LR B

HEFEI UNIVERSITY

OOP with Java
13. Debugging

Thomas Weise: d k
tweise@hfuu.edu.cn http://iao.hfuu.edu.cn

Hefei University, South Campus 2 ¥f b WsV! . /W2

Faculty of Computer Science and Technology | i — Nf €/ @

Institute of Applied Optimization " (vV @
230601 Shushan District, Hefei, Anhui, China | - ¥ %% ¥ q: 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | | N€/ N: &&' S99+

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

@ Introduction
@ Example: Binary Search

® Summary

OOP with Java

Thomas Weise

2/16

" When writing programs, mistakes are impossible to avoid

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

" When writing programs, mistakes are impossible to avoid
" There are a lot of di erent types of errors that can happen

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

" When writing programs, mistakes are impossible to avoid
" There are a lot of di erent types of errors that can happen

" The easiest ones are syntax errors and stu that the compilakgiup
and warns you about it

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

Introduction %()

When writing programs, mistakes are impossible to avoid
There are a lot of di erent types of errors that can happen

The easiest ones are syntax errors and stu that the compilexkgiup
and warns you about it

Then there are errors which make your programs crash all the time

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

OOP with Java Thomas Weise 3/16

Introduction %()

When writing programs, mistakes are impossible to avoid
There are a lot of di erent types of errors that can happen

The easiest ones are syntax errors and stu that the compilexkgiup
and warns you about it

Then there are errors which make your programs crash all the time

Harder to spot are errors that make your program crash only
sometimes.

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

OOP with Java Thomas Weise 3/16

Introduction \\

IAO»

When writing programs, mistakes are impossible to avoid
There are a lot of di erent types of errors that can happen

The easiest ones are syntax errors and stu that the compilekgiup
and warns you about it

Then there are errors which make your programs crash all the time

Harder to spot are errors that make your program crash only
sometimes.

Harder are errors which do not make your program crash, but lead
wrong output, especially if the output is only sometimes wrong ahd
it is only a bit wrong.

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

OOP with Java Thomas Weise 3/16

Introduction \\

IAO»

When writing programs, mistakes are impossible to avoid
There are a lot of di erent types of errors that can happen

The easiest ones are syntax errors and stu that the compilekgiup
and warns you about it

Then there are errors which make your programs crash all the time

Harder to spot are errors that make your program crash only
sometimes.

Harder are errors which do not make your program crash, but lead
wrong output, especially if the output is only sometimes wrong ahd
it is only a bit wrong.

Anyway, once we have recognized that there is a error/bug, we nee
to nditto xit.

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

OOP with Java Thomas Weise 3/16

Introduction \\

IAO»

When writing programs, mistakes are impossible to avoid
There are a lot of di erent types of errors that can happen

The easiest ones are syntax errors and stu that the compilekgiup
and warns you about it

Then there are errors which make your programs crash all the time

Harder to spot are errors that make your program crash only
sometimes.

Harder are errors which do not make your program crash, but lead
wrong output, especially if the output is only sometimes wrong ahd
it is only a bit wrong.

Anyway, once we have recognized that there is a error/bug, we nee
to nditto xit.

This process is calledebugging

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.

OOP with Java Thomas Weise 3/16

" A debugger is a very powerful tool.

" A debugger is a very powerful tool.
It helps us to run a program in a very special way

" A debugger is a very powerful tool.
It helps us to run a program in a very special way:

If we mark a line of code as \break point", the process will stop aisth
line

" A debugger is a very powerful tool.
“ It helps us to run a program in a very special way:
~ If we mark a line of code as \break point", the process will stop atsth
line
" We can then see, e.g., the values of the variables at this poirtinre,
to check if they are what they should be

