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The easiest ones are syntax errors and stu that the compilekgiup
and warns you about it

Then there are errors which make your programs crash all the time

Harder to spot are errors that make your program crash only
sometimes.

Harder are errors which do not make your program crash, but lead
wrong output, especially if the output is only sometimes wrong ahd
it is only a bit wrong.

Anyway, once we have recognized that there is a error/bug, we nee
to nditto xit.

This process is calledebugging

In Lesson 25Exceptions we will learn to interpret the error print created by a crasp program.
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" A debugger is a very powerful tool.
" It helps us to run a program in a very special way:
" If we mark a line of code as \break point", the process will stop atsth
line
" We can then see, e.g., the values of the variables at this poirtinre,
to check if they are what they should be
" We can continue to execute the program step-by-step and see v t
variables change
" This way, we can nd errors much easier than by reading the e&od

alone
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" A colleague provides you with a methcbinarySearch  for searching a
value inside a sorte int array
The method receives two parameters:
@ an int array array , which must be sorted (in ascending order)
® an int value search , which may or may not occur il array
The method returns:
@ the exact index ofsearch in array if array contains search , i.e.,
in this case search == array[binarySearch(array, search)] holds
® -1 if search does not occur insid array

If array is not sorted, the behavior of the method would be
unspeci ed
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" Your colleague implemented (or better, tried to implement) aig
search for this purpose.
Binary search makes use of the fact th array is sorted. The idea is:
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If array[midindex]>search , then search must either come befor midindex or is not
in array so | continue to search in the same way in the lower part of mysiii
Otherwise, it must be thal array[midindex]==search ~ and | can return midindex

If I can no longer divide my array because my division is empgnth means that
search does not appear in it

The afray size decreases to Ir%ss than 50% in each step, the seh will complete in at

most log, array.length steps, i.e., much faster than searching from start to end
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Wrong Implementation of Binary Search

Listing: Your Colleague's (wrong) Implementation of Binanbearch

public class BinarySearchWrong {

static int binarySearch( int [] array, int
int lowerBound = 0;

int upperBound = array.length - 1;

search) {

while (lowerBound < upperBound) {
int midindex = (lowerBound + upperBound) / 2;

if (array[midindex] < search) {
lowerBound = midindex + 1;
} else {
if (array[midindex] > search) {
upperBound = midlindex - 1;
} else {
return midindex;
}
}
}
return -1;

}

N !

OOP with Java Thomas Weise
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Your Test of the Wrong Implementation of Binary Search %\’

Listing: Your Test of this (wrong) Implementation of Binary ®al

public class BinarySearchWrongTest {

public static final void main(String[] args) {

int [] array = {0, 1, 2, 3, 5, 6};

System.out.printin( “"index of 0: + BinarySearchWrong.binarySearch(array, 0));
System.out.printin( "index of 1: " + BinarySearchWrong.binarySearch(array, 1));
System.out.printin(  "index of 2: " + BinarySearchWrong.binarySearch(array, 2));
System.out.printin( “"index of 3: " + BinarySearchWrong.binarySearch(array, 3));
System.out.printin( "index of 5: " + BinarySearchWrong.binarySearch(array, 5));
System.out.printin(  "index of 6: " + BinarySearchWrong.binarySearch(array, 6));
System.out.printin( "index of -1: " + BinarySearchWrong.binarySearch(array, -1));
System.out.printin(  "index of 4: " + BinarySearchWrong.binarySearch(array, 4));
System.out.printin( "index of 7: " + BinarySearchWrong.binarySearch(array, 7));

OOP with Java Thomas Weise 8/16



The Output %\’

Listing: The expected output Listing: The actual output

index of 0: O index of 0: O
index of 1: 1 index of 1. -1
index of 2: 2 index of 2: 2
index of 3: 3 index of 3: -1
index of 5: 4 index of 5: 4
index of 6: 5 index of 6: -1
index of -1: -1 index of -1: -1
index of 4: -1 index of 4: -1
index of 7: -1 index of 7: -1

OOP with Java Thomas Weise 9/16



" We found that the method does not behave as speci ed




" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1




" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1
" Let's use the Eclipse debugger




" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line




" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line
@® execute the program step by step, tracing into the call to
binarySearch




" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1

" Let's use the Eclipse debugger:
@ put a break point into BinarySearchWrongTest.java at the
corresponding line

@® execute the program step by step, tracing into the call to
binarySearch

® check where and why it fails




What now?

