
OOP with Java
13. Debugging

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Example: Binary Search

3 Summary

OOP with Java Thomas Weise 2/16

w
e
b
s
it
e

Introduction

• When writing programs, mistakes are impossible to avoid

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

• Harder to spot are errors that make your program crash only
sometimes.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

• Harder to spot are errors that make your program crash only
sometimes.

• Harder are errors which do not make your program crash, but lead to
wrong output, especially if the output is only sometimes wrong and if
it is only a bit wrong.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

• Harder to spot are errors that make your program crash only
sometimes.

• Harder are errors which do not make your program crash, but lead to
wrong output, especially if the output is only sometimes wrong and if
it is only a bit wrong.

• Anyway, once we have recognized that there is a error/bug, we need
to find it to fix it.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Introduction

• When writing programs, mistakes are impossible to avoid

• There are a lot of different types of errors that can happen

• The easiest ones are syntax errors and stuff that the compiler picks up
and warns you about it

• Then there are errors which make your programs crash all the time.

• Harder to spot are errors that make your program crash only
sometimes.

• Harder are errors which do not make your program crash, but lead to
wrong output, especially if the output is only sometimes wrong and if
it is only a bit wrong.

• Anyway, once we have recognized that there is a error/bug, we need
to find it to fix it.

• This process is called debugging.

In Lesson 25: Exceptions, we will learn to interpret the error print created by a crashing program.

OOP with Java Thomas Weise 3/16

Debugging

• A debugger is a very powerful tool.

OOP with Java Thomas Weise 4/16

Debugging

• A debugger is a very powerful tool.

• It helps us to run a program in a very special way

OOP with Java Thomas Weise 4/16

Debugging

• A debugger is a very powerful tool.

• It helps us to run a program in a very special way:
• If we mark a line of code as “break point”, the process will stop at this

line

OOP with Java Thomas Weise 4/16

Debugging

• A debugger is a very powerful tool.

• It helps us to run a program in a very special way:
• If we mark a line of code as “break point”, the process will stop at this

line
• We can then see, e.g., the values of the variables at this point in time,

to check if they are what they should be

OOP with Java Thomas Weise 4/16

Debugging

• A debugger is a very powerful tool.

• It helps us to run a program in a very special way:
• If we mark a line of code as “break point”, the process will stop at this

line
• We can then see, e.g., the values of the variables at this point in time,

to check if they are what they should be
• We can continue to execute the program step-by-step and see how the

variables change

OOP with Java Thomas Weise 4/16

Debugging

• A debugger is a very powerful tool.

• It helps us to run a program in a very special way:
• If we mark a line of code as “break point”, the process will stop at this

line
• We can then see, e.g., the values of the variables at this point in time,

to check if they are what they should be
• We can continue to execute the program step-by-step and see how the

variables change

• This way, we can find errors much easier than by reading the code
alone

OOP with Java Thomas Weise 4/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

• The method returns

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

• The method returns:

1 the exact index of search in array if array contains search , i.e.,

in this case search == array[binarySearch(array, search)] holds

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

• The method returns:

1 the exact index of search in array if array contains search , i.e.,

in this case search == array[binarySearch(array, search)] holds

2 -1 if search does not occur inside array

OOP with Java Thomas Weise 5/16

Search in Sorted Array

• A colleague provides you with a method binarySearch for searching a

value inside a sorted int array

• The method receives two parameters:

1 an int array array , which must be sorted (in ascending order)

2 an int value search , which may or may not occur in array

• The method returns:

1 the exact index of search in array if array contains search , i.e.,

in this case search == array[binarySearch(array, search)] holds

2 -1 if search does not occur inside array

• If array is not sorted, the behavior of the method would be
unspecified

OOP with Java Thomas Weise 5/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

• If array[midIndex]>search , then search must either come before midIndex or is not

in array so I continue to search in the same way in the lower part of my division

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

• If array[midIndex]>search , then search must either come before midIndex or is not

in array so I continue to search in the same way in the lower part of my division

• Otherwise, it must be that array[midIndex]==search and I can return midIndex

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

• If array[midIndex]>search , then search must either come before midIndex or is not

in array so I continue to search in the same way in the lower part of my division

• Otherwise, it must be that array[midIndex]==search and I can return midIndex

• If I can no longer divide my array because my division is empty, then it means that
search does not appear in it

OOP with Java Thomas Weise 6/16

Binary Search

• Your colleague implemented (or better, tried to implement) binary
search for this purpose.

