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• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

• You already know two methods:
• the public static final void main(... method of your programs

• things like System.out.println(...

• ( static methods are methods that belong to a class, there are also
other types of methods, but we will ignore this for now)
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Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides

1 x0=1.8d ,

2 v0=10d , and

3 t=0.5d

• If a method has a return type T , this method can be used as an
expression of type T
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• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

• If the method has a return type T , then its last instruction must be
return <expression of type T>;

• Actually, return can be called anywhere in the method, if it is called,
the method exists

• Methods without return value can also use return to exit, but they
cannot specify a expression whose result is to be returned.
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The Vertical Ball Throw, now as Function

Listing: The Vertical Ball Throw, now as Function

/**

* A ball is thrown vertically upwards into the air by a 1.8m tall person <br/>

* with velocity 10m/s. Where is it after t = 0, 0.2, . . . , 2.2 seconds?<br/>

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrowFunction {

/** Compute the position of a ball (good style: these comments document

* what the method does)

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

return x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for (int i = 0; i < 12; i++) { // using an integer for counting

System.out.println(position (1.8d, 10d, 0.2d * i)); // prints the current position

}

}

}
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Multiplying and Printing Matrices

Listing: Multiplying and Printing Matrices

/** An example program printing and multiplying matrices. */

public class MultiplyMatrices {

static void print(double [][] matrix , String name) {

System.out.println("Matrix " + name + ':'); //$NON -NLS -1$

for (double [] row : matrix) {// fast read -only iteration over matrix rows

for (double value : row) { // fast read -only iteration of values in row

System.out.print(' ');

System.out.print(value);

}

System.out.println ();

}

}

static double [][] multiply(double [][] a, double [][] b) {

int aColumns = a[0]. length;

int bColumns = b[0]. length;

double [][] result = new double[a.length ][ bColumns ]; // allocate and initialize all values to 0

for (int i = 0; i < a.length; i++) { // iterate over the rows of a

for (int j = 0; j < bColumns; j++) { // iterate over the columns of b

for (int k = 0; k < aColumns; k++) { // iterate over the columns of A

result[i][j] += a[i][k] * b[k][j];

}

}

}

return result; // return result

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

double [][] a = { { 4d, 3d }, { 2d, 1d } }; // allocate and initialize first matrix

double [][] b = { { -0.5d, 1.5d }, { 1d, -2d } }; // allocate and initialize second matrix

print(a, "a");// call a procedure printing a //$NON -NLS -1$

print(b, "b");// call a procedure printing b //$NON -NLS -1$

print(multiply(a,b), "a*b");// call a procedure printing the result of the multiplication //$NON -NLS -1$

}

}
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Structuring Programs: Methods in Different Classes

• A class can have (almost) arbitrarily many methods.

• But if we have many methods in one class, the code gets much harder
to understand.

• Actually, we can also call methods specified in another class!

• In this case, we cannot just use the name of the method, but need to
specify “ canonical-name-of-class.name-of-method ” instead
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Using Methods from another Class

Listing: Using Methods from another Class: Matrices

/** An example program printing and multiplying matrices

* using our other program MultiplyMatrices. */

public class MultiplyMatricesUsingMethodsFromOtherClass {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

double [][] a = { { 4d, 3d }, { 2d, 1d } }; // allocate and initialize first matrix

double [][] b = { { -0.5d, 1.5d }, { 1d, -2d } }; // allocate and initialize second matrix

MultiplyMatrices.print(a, "a");// call a procedure printing a //$NON -NLS -1$

MultiplyMatrices.print(b, "b");// call a procedure printing b //$NON -NLS -1$

MultiplyMatrices.print(MultiplyMatrices.multiply(a,b), "a*b");// multiply and print //$NON -NLS -1$

}

}
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Example: The (Java-Provided) Class Math

Listing: Using the Static Methods of the (Java-Provided) Class Math

/** An example program using the methods of java.lang.Math */

public class MathMethods {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(Math.exp(Math.sin (6)));

System.out.println(Math.atan(Math.tan (1)));

System.out.println(Math.hypot(3, 4));

}

}
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• You can define multiple methods of the same name
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• You can define multiple methods of the same name
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signature (since we know which one is called because of the
prepended class name)

• If they are in the same class, they need to have different parameter
types

• You cannot have two methods with the same name and same
parameter types in the same class, even if the parameter names are
different

• You cannot have two methods with the same name and parameter
types, even if the method’s return type is different
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Example: Two Methods with Same Name

Listing: Two Methods with Same Name but Different Parameters

/** An example program specifying two methods of the same name

* (but , of course , with different parameters) */

public class MethodsOfSameName {

// compute lnnumber

static double log(final double number) {

return Math.log(number);

}

// compute logbasenumber

static double log(final double base , final double number) {

return log(number) / log(base);

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(log(8d)); // ln8
System.out.println(log(2d, 8d)); // log28

}

}
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Recursion

• We can put arbitrary code inside a method.
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Recursion

• We can put arbitrary code inside a method.

• We can also call other methods from within a method (obviously,
think System.out.print )

• We can also call the method itself, which is called recursion

• If a method calls itself, we need to make sure that this does not
repeat infinitely
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Recursion: The Fibonacci Numbers

Listing: Recursion: The Fibonacci Numbers F (i) = F (i− 1) + F (i− 2), stopping
condition F (1) = F (2) = 1

/** An example program computing Fibonacci numbers F (n) = F (n− 1) + F (n− 2) with

* F (1) = F (2) = 1 recursively. */

public class FibonacciRecursive {

/** Recursively compute the ith Fibonacci number

* @param i the index of the number to compute

* @return ith Fibonacci number

*/

static long F(int i) {

if((i == 1L) || (i == 2L)) {

return 1L; // take care of cases F (1) and F (2)
}

return F(i-1) + F(i-2); // recurse

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for(int i = 1; i <= 40; i++){ // print the first 40 Fibonacci numbers

System.out.print("F("); //$NON -NLS -1$

System.out.print(i);

System.out.print(") = "); //$NON -NLS -1$

System.out.println(F(i));

}

}

}
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Summary

• We have learned what static methods are.

• We have learned how to define them, how to call them, and how to
implement them.

• One class can have (almost) arbitrarily many methods.

• We have learned that we can put methods into different classes and
call methods from different classes.

• We have even used recursion.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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