	Professor class extending Person

	Multi-Level Inheritance
	Multi-Level Inheritance
	ForeignExchangeStudent class extending Student

	The Class Object
	The Class Object
	Variables of Type Object

	static vs. instance methods
	static vs. instance methods
	Instance Methods: The Classes
	Instance Methods: The Test
	static Methods: The Classes
	static Methods: The Test
	static Methods: What Actually Happens
	static vs. instance methods

	Summary
	Summary

	Presentation End

