
OOP with Java
12. Static Variables

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Global Variables

3 Summary

OOP with Java Thomas Weise 2/9

w
e
b
s
it
e

(Static) Variables

• We have seen how static methods can be defined

OOP with Java Thomas Weise 3/9

(Static) Variables

• We have seen how static methods can be defined

• If I define a static method inside class A, it is available to all the code
in class A.

OOP with Java Thomas Weise 3/9

(Static) Variables

• We have seen how static methods can be defined

• If I define a static method inside class A, it is available to all the code
in class A.

• (under some conditions) it is also available to the code in other classes

OOP with Java Thomas Weise 3/9

(Static) Variables

• We have seen how static methods can be defined

• If I define a static method inside class A, it is available to all the code
in class A.

• (under some conditions) it is also available to the code in other classes

• Static variables follow the same concept: They are globally declared
variables available to all the code in our class

OOP with Java Thomas Weise 3/9

(Static) Variables

• We have seen how static methods can be defined

• If I define a static method inside class A, it is available to all the code
in class A.

• (under some conditions) it is also available to the code in other classes

• Static variables follow the same concept: They are globally declared
variables available to all the code in our class

• (under some conditions) they become also available to the code in
other classes

OOP with Java Thomas Weise 3/9

Declaring Global Variables

• A static/global variable can be declared anywhere in the class, but
outside of the method body, i.e., in the class body itself

OOP with Java Thomas Weise 4/9

Declaring Global Variables

• A static/global variable can be declared anywhere in the class, but
outside of the method body, i.e., in the class body itself

• The declaration is the same as for local variables, but static is
prepended

OOP with Java Thomas Weise 4/9

Declaring Global Variables

• A static/global variable can be declared anywhere in the class, but
outside of the method body, i.e., in the class body itself

• The declaration is the same as for local variables, but static is
prepended

• Static variables can be initialized, modified, set exactly like local
variables

OOP with Java Thomas Weise 4/9

Declaring Global Variables

• A static/global variable can be declared anywhere in the class, but
outside of the method body, i.e., in the class body itself

• The declaration is the same as for local variables, but static is
prepended

• Static variables can be initialized, modified, set exactly like local
variables

• If we also mark them with the keyword final and initialize them,
they can never be changed, i.e., are constants. Constants usually have
all-uppercase names

OOP with Java Thomas Weise 4/9

Declaring Global Variables

• A static/global variable can be declared anywhere in the class, but
outside of the method body, i.e., in the class body itself

• The declaration is the same as for local variables, but static is
prepended

• Static variables can be initialized, modified, set exactly like local
variables

• If we also mark them with the keyword final and initialize them,
they can never be changed, i.e., are constants. Constants usually have
all-uppercase names

• We can access static variables in other classes by using
“ canonical-name-of-class.name-of-variable ”

OOP with Java Thomas Weise 4/9

Vertical Ball Throw with Constant for g

Listing: Vertical Ball Throw with Constant for g

/**

* A ball is thrown vertically upwards into the air by a 1.8m tall person

* with velocity 10m/s. Where is it after t = 0, 0.2, . . . , 2.2 seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrowFunctionAndConstants {

/** make the constant G available to our code. "final" means that G can never be changed.*/

static final double G = 9.80665d;

/** Compute the position of a ball (good style: these comments document

* what the method does)

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

return x0 + (v0 * t) - 0.5d * G * t * t;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for (int i = 0; i < 12; i++) { // using an integer for counting

System.out.println(position (1.8d, 10d, 0.2d * i)); // prints the current position

}

}

}

OOP with Java Thomas Weise 5/9

Faster Fibonacci Numbers with Cache

Listing: Faster Fibonacci Numbers with Cache

/** An example program computing Fibonacci numbers F (n) = F (n− 1) + F (n− 2)
* with F (1) = F (2) = 1 recursively using a cache for faster computation. */

public class FibonacciRecursiveCached {

/** a cache variable */

static long[] CACHE = new long [1000];

/**

* Recursively compute the ith Fibonacci number

*

* @param i

* the index of the number to compute

* @return ith Fibonacci number

*/

static long F(int i) {

if ((i == 1L) || (i == 2L)) {

return 1; // take care of cases F (1) and F (2)
}

if (i < CACHE.length) { // is i small enough to use the cache?

if (CACHE[i] > 0) { // has F(i) already been computed ?

return CACHE[i]; // yes , then we can directly return it

}

return CACHE[i] = F(i-1) + F(i-2); // no? recurse and cache result

}

return F(i-1) + F(i-2); // i is too big , just recurse

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for (int i = 1; i <= 90; i++) { // print the first 90 Fibonacci numbers

System.out.print("F("); //$NON -NLS -1$

System.out.print(i);

System.out.print(") = "); //$NON -NLS -1$

System.out.println(F(i));

}

}

}

OOP with Java Thomas Weise 6/9

Using the Constants from Java-Provided Class Math

Listing: Using the constants for π and e

/** An example program using the methods of java.lang.Math */

public class MathMethodsAndConstants {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(Math.log(Math.E));

System.out.println(Math.sin(Math.PI / 2d));

// ok, the one below is not from Math but from our class

// VerticalBallThrowFunctionAndConstants

System.out.println(VerticalBallThrowFunctionAndConstants.G);

}

}

OOP with Java Thomas Weise 7/9

Summary

• We have learned what static variables are.

• We have learned how to define them and how to use them.

• We have learned that we can put static variables into different classes
and use static variables from different classes.

OOP with Java Thomas Weise 8/9

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 9/9

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	(Static) Variables

	Global Variables
	Declaring Global Variables
	Vertical Ball Throw with Constant for g
	Faster Fibonacci Numbers with Cache
	Using the Constants from Java-Provided Class Math

	Summary
	Summary

	Presentation End