Debugging §\

" A debugger is a very powerful tool.
" It helps us to run a program in a very special way:
" If we mark a line of code as \break point", the process will stop atsth
line
" We can then see, e.g., the values of the variables at this poirtinre,
to check if they are what they should be
" We can continue to execute the program step-by-step and see v t

variables change

OOP with Java Thomas Weise 4/16

Debugging %\

1AQ

" A debugger is a very powerful tool.
" It helps us to run a program in a very special way:
" If we mark a line of code as \break point", the process will stop atsth
line
" We can then see, e.g., the values of the variables at this poirtinre,
to check if they are what they should be
" We can continue to execute the program step-by-step and see v t
variables change
" This way, we can nd errors much easier than by reading the e&od

alone

OOP with Java Thomas Weise 4/16

" A colleague provides you with a methc binarySearch for searching a
value inside a sorte int array

" A colleague provides you with a methc binarySearch for searching a
value inside a sorte int array
" The method receives two parameters

" A colleague provides you with a methc binarySearch for searching a
value inside a sorte int array
" The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)

" A colleague provides you with a methc binarySearch for searching a
value inside a sorte int array
" The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)

® an int value search , which may or may not occur il array

" A colleague provides you with a methc binarySearch for searching a
value inside a sorte int array
" The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)

® an int value search , which may or may not occur il array
" The method returns

Search in Sorted Array %\

" A colleague provides you with a methcbinarySearch for searching a
value inside a sorte int array
" The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)
® an int value search , which may or may not occur il array
" The method returns:
@ the exact index ofsearch in array if array contains search , i.e.,

in this case search == array[binarySearch(array, search)] holds

OOP with Java Thomas Weise 5/16

Search in Sorted Array §\

1AQ

" A colleague provides you with a methcbinarySearch for searching a
value inside a sorte int array
" The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)
® an int value search , which may or may not occur il array
" The method returns:
@ the exact index ofsearch in array if array contains search , i.e.,
in this case search == array[binarySearch(array, search)] holds
® -1 if search does not occur insid array

OOP with Java Thomas Weise 5/16

Search in Sorted Array §\

1AQ

" A colleague provides you with a methcbinarySearch for searching a
value inside a sorte int array
The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)
® an int value search , which may or may not occur il array
The method returns:
@ the exact index ofsearch in array if array contains search , i.e.,
in this case search == array[binarySearch(array, search)] holds
® -1 if search does not occur insid array

If array is not sorted, the behavior of the method would be
unspeci ed

OOP with Java Thomas Weise 5/16

" Your colleague implemented (or better, tried to implement) big
search for this purpose.

" Your colleague implemented (or better, tried to implement) big
search for this purpose.
" Binary search makes use of the fact th array is sorted. The idea is

" Your colleague implemented (or better, tried to implement) big
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

“ If I know that array[i] , i.e., the element at inde: i , is greater than search

(‘array[i] > search), then | know that search cannot appear at or after inde i

" Your colleague implemented (or better, tried to implement) big
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

“ If I know that array[i] , i.e., the element at inde: i , is greater than search

(‘array[i] > search), then | know that search cannot appear at or after inde i

If I know that array[i] < search , then | know that search cannot appear at or before
index i

Binary Search

”

1AQ

" Your colleague implemented (or better, tried to implement) aig
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

© If I know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
“ If | know that array[i] < search , then | know that search cannot appear at or before

index i
" This means | can successively divide the array into threeqsiethe element at the middle
index midindex , the elements befort midindex , and the elements afte midindex

OOP with Java Thomas Weise 6/16

Binary Search

”

1AQ

" Your colleague implemented (or better, tried to implement) aig
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

If | know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
“ If | know that array[i] < search , then | know that search cannot appear at or before

index i
" This means | can successively divide the array into threeqsiethe element at the middle
index midindex , the elements befort midindex , and the elements afte midindex

" If array[midindex]<search , then search must either come afte midindex or is not in
array so | continue to search in the same way in the upper part of mysitivi

OOP with Java Thomas Weise 6/16

Binary

Search

”

1AQ

"~ Yo

ur colleague implemented (or better, tried to implement) aig

search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

If | know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
If I know that array[i] < search , then | know that search cannot appear at or before

index i
This means | can successively divide the array into threeqsie the element at the middle
index midindex , the elements befort midindex , and the elements afte midindex