• Binary search makes use of the fact that array is sorted. The idea is:

• If I know that array[i] , i.e., the element at index i , is greater than search

(array[i] > search), then I know that search cannot appear at or after index i

• If I know that array[i] < search , then I know that search cannot appear at or before

index i

• This means I can successively divide the array into three pieces: the element at the middle
index midIndex , the elements before midIndex , and the elements after midIndex

• If array[midIndex]<search , then search must either come after midIndex or is not in

array so I continue to search in the same way in the upper part of my division

• If array[midIndex]>search , then search must either come before midIndex or is not

in array so I continue to search in the same way in the lower part of my division

• Otherwise, it must be that array[midIndex]==search and I can return midIndex

• If I can no longer divide my array because my division is empty, then it means that
search does not appear in it

• The array size decreases to less than 50% in each step, the search will complete in at

most
⌈

log
2
array.length

⌉

steps, i.e., much faster than searching from start to end

OOP with Java Thomas Weise 6/16

Wrong Implementation of Binary Search

Listing: Your Colleague’s (wrong) Implementation of Binary Search

/** An erroneous implementation of Binary Search */

public class BinarySearchWrong {

/** Find the index of value "search" in the sorted array "array ".

* @param array the array to search inside , must be sorted

* @param search the value to search

* @return the index of search , or -1 if it does not occur in "array"

*/

static int binarySearch(int[] array , int search) {

int lowerBound = 0; // the index of the first array element

int upperBound = array.length - 1; // the index of the last array element

while (lowerBound < upperBound) { // as long as current division is not empty

int midIndex = (lowerBound + upperBound) / 2; // compute mid index

if (array[midIndex] < search) { // if element in middle is smaller than search

lowerBound = midIndex + 1; // search only above the middle from now on

} else { // otherwise

if (array[midIndex] > search) { // if element is bigger than search

upperBound = midIndex - 1; // search only below the middle from now on

} else { // ok , element is neither smaller or bigger , so it must be equal

return midIndex; // then array[midIndex] == search must hold

}

}

}

return -1; // we did not find the element

}

}
OOP with Java Thomas Weise 7/16

Your Test of the Wrong Implementation of Binary Search

Listing: Your Test of this (wrong) Implementation of Binary Search

/** A program testing BinarySearchWrong. */

public class BinarySearchWrongTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

int[] array = {0, 1, 2, 3, 5, 6};

System.out.println("index of 0: " + BinarySearchWrong.binarySearch(array , 0)); //$NON -NLS -1$

System.out.println("index of 1: " + BinarySearchWrong.binarySearch(array , 1)); //$NON -NLS -1$

System.out.println("index of 2: " + BinarySearchWrong.binarySearch(array , 2)); //$NON -NLS -1$

System.out.println("index of 3: " + BinarySearchWrong.binarySearch(array , 3)); //$NON -NLS -1$

System.out.println("index of 5: " + BinarySearchWrong.binarySearch(array , 5)); //$NON -NLS -1$

System.out.println("index of 6: " + BinarySearchWrong.binarySearch(array , 6)); //$NON -NLS -1$

System.out.println("index of -1: " + BinarySearchWrong.binarySearch(array , -1)); //$NON -NLS -1$

System.out.println("index of 4: " + BinarySearchWrong.binarySearch(array , 4)); //$NON -NLS -1$

System.out.println("index of 7: " + BinarySearchWrong.binarySearch(array , 7)); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 8/16

The Output

Listing: The expected output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1

Listing: The actual output

index of 0: 0

index of 1: -1

index of 2: 2

index of 3: -1

index of 5: 4

index of 6: -1

index of -1: -1

index of 4: -1

index of 7: -1

OOP with Java Thomas Weise 9/16

What now?

• We found that the method does not behave as specified

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger:

1 put a break point into BinarySearchWrongTest.java at the

corresponding line

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger:

1 put a break point into BinarySearchWrongTest.java at the

corresponding line
2 execute the program step by step, tracing into the call to

binarySearch

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger:

1 put a break point into BinarySearchWrongTest.java at the

corresponding line
2 execute the program step by step, tracing into the call to

binarySearch

3 check where and why it fails

OOP with Java Thomas Weise 10/16

What now?