" We found that the method does not behave as speci ed
" It fails for array = 0, 1, 2, 3, 5, 6; and search=1
" Let's use the Eclipse debugger:

@ put a break point into BinarySearchWrongTest.java at the
corresponding line

@® execute the program step by step, tracing into the call to
binarySearch

® check where and why it fails
" Based on the ndings, x the code

OOP with Java Thomas Weise 10/16



The Debugging Process in Screenshots

= RO~ FOE OO PE LIREIR = IR SR S >
g @
4 PackageExplorer @ = 8 [ BlnarySearchWrongJava ‘D BinarySearchWrongTest.java 2 = 8 ‘
= o = 1 /** A program testing BinarySearchWrong. */
B = public class BinarySearchwrongTest {
~¥>13 debugging [javaExamples

~@>src
~ 83 > (default package) I
» [ BinarysearchRightjava |-

» [ BinarysearchRightTest.jav: S

P
* The main routine

ram args
we ignore this parameter for now

3
- public static final void main(String[] args) {

2] Elnarysear(hwmng Jjava

11
12 int[] array = {e, 1, 2, 3, 5, 6};

ig,.JRES stem Library [java-6-op
= dassyﬂth 2 BinarySearchWrong.binarySearch(array, 8))
2 .classp. BinarySearchWrong.binarySearch(array, 1))
BinarySearchWrong.binarySearch(array, 2))
BinarySearchWrong.binarySearchiarray, 3))
BinarySearchWrong.binarySearch(array, 5))
BinarysearchWrong.binarySearch(array, 6))

ok

[ make_linux.sh
[ README.md

T = Team " s -
b G avaExamples [avaExarriples + BinarysearchwWrong.binarySearch(array, -1));

+ BinarySearchWrong.binarySearch(srray, 4)); /
Add Bookmark... + BinarySearchWrong.binarysearch(array, 7)); /
Add Tas|

~ Show Quick Diff
Show Annotations

+ Show Line Numbers
Folding

Preferences... Console 52 | =g Progress S

X% &
<terminated> BinarySearchRightTest [Java Application] /usr/lib/jvm/java-8-op
index of @: @
index of 1: 1
index of 2: 2 —
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The Debugging Process in Screenshots

4 PackageExplorer 8 = B arySearchWrong.jg

A program ted
public class Bing

=

~(¢> 13 debugging [javaExamples
~@#>src
~ 83 > (default package)
» [ BinarysearchRight.java
» [ BinarysearchRightTest.jav:
» [5 Binarysearchwrong.java ||

» & JRE System Library [java-8-op

o jee
* The main routine

paran args
we ignere this parameter for now

o
- public static final void main(String[] args) {

intl] array = {e, 1, 2, 3, 5, 6};

System.out.println{"index of ©: " + BinarySearchWrong.binarySearch(array, 8)); /
System.out.println(“index of 1: " + BinarySearchWrong.binarySearchlarray, 1)); /
System.out.println("index of 2: " + BinarySearchWrong.binarySearch(array, 2)); /
% .project System.out.println("index of 3: " + BinarySearchWrong.binarySearchlarray, 3)); /
gl Z System.out.println{“index of 5: " + BimarySearchWrong.binarySearch(array, 5)); /
[ make_linux.sh System.owt.println("index of 6: " + BinarySearchWrong.binarySearch(array, 6)); /
% README.md
et 7 | System.owt.println("index of -1: " + BinarySearchWrong.binarySearch(array, -1));
+ &> javaExamples [javaExamples | System.out.println(“index of 4: " + BinarySearchWrong.binarySearch(array, 4)); /
2 System.owt.println(“index of 7: " + BinarySearchWrong.binarySearchlarray, 7)); /
25
26
[#% Problems @ Javadoc [} Declaration B) Console =jProgress #xDebug| %& . ~ = O

~[<terminated=>BinarysearchwrongTest [Java Application]
+® <terminats inarySearchWrongTest at localhost:36969

d64/bi

&l <terminated, exitvalue: 1>/usr/lib/jvm/java-8-openjdk i
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Confirm Perspective S

This kind of launch is configured to open the Debug perspective when it
e suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

Remember my decision

| No | Lh'fe's
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vl vy Do Quick Access :‘ =l S E |