If array[midindex]<search , then search must either come afte midindex or is not in
array so | continue to search in the same way in the upper part of mysitivi

If array[midindex]>search , then search must either come befor midindex or is not
in array so | continue to search in the same way in the lower part of mysiii

OOP with Java Thomas Weise 6/16

Binary Search

”

1AQ

" Your colleague implemented (or better, tried to implement) aig
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

© If I know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
If I know that array[i] < search , then | know that search cannot appear at or before

index i
This means | can successively divide the array into threeqsie the element at the middle
index midindex , the elements befort midindex , and the elements afte midindex

If array[midindex]<search , then search must either come afte midindex or is not in
array so | continue to search in the same way in the upper part of mysitivi

If array[midindex]>search , then search must either come befor midindex or is not
in array so | continue to search in the same way in the lower part of mysiii
Otherwise, it must be thal array[midindex]==search ~ and | can return midindex

OOP with Java Thomas Weise 6/16

Binary

Search

”

1AQ

"~ Yo

ur colleague implemented (or better, tried to implement) aig

search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

If | know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
If I know that array[i] < search , then | know that search cannot appear at or before

index i

This means | can successively divide the array into threeqsie the element at the middle
index midindex , the elements befor midindex , and the elements afte midindex

If array[midindex]<search , then search must either come afte midindex or is not in
array so | continue to search in the same way in the upper part of mysitivi

If array[midindex]>search , then search must either come befor midindex or is not

in array so | continue to search in the same way in the lower part of mysiii
Otherwise, it must be thal array[midindex]==search ~ and | can return midindex

If I can no longer divide my array because my division is empgnth means that
search does not appear in it

OOP with Java Thomas Weise 6/16

Binary Search %D

" Your colleague implemented (or better, tried to implement) aig
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:

© If I know that array[i] , i.e., the element at inde: i , is greater than search
(‘array[i] > search), then | know that search cannot appear at or after inde i
If I know that array[i] < search , then | know that search cannot appear at or before

index i
This means | can successively divide the array into threeqsie the element at the middle
index midindex , the elements befort midindex , and the elements afte midindex

If array[midindex]<search , then search must either come afte midindex or is not in
array so | continue to search in the same way in the upper part of mysitivi

If array[midindex]>search , then search must either come befor midindex or is not
in array so | continue to search in the same way in the lower part of mysiii
Otherwise, it must be thal array[midindex]==search ~ and | can return midindex

If I can no longer divide my array because my division is empgnth means that
search does not appear in it

The afray size decreases to Ir%ss than 50% in each step, the seh will complete in at

most log, array.length steps, i.e., much faster than searching from start to end

OOP with Java Thomas Weise 6/16

Wrong Implementation of Binary Search

Listing: Your Colleague's (wrong) Implementation of Binanbearch

public class BinarySearchWrong {

static int binarySearch(int [] array, int
int lowerBound = 0;

int upperBound = array.length - 1;

search) {

while (lowerBound < upperBound) {
int midindex = (lowerBound + upperBound) / 2;

if (array[midindex] < search) {
lowerBound = midindex + 1;
} else {
if (array[midindex] > search) {
upperBound = midlindex - 1;
} else {
return midindex;
}
}
}
return -1;

}

N !

OOP with Java Thomas Weise

7/16

Your Test of the Wrong Implementation of Binary Search %\’

Listing: Your Test of this (wrong) Implementation of Binary ®al

public class BinarySearchWrongTest {

public static final void main(String[] args) {

int [] array = {0, 1, 2, 3, 5, 6};

System.out.printin(“"index of 0: + BinarySearchWrong.binarySearch(array, 0));
System.out.printin("index of 1: " + BinarySearchWrong.binarySearch(array, 1));
System.out.printin("index of 2: " + BinarySearchWrong.binarySearch(array, 2));
System.out.printin(“"index of 3: " + BinarySearchWrong.binarySearch(array, 3));
System.out.printin("index of 5: " + BinarySearchWrong.binarySearch(array, 5));
System.out.printin("index of 6: " + BinarySearchWrong.binarySearch(array, 6));
System.out.printin("index of -1: " + BinarySearchWrong.binarySearch(array, -1));
System.out.printin("index of 4: " + BinarySearchWrong.binarySearch(array, 4));
System.out.printin("index of 7: " + BinarySearchWrong.binarySearch(array, 7));

