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• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

• Harder to spot are errors that make your program crash only
sometimes.

• Harder are errors which do not make your program crash, but lead to
wrong output, especially if the output is only sometimes wrong and if
it is only a bit wrong.

• Anyway, once we have recognized that there is a error/bug, we need
to find it to fix it.

• This process is called debugging.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.
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• It helps us to run a program in a very special way:
• If we mark a line of code as “break point”, the process will stop at this

line
• We can then see, e.g., the values of the variables at this point in time,

to check if they are what they should be
• We can continue to execute the program step-by-step and see how the

variables change

• This way, we can find errors much easier than by reading the code
alone
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Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

• The method returns:

1 the exact index of search in array if array contains search , i.e.,

in this case search == array[binarySearch(array, search)] holds

2 -1 if search does not occur inside array

• If array is not sorted, the behavior of the method would be
unspecified
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Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

( array[i] > search ), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

• If array[midIndex]>search , then search must either come before midIndex or is not

in array so I continue to search in the same way in the lower part of my division

• Otherwise, it must be that array[midIndex]==search and I can return midIndex

• If I can no longer divide my array because my division is empty, then it means that
search does not appear in it

• The array size decreases to less than 50% in each step, the search will complete in at

most
⌈

log
2
array.length

⌉

steps, i.e., much faster than searching from start to end
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Wrong Implementation of Binary Search

Listing: Your Colleague’s (wrong) Implementation of Binary Search

/** An erroneous implementation of Binary Search */

public class BinarySearchWrong {

/** Find the index of value "search" in the sorted array "array ".

* @param array the array to search inside , must be sorted

* @param search the value to search

* @return the index of search , or -1 if it does not occur in "array"

*/

static int binarySearch(int[] array , int search) {

int lowerBound = 0; // the index of the first array element

int upperBound = array.length - 1; // the index of the last array element

while (lowerBound < upperBound) { // as long as current division is not empty

int midIndex = (lowerBound + upperBound) / 2; // compute mid index

if (array[midIndex] < search) { // if element in middle is smaller than search

lowerBound = midIndex + 1; // search only above the middle from now on

} else { // otherwise

if (array[midIndex] > search) { // if element is bigger than search

upperBound = midIndex - 1; // search only below the middle from now on

} else { // ok , element is neither smaller or bigger , so it must be equal

return midIndex; // then array[midIndex] == search must hold

}

}

}

return -1; // we did not find the element

}

}
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Your Test of the Wrong Implementation of Binary Search

Listing: Your Test of this (wrong) Implementation of Binary Search

/** A program testing BinarySearchWrong. */

public class BinarySearchWrongTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

int[] array = {0, 1, 2, 3, 5, 6};

System.out.println("index of 0: " + BinarySearchWrong.binarySearch(array , 0)); //$NON -NLS -1$

System.out.println("index of 1: " + BinarySearchWrong.binarySearch(array , 1)); //$NON -NLS -1$

System.out.println("index of 2: " + BinarySearchWrong.binarySearch(array , 2)); //$NON -NLS -1$

System.out.println("index of 3: " + BinarySearchWrong.binarySearch(array , 3)); //$NON -NLS -1$

System.out.println("index of 5: " + BinarySearchWrong.binarySearch(array , 5)); //$NON -NLS -1$

System.out.println("index of 6: " + BinarySearchWrong.binarySearch(array , 6)); //$NON -NLS -1$

System.out.println("index of -1: " + BinarySearchWrong.binarySearch(array , -1)); //$NON -NLS -1$

System.out.println("index of 4: " + BinarySearchWrong.binarySearch(array , 4)); //$NON -NLS -1$

System.out.println("index of 7: " + BinarySearchWrong.binarySearch(array , 7)); //$NON -NLS -1$

}

}
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The Output

Listing: The expected output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1

Listing: The actual output

index of 0: 0

index of 1: -1

index of 2: 2

index of 3: -1

index of 5: 4

index of 6: -1

index of -1: -1

index of 4: -1

index of 7: -1
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What now?

• We found that the method does not behave as specified
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• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger:

1 put a break point into BinarySearchWrongTest.java at the

corresponding line
2 execute the program step by step, tracing into the call to

binarySearch

3 check where and why it fails

• Based on the findings, fix the code
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OK, we stepped into
some Java native code.
We are not interested
in it and can step right
out.
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We can not just check
variables, but complete
expressions!
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Such as the value of
array in the middle of

the current selection
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For the sake of simplic-
ity, we also add the in-
teresting variables
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lowerBound=upperBound=1 and our

element is at index 1 but

(lowerBound<upperBound) will be

false .
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Indeed, the loop exists
one iteration too early.
We found the error, we
can stop debugging.
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it should not be
(lowerBound<upperBound)
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(lowerBound<=upperBound)



Fixed Implementation of Binary Search

Listing: Your BugFix of your Colleague’s Implementation of Binary Search

/** Examples for using System.in and Scanner */

public class BinarySearchRight {

/** Find the index of value "search" in the sorted array "array ".

* @param array the array to search inside , must be sorted

* @param search the value to search

* @return the index of search , or -1 if it does not occur in "array"

*/

static int binarySearch(int[] array , int search) {

int lowerBound = 0; // the index of the first array element

int upperBound = array.length - 1; // the index of the last array element

while (lowerBound <= upperBound) { // as long as current division is not empty

int midIndex = (lowerBound + upperBound) / 2; // compute mid index

if (array[midIndex] < search) { // if element in middle is smaller than search

lowerBound = midIndex + 1; // search only above the middle from now on

} else { // otherwise

if (array[midIndex] > search) { // if element is bigger than search

upperBound = midIndex - 1; // search only below the middle from now on

} else { // ok , element is neither smaller or bigger , so it must be equal

return midIndex; // then array[midIndex] == search must hold

}

}

}

return -1; // we did not find the element

}

}
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Your Test of the Fixed Implementation of Binary Search

Listing: Your Test of the fixed Implementation of Binary Search

/** A program testing BinarySearchRight. */

public class BinarySearchRightTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

int[] array = {0, 1, 2, 3, 5, 6};

System.out.println("index of 0: " + BinarySearchRight.binarySearch(array , 0)); //$NON -NLS -1$

System.out.println("index of 1: " + BinarySearchRight.binarySearch(array , 1)); //$NON -NLS -1$

System.out.println("index of 2: " + BinarySearchRight.binarySearch(array , 2)); //$NON -NLS -1$

System.out.println("index of 3: " + BinarySearchRight.binarySearch(array , 3)); //$NON -NLS -1$

System.out.println("index of 5: " + BinarySearchRight.binarySearch(array , 5)); //$NON -NLS -1$

System.out.println("index of 6: " + BinarySearchRight.binarySearch(array , 6)); //$NON -NLS -1$

System.out.println("index of -1: " + BinarySearchRight.binarySearch(array , -1)); //$NON -NLS -1$

System.out.println("index of 4: " + BinarySearchRight.binarySearch(array , 4)); //$NON -NLS -1$

System.out.println("index of 7: " + BinarySearchRight.binarySearch(array , 7)); //$NON -NLS -1$

}

}
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The Output

Listing: The expected output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1

Listing: The actual output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1
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Summary

• We have learned what debugging is.

• We have learned how to use a debugger.

• We have learned about break points, stepping into functions,
step-by-step program execution, checking variables, and checking
expressions

• We have learned how to find known errors in programs and fix them

• We also have learned that testing is important, because if we do not
know that there is an error, we cannot find it

• If we had not tested binarySearch , maybe we would have shipped a
wrong program. . .
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China
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