4> Debug ES} % . ¥ = 8 |&=Variables E!}'- Breakpoints <t !
~[IBinarySearchwrongTest [Java Application] Name value
~& BinarysearchwrongTest at localhost:40614 i string[a] (id=15)
~o# Thread [main] (Suspended (breakpoint at line 15in BinarySearch| M
g[})lin o
fjava (Feb 4, 2017, 7
2
3
s
3] Binar Test.java ;ﬂ =5
1 /** A program testing BinarySearchifrong. */
2 public class BinarysearchWrongTest {
3

pe
* The main routine

* @param args
. we ignore this parameter for now
= public static final void main(String[] args) {

int[] array = {0, 1, 2, 3, 5, 6};

2. bi an;ys.earzh( rray, 8)); //SNON-NLS-15
rysear ray, 1}); //$NON-NLS
irong.binarySearch(array, 2)); //$NON-NLS-1%
System.out.println(”index ei!i‘hing binarySearch(array, 3)); //SNON-NLS-1$
System.owt.println("index rySearchWrong.binarySearch(array, 5)); //SNON-NLS-1%
System.out.println("index of 6 "+ Bdmrwrmmng binarysearch(array, 6)); //$NON-NLS-1%

System.owt.println("index of "+ Bi | .binarysearchlarray, -1)); //$NON-NLS-1$

B 0 e
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4> Debug ES} % . ¥ = 8 |&-Variables X % Breakpoints <t !
~[IBinarySearchwrongTest [Java Application] Name value
-@Einarysear:IEWrnngTest at localhost:40614 @ args | stringlo] (id=15)
~o* Thread [main] (Suspended) + @ array (id=16)
g[]} lin
fjava (Feb 4, 2017,
3] Binar Test.java ﬂw@sh—lng_ﬂullt_!er.d;ss' =5

1 /** A program testing BinarySearchWrong. */
2 public class BinarysearchWrongTest {
3

po

5 * The main routine

6 M

7 * @param args

8 . we ignore this parameter for now

3 *f

0= public static final void main(String[] args) {

3

2 int[] array = {0, 1, 2, 3, 5, 6};

g i

5 r ray, 1)) //$NON-NLS-1!
6 “hirong . hmarySearch(array, 2)); //$NON-NLS-1%
7 System.out.println(”index chWrong.binarysearch(array, 3)); //SNON-NLS-1$
8 System.out.println("index 5 rySearchWrong.binarySearch(array, 5)); //SNON-NLS-15
9 System.out.println("index 3 " mmrwrnhﬁmng binarysearch(array, 6)); //$NON-NLS-1%
20

System.out.printin(*index LS | .binarysearch(array

-1)); //$NON-NLS-1$
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The Debugging Process in Screenshots

= - rS = Quick Access | || B e
45 Debug % & ¥ = 8 |w=Variables ¢ | % Breakpoints B ¥ = 8
~[Il BinarySearchWrongTest [Java Application] Name value
~&& BinarySearchwrongTest at localhost:40614 » @ this i StringBuilder (id=21)

~o* Thread [main] (Suspended)

» @ arg0d i "indexof 1:"

5)

ni ing) 1
BinarySearchWrongTest.main(String[]) lin
o /usr/lib/fjvm/java-8-openjdk-amd64/bin/java (Feb 4, 2017, 5:21:00/

BinarySearchWrongjava  [1] BinarySearchWrongTest.java 4} StringBuilder.class 52 =N
161 super(capacity);
162 ¥
103

specified string. The initial capacity of the string builder is

104 Vi .

}gz * Constructs a string builder initialized to the contents of the O}(l we Stepped |nt

107 * {Gcode 16} plus the length of the string argument. t

HA J d

mg * gparam str the initial contents of the buffer. Some ava na‘ Ive CO -

110 * .

111 blic stringBuilder(String str) {
E e Ty We are not intereste
%}Jl; 5 append(str) ; . t d t . h
ke In It and can step rig

116¢ i

117 * Constructs a string builder that contains the same characters Out

118 * as the specified {@code CharSequence}. The initial capacity of .