OOP with Java Thomas Weise 8/16

The Output %\’

Listing: The expected output Listing: The actual output

index of 0: O index of 0: O
index of 1: 1 index of 1. -1
index of 2: 2 index of 2: 2
index of 3: 3 index of 3: -1
index of 5: 4 index of 5: 4
index of 6: 5 index of 6: -1
index of -1: -1 index of -1: -1
index of 4: -1 index of 4: -1
index of 7: -1 index of 7: -1

OOP with Java Thomas Weise 9/16

" We found that the method does not behave as speci ed

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1
" Let's use the Eclipse debugger

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line
@® execute the program step by step, tracing into the call to
binarySearch

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line

@® execute the program step by step, tracing into the call to
binarySearch

® check where and why it fails

What now?

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1
" Let's use the Eclipse debugger:

@ put a break point into BinarySearchWrongTest.java at the
corresponding line

@® execute the program step by step, tracing into the call to
binarySearch

® check where and why it fails
" Based on the ndings, x the code

OOP with Java Thomas Weise 10/16

The Debugging Process in Screenshots

= RO~ FOE OO PE LIREIR = IR SR S >
g @
4 PackageExplorer @ = 8 [BlnarySearchWrongJava ‘D BinarySearchWrongTest.java 2 = 8 ‘
= o = 1 /** A program testing BinarySearchWrong. */
B = public class BinarySearchwrongTest {
~¥>13 debugging [javaExamples

~@>src
~ 83 > (default package) I
» [BinarysearchRightjava |-

» [BinarysearchRightTest.jav: S

P
* The main routine

ram args
we ignore this parameter for now

3
- public static final void main(String[] args) {

2] Elnarysear(hwmng Jjava

11
12 int[] array = {e, 1, 2, 3, 5, 6};

ig,.JRES stem Library [java-6-op
= dassyﬂth 2 BinarySearchWrong.binarySearch(array, 8))
2 .classp. BinarySearchWrong.binarySearch(array, 1))
BinarySearchWrong.binarySearch(array, 2))
BinarySearchWrong.binarySearchiarray, 3))
BinarySearchWrong.binarySearch(array, 5))
BinarysearchWrong.binarySearch(array, 6))

ok

[make_linux.sh
[README.md

T = Team " s -
b G avaExamples [avaExarriples + BinarysearchwWrong.binarySearch(array, -1));

+ BinarySearchWrong.binarySearch(srray, 4)); /
Add Bookmark... + BinarySearchWrong.binarysearch(array, 7)); /
Add Tas|

~ Show Quick Diff
Show Annotations

+ Show Line Numbers
Folding

Preferences... Console 52 | =g Progress S

X% &
<terminated> BinarySearchRightTest [Java Application] /usr/lib/jvm/java-8-op
index of @: @
index of 1: 1
index of 2: 2 —

Writable Smartinsert 17:30

The Debugging Process in Screenshots

4 PackageExplorer 8 = B arySearchWrong.jg

A program ted
public class Bing

=

~(¢> 13 debugging [javaExamples
~@#>src
~ 83 > (default package)
» [BinarysearchRight.java
» [BinarysearchRightTest.jav:
» [5 Binarysearchwrong.java ||

» & JRE System Library [java-8-op

o jee
* The main routine

paran args
we ignere this parameter for now

o
- public static final void main(String[] args) {

intl] array = {e, 1, 2, 3, 5, 6};