• We found that the method does not behave as specified

• It fails for array = 0, 1, 2, 3, 5, 6; and search=1

• Let’s use the Eclipse debugger:

1 put a break point into BinarySearchWrongTest.java at the

corresponding line
2 execute the program step by step, tracing into the call to

binarySearch

3 check where and why it fails

• Based on the findings, fix the code

OOP with Java Thomas Weise 10/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

OK, we stepped into
some Java native code.
We are not interested
in it and can step right
out.

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

We can not just check
variables, but complete
expressions!

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

Such as the value of
array in the middle of

the current selection

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

For the sake of simplic-
ity, we also add the in-
teresting variables

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

lowerBound=upperBound=1 and our

element is at index 1 but

(lowerBound<upperBound) will be

false .

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

Indeed, the loop exists
one iteration too early.
We found the error, we
can stop debugging.

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

it should not be
(lowerBound<upperBound)

The Debugging Process in Screenshots

OOP with Java Thomas Weise 11/16

but
(lowerBound<=upperBound)

Fixed Implementation of Binary Search

Listing: Your BugFix of your Colleague’s Implementation of Binary Search

/** Examples for using System.in and Scanner */

public class BinarySearchRight {

/** Find the index of value "search" in the sorted array "array ".

* @param array the array to search inside , must be sorted

* @param search the value to search

* @return the index of search , or -1 if it does not occur in "array"

*/

static int binarySearch(int[] array , int search) {

int lowerBound = 0; // the index of the first array element

int upperBound = array.length - 1; // the index of the last array element

while (lowerBound <= upperBound) { // as long as current division is not empty

int midIndex = (lowerBound + upperBound) / 2; // compute mid index

if (array[midIndex] < search) { // if element in middle is smaller than search

lowerBound = midIndex + 1; // search only above the middle from now on

} else { // otherwise

if (array[midIndex] > search) { // if element is bigger than search

upperBound = midIndex - 1; // search only below the middle from now on

} else { // ok , element is neither smaller or bigger , so it must be equal

return midIndex; // then array[midIndex] == search must hold

}

}

}

return -1; // we did not find the element

}

}
OOP with Java Thomas Weise 12/16

Your Test of the Fixed Implementation of Binary Search

Listing: Your Test of the fixed Implementation of Binary Search

/** A program testing BinarySearchRight. */

public class BinarySearchRightTest {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

int[] array = {0, 1, 2, 3, 5, 6};

System.out.println("index of 0: " + BinarySearchRight.binarySearch(array , 0)); //$NON -NLS -1$

System.out.println("index of 1: " + BinarySearchRight.binarySearch(array , 1)); //$NON -NLS -1$

System.out.println("index of 2: " + BinarySearchRight.binarySearch(array , 2)); //$NON -NLS -1$

System.out.println("index of 3: " + BinarySearchRight.binarySearch(array , 3)); //$NON -NLS -1$

System.out.println("index of 5: " + BinarySearchRight.binarySearch(array , 5)); //$NON -NLS -1$

System.out.println("index of 6: " + BinarySearchRight.binarySearch(array , 6)); //$NON -NLS -1$

System.out.println("index of -1: " + BinarySearchRight.binarySearch(array , -1)); //$NON -NLS -1$

System.out.println("index of 4: " + BinarySearchRight.binarySearch(array , 4)); //$NON -NLS -1$

System.out.println("index of 7: " + BinarySearchRight.binarySearch(array , 7)); //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 13/16

The Output

Listing: The expected output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1

Listing: The actual output

index of 0: 0

index of 1: 1

index of 2: 2

index of 3: 3

index of 5: 4

index of 6: 5

index of -1: -1

index of 4: -1

index of 7: -1

OOP with Java Thomas Weise 14/16

Summary

• We have learned what debugging is.

• We have learned how to use a debugger.

• We have learned about break points, stepping into functions,
step-by-step program execution, checking variables, and checking
expressions

• We have learned how to find known errors in programs and fix them

• We also have learned that testing is important, because if we do not
know that there is an error, we cannot find it

• If we had not tested binarySearch , maybe we would have shipped a
wrong program. . .

OOP with Java Thomas Weise 15/16

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 16/16

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Introduction
	Debugging

	Example: Binary Search
	Search in Sorted Array
	Binary Search
	Wrong Implementation of Binary Search
	Your Test of the Wrong Implementation of Binary Search
	The Output
	What now?
	The Debugging Process in Screenshots
	Fixed Implementation of Binary Search
	Your Test of the Fixed Implementation of Binary Search
	The Output

	Summary
	Summary

	Presentation End