119 * the string builder is {@code 16} plus the length of the

120 * {@code Charsequence} argument.
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[Quekncees ]| & & 8

4z Debug ﬁ} % . ¥ = 8 |&=Variables E!}'- Breakpoints £ <% S (g
~[IBinarySearchwrongTest [Java Application] Name value
~& BinarysearchwrongTest at localhost:40614 ~ @ array (id=16)

~o* Thread [main] (Suspended) s 0] 0
BinarySearchWrong.binarys h N 1
BlnarySEar:hWrungTest maln(s ng[l) line: 15 af2] 2
o fusr/libfjvmyj /binfjava (Feb 4, 2017, 5:21:004 |, ) o
a[4] 5
4 [5] 6
© search 1

) BinarySearchWrong_java 52 | [1] BinarySearchWrongTestjava  {j} StringBuilder.class =

4= /** Find the index of value "search” in the sorted array "array".

« @param array the array to search inside, must be sorted

* @param search the value to search

* @return the index of search, or -1 if it does not occur in "array”

int bi int search) {

search(int[] ar
=0 /)

Loeri rst array element
int upperBound = array.length - 1; // the index of the last array element

while (lowerBound < upperBound) { // as long as current division is not empty
int midIndex = (LowerBound + upperBound) / 2; // compute mid index

if (arrayImidIndex] < search) { // if element in middle is smaller than search
lowerBound = midIndex + 1; // search only above the middle from now on
} else { // otherwise
if (array[midIndex] > search) { // if element is bigger than search
upperBound = midIndex - 1; // search only below the middle from mow on
} else { // ok, element is neither smaller or bigger, so it must be equal

return midIndex; // then array[midIndex] = search must hald

Smart insert
















We can not just chec
variables, but complet
expressions!




Such as the value
array in the middle o

the current selection










For the sake of simpli
ity, we also add the in
teresting variables





































lowerBound=upperBound=1 and our
element is at index 1 but
(lowerBound<upperBound) ~ will be

false




We found the error, w
can stop debugging.










it should not b
(lowerBound<upperBound)




but
(lowerBound<=upperBound)




Fixed Implementation of Binary Search %\

Listing: Your BugFix of your Colleague's Implementation of iBary Search

public class BinarySearchRight {

static int binarySearch( int [] array, int search) {
int lowerBound = 0;
int upperBound = array.length - 1;

while (lowerBound <= upperBound) {
int midindex = (lowerBound + upperBound) / 2;

if (array[midindex] < search) {
lowerBound = midlndex + 1;
} else {
if (array[midindex] > search) {
upperBound = midlindex - 1;
} else {
return midindex;
}
}
}
return -1;

}

B !
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Your Test of the Fixed Implementation of Binary Search %{)’

Listing: Your Test of the xed Implementation of Bi

public class BinarySearchRightTest {

public static final void main(String[] args) {

int [] array = {0, 1, 2, 3, 5, 6};

System.out.printin( "index of 0: " + BinarySearchRight.binarySearch(array, 0));
System.out.printin( "index of 1: " + BinarySearchRight.binarySearch(array, 1));
System.out.printin( "index of 2: " + BinarySearchRight.binarySearch(array, 2));
System.out.printin( "index of 3: " + BinarySearchRight.binarySearch(array, 3));
System.out.printin( "index of 5: " + BinarySearchRight.binarySearch(array, 5));
System.out.printin( "index of 6: " + BinarySearchRight.binarySearch(array, 6));
System.out.printin(  "index of -1: " + BinarySearchRight.binarySearch(array, -1));
System.out.printin( “"index of 4: " + BinarySearchRight.binarySearch(array, 4));
System.out.printin( "index of 7: " + BinarySearchRight.binarySearch(array, 7));
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The Output

Listing: The expected output Listing: The actual output

index of 0: O index of 0: O
index of 1: 1 index of 1: 1
index of 2: 2 index of 2: 2
index of 3: 3 index of 3: 3
index of 5: 4 index of 5: 4
index of 6: 5 index of 6: 5
index of -1: -1 index of -1: -1
index of 4: -1 index of 4: -1
index of 7: -1 index of 7: -1
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Summary %\

1AQ2

We have learned what debugging is.

We have learned how to use a debugger.

We have learned about break points, stepping into functions,
step-by-step program execution, checking variables, and kingc
expressions

We have learned how to nd known errors in programs and x them
We also have learned thdesting is important, because if we do not
know that there is an error, we cannot nd it

If we had not testec binarySearch , maybe we would have shipped a
wrong program. . .
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Thank you
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