System.out.println{"index of ©: " + BinarySearchWrong.binarySearch(array, 8)); /
System.out.println(“index of 1: " + BinarySearchWrong.binarySearchlarray, 1)); /
System.out.println("index of 2: " + BinarySearchWrong.binarySearch(array, 2)); /
% .project System.out.println("index of 3: " + BinarySearchWrong.binarySearchlarray, 3)); /
gl Z System.out.println{“index of 5: " + BimarySearchWrong.binarySearch(array, 5)); /
[make_linux.sh System.owt.println("index of 6: " + BinarySearchWrong.binarySearch(array, 6)); /
% README.md
et 7 | System.owt.println("index of -1: " + BinarySearchWrong.binarySearch(array, -1));
+ &> javaExamples [javaExamples | System.out.println(“index of 4: " + BinarySearchWrong.binarySearch(array, 4)); /
2 System.owt.println(“index of 7: " + BinarySearchWrong.binarySearchlarray, 7)); /
25
26
[#% Problems @ Javadoc [} Declaration B) Console =jProgress #xDebug| %& . ~ = O

~[<terminated=>BinarysearchwrongTest [Java Application]
+® <terminats inarySearchWrongTest at localhost:36969

d64/bi

&l <terminated, exitvalue: 1>/usr/lib/jvm/java-8-openjdk i

Writable Smartinsert 14:8

Confirm Perspective S

This kind of launch is configured to open the Debug perspective when it
e suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

Remember my decision

| No | Lh'fe's

4

vl vy Do Quick Access :‘ =l S E |

4> Debug ES} % . ¥ = 8 |&=Variables E!}'- Breakpoints <t !
~[IBinarySearchwrongTest [Java Application] Name value
~& BinarysearchwrongTest at localhost:40614 i string[a] (id=15)
~o# Thread [main] (Suspended (breakpoint at line 15in BinarySearch| M
g[})lin o
fjava (Feb 4, 2017, 7
2
3
s
3] Binar Test.java ;ﬂ =5
1 /** A program testing BinarySearchifrong. */
2 public class BinarysearchWrongTest {
3

pe
* The main routine

* @param args
. we ignore this parameter for now
= public static final void main(String[] args) {

int[] array = {0, 1, 2, 3, 5, 6};

2. bi an;ys.earzh(rray, 8)); //SNON-NLS-15
rysear ray, 1}); //$NON-NLS
irong.binarySearch(array, 2)); //$NON-NLS-1%
System.out.println(”index ei!i‘hing binarySearch(array, 3)); //SNON-NLS-1$
System.owt.println("index rySearchWrong.binarySearch(array, 5)); //SNON-NLS-1%
System.out.println("index of 6 "+ Bdmrwrmmng binarysearch(array, 6)); //$NON-NLS-1%

System.owt.println("index of "+ Bi | .binarysearchlarray, -1)); //$NON-NLS-1$

B 0 e

(w8 # 8@

4> Debug ES} % . ¥ = 8 |&-Variables X % Breakpoints <t !
~[IBinarySearchwrongTest [Java Application] Name value
-@Einarysear:IEWrnngTest at localhost:40614 @ args | stringlo] (id=15)
~o* Thread [main] (Suspended) + @ array (id=16)
g[]} lin
fjava (Feb 4, 2017,
3] Binar Test.java ﬂw@sh—lng_ﬂullt_!er.d;ss' =5

1 /** A program testing BinarySearchWrong. */
2 public class BinarysearchWrongTest {
3

po

5 * The main routine

6 M

7 * @param args

8 . we ignore this parameter for now

3 *f

0= public static final void main(String[] args) {

3

2 int[] array = {0, 1, 2, 3, 5, 6};

g i

5 r ray, 1)) //$NON-NLS-1!
6 “hirong . hmarySearch(array, 2)); //$NON-NLS-1%
7 System.out.println(”index chWrong.binarysearch(array, 3)); //SNON-NLS-1$
8 System.out.println("index 5 rySearchWrong.binarySearch(array, 5)); //SNON-NLS-15
9 System.out.println("index 3 " mmrwrnhﬁmng binarysearch(array, 6)); //$NON-NLS-1%
20

System.out.printin(*index LS | .binarysearch(array

-1)); //$NON-NLS-1$

Smartinsert 14:52

The Debugging Process in Screenshots

= - rS = Quick Access | || B e
45 Debug % & ¥ = 8 |w=Variables ¢ | % Breakpoints B ¥ = 8
~[Il BinarySearchWrongTest [Java Application] Name value
~&& BinarySearchwrongTest at localhost:40614 » @ this i StringBuilder (id=21)

~o* Thread [main] (Suspended)

» @ arg0d i "indexof 1:"

5)

ni ing) 1
BinarySearchWrongTest.main(String[]) lin
o /usr/lib/fjvm/java-8-openjdk-amd64/bin/java (Feb 4, 2017, 5:21:00/

BinarySearchWrongjava [1] BinarySearchWrongTest.java 4} StringBuilder.class 52 =N
161 super(capacity);
162 ¥
103

specified string. The initial capacity of the string builder is

104 Vi .

}gz * Constructs a string builder initialized to the contents of the O}(l we Stepped |nt

107 * {Gcode 16} plus the length of the string argument. t

HA J d

mg * gparam str the initial contents of the buffer. Some ava na‘ Ive CO -

110 * .

111 blic stringBuilder(String str) {
E e Ty We are not intereste
%}Jl; 5 append(str) ; . t d t . h
ke In It and can step rig

116¢ i

117 * Constructs a string builder that contains the same characters Out

118 * as the specified {@code CharSequence}. The initial capacity of .

119 * the string builder is {@code 16} plus the length of the

120 * {@code Charsequence} argument.

(w8 # 8@

4> Debug ES} % . ¥ = 8 |&-Variables X % Breakpoints <t !
~[IBinarySearchwrongTest [Java Application] Name value
-@Einarysear:IEWrnngTest at localhost:40614 @ args | stringlo] (id=15)
~o* Thread [main] (Suspended) + @ array (id=16)
g[]} lin
fjava (Feb 4, 2017,
3] Binar Test.java ﬂw@sh—lng_ﬂullt_!er.d;ss' =5

1 /** A program testing BinarySearchWrong. */
2 public class BinarysearchWrongTest {
3

po

5 * The main routine

6 M

7 * @param args

8 . we ignore this parameter for now

3 *f

0= public static final void main(String[] args) {

3

2 int[] array = {0, 1, 2, 3, 5, 6};

g i

5 r ray, 1)) //$NON-NLS-1!
6 “hirong . hmarySearch(array, 2)); //$NON-NLS-1%
7 System.out.println(”index chWrong.binarysearch(array, 3)); //SNON-NLS-1$
8 System.out.println("index 5 rySearchWrong.binarySearch(array, 5)); //SNON-NLS-15
9 System.out.println("index 3 " mmrwrnhﬁmng binarysearch(array, 6)); //$NON-NLS-1%
20

System.out.printin(*index LS | .binarysearch(array

-1)); //$NON-NLS-1$

Smartinsert 14:52

[Quekncees]| & & 8

4z Debug ﬁ} % . ¥ = 8 |&=Variables E!}'- Breakpoints £ <% S (g
~[IBinarySearchwrongTest [Java Application] Name value
~& BinarysearchwrongTest at localhost:40614 ~ @ array (id=16)

~o* Thread [main] (Suspended) s 0] 0
BinarySearchWrong.binarys h N 1
BlnarySEar:hWrungTest maln(s ng[l) line: 15 af2] 2
o fusr/libfjvmyj /binfjava (Feb 4, 2017, 5:21:004 |,) o
a[4] 5
4 [5] 6
© search 1

) BinarySearchWrong_java 52 | [1] BinarySearchWrongTestjava {j} StringBuilder.class =

4= /** Find the index of value "search” in the sorted array "array".

« @param array the array to search inside, must be sorted

* @param search the value to search

* @return the index of search, or -1 if it does not occur in "array”

int bi int search) {

search(int[] ar
=0 /)

Loeri rst array element
int upperBound = array.length - 1; // the index of the last array element

while (lowerBound < upperBound) { // as long as current division is not empty
int midIndex = (LowerBound + upperBound) / 2; // compute mid index

if (arrayImidIndex] < search) { // if element in middle is smaller than search
lowerBound = midIndex + 1; // search only above the middle from now on
} else { // otherwise
if (array[midIndex] > search) { // if element is bigger than search
upperBound = midIndex - 1; // search only below the middle from mow on
} else { // ok, element is neither smaller or bigger, so it must be equal

return midIndex; // then array[midIndex] = search must hald

Smart insert

We can not just chec
variables, but complet
expressions!

Such as the value
array in the middle o

the current selection

For the sake of simpli
ity, we also add the in
teresting variables

lowerBound=upperBound=1 and our
element is at index 1 but
(lowerBound<upperBound) ~ will be

false

We found the error, w
can stop debugging.

it should not b
(lowerBound<upperBound)

but
(lowerBound<=upperBound)

Fixed Implementation of Binary Search %\

Listing: Your BugFix of your Colleague's Implementation of iBary Search

public class BinarySearchRight {

static int binarySearch(int [] array, int search) {
int lowerBound = 0;
int upperBound = array.length - 1;

while (lowerBound <= upperBound) {
int midindex = (lowerBound + upperBound) / 2;

if (array[midindex] < search) {
lowerBound = midlndex + 1;
} else {
if (array[midindex] > search) {
upperBound = midlindex - 1;
} else {
return midindex;
}
}
}
return -1;

}

B !

OOP with Java Thomas Weise 12/16

Your Test of the Fixed Implementation of Binary Search %{)’

Listing: Your Test of the xed Implementation of Bi

public class BinarySearchRightTest {

public static final void main(String[] args) {

int [] array = {0, 1, 2, 3, 5, 6};

System.out.printin("index of 0: " + BinarySearchRight.binarySearch(array, 0));
System.out.printin("index of 1: " + BinarySearchRight.binarySearch(array, 1));
System.out.printin("index of 2: " + BinarySearchRight.binarySearch(array, 2));
System.out.printin("index of 3: " + BinarySearchRight.binarySearch(array, 3));
System.out.printin("index of 5: " + BinarySearchRight.binarySearch(array, 5));
System.out.printin("index of 6: " + BinarySearchRight.binarySearch(array, 6));
System.out.printin("index of -1: " + BinarySearchRight.binarySearch(array, -1));
System.out.printin(“"index of 4: " + BinarySearchRight.binarySearch(array, 4));
System.out.printin("index of 7: " + BinarySearchRight.binarySearch(array, 7));

OOP with Java Thomas Weise 13/16

The Output

Listing: The expected output Listing: The actual output

index of 0: O index of 0: O
index of 1: 1 index of 1: 1
index of 2: 2 index of 2: 2
index of 3: 3 index of 3: 3
index of 5: 4 index of 5: 4
index of 6: 5 index of 6: 5
index of -1: -1 index of -1: -1
index of 4: -1 index of 4: -1
index of 7: -1 index of 7: -1

OOP with Java Thomas Weise 14/16

Summary %\

1AQ2

We have learned what debugging is.

We have learned how to use a debugger.

We have learned about break points, stepping into functions,
step-by-step program execution, checking variables, and kingc
expressions

We have learned how to nd known errors in programs and x them
We also have learned thdesting is important, because if we do not
know that there is an error, we cannot nd it

If we had not testec binarySearch , maybe we would have shipped a
wrong program. . .

OOP with Java Thomas Weise 15/16

Thank you

Thomas Weised k]
tweise@hfuu.edu.c
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

aspar David Friedric} DWd bdmNblmEe ,1818
hp/lnw\kpd g/wk/w ndere n ve_t _of_Fog

	Outline
	Introduction
	Introduction
	Debugging

	Example: Binary Search
	Search in Sorted Array
	Binary Search
	Wrong Implementation of Binary Search
	Your Test of the Wrong Implementation of Binary Search
	The Output
	What now?
	The Debugging Process in Screenshots
	Fixed Implementation of Binary Search
	Your Test of the Fixed Implementation of Binary Search
	The Output

	Summary
	Summary

