
OOP with Java
10. Static Methods

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Method Definitions and Implementations

3 Structuring Programs: Methods in Different Classes

4 Recursion

5 Summary

OOP with Java Thomas Weise 2/17

w
e
b
s
it
e

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

• You already know two methods

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

• You already know two methods:
• the public static final void main(... method of your programs

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

• You already know two methods:
• the public static final void main(... method of your programs

• things like System.out.println(...

OOP with Java Thomas Weise 3/17

(Static) Methods

• Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

• Having multiple copies of the same code is a very bad software design:
• if the code needs to be changed, all copies need to be changed
• if there is an error, there are multiple errors that need to be fixed

• We want one only copy of the code and “invoke” it from different
places

• This can be done by putting it into a method

• You already know two methods:
• the public static final void main(... method of your programs

• things like System.out.println(...

• (static methods are methods that belong to a class, there are also
other types of methods, but we will ignore this for now)

OOP with Java Thomas Weise 3/17

Method Signature

• A method has

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”, which
• return a double as its result

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”, which
• return a double as its result and
• takes three parameters

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”, which
• return a double as its result and
• takes three parameters:

1 a double value called x0

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”, which
• return a double as its result and
• takes three parameters:

1 a double value called x0 ,

2 a double value called v0

OOP with Java Thomas Weise 4/17

Method Signature

• A method has
• a name
• a list of parameters, where each parameter has a type and a name

(similar to variable declarations)
• a return type (such methods are called functions) or void if it returns

nothing (such methods are called procedures)

• Example: static double position(double x0, double v0, double t)

declares
• a static method named “position”, which
• return a double as its result and
• takes three parameters:

1 a double value called x0 ,

2 a double value called v0 , and

3 a double value called t

OOP with Java Thomas Weise 4/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

OOP with Java Thomas Weise 5/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position

OOP with Java Thomas Weise 5/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides

1 x0=1.8d

OOP with Java Thomas Weise 5/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides

1 x0=1.8d ,

2 v0=10d

OOP with Java Thomas Weise 5/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides

1 x0=1.8d ,

2 v0=10d , and

3 t=0.5d

OOP with Java Thomas Weise 5/17

Calling Methods

• Methods can be called by writing their name and providing the
necessary parameters

• static double position(double x0, double v0, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides

1 x0=1.8d ,

2 v0=10d , and

3 t=0.5d

• If a method has a return type T , this method can be used as an
expression of type T

OOP with Java Thomas Weise 5/17

Method Implementation

• The code of the method follows after the signature inside {..}

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

• If the method has a return type T , then its last instruction must be
return <expression of type T>;

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

• If the method has a return type T , then its last instruction must be
return <expression of type T>;

• Actually, return can be called anywhere in the method, if it is called,
the method exists

OOP with Java Thomas Weise 6/17

Method Implementation

• The code of the method follows after the signature inside {..} , just
like in the main methods we did so far

• Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

• If the method has a return type T , then its last instruction must be
return <expression of type T>;

• Actually, return can be called anywhere in the method, if it is called,
the method exists

• Methods without return value can also use return to exit, but they
cannot specify a expression whose result is to be returned.

OOP with Java Thomas Weise 6/17

The Vertical Ball Throw, now as Function

Listing: The Vertical Ball Throw, now as Function

/**

* A ball is thrown vertically upwards into the air by a 1.8m tall person

* with velocity 10m/s. Where is it after t = 0, 0.2, . . . , 2.2 seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrowFunction {

/** Compute the position of a ball (good style: these comments document

* what the method does)

* @param x0 the height of the thrower , i.e., the initial vertical position

* @param v0 the vertical upward velocity with which the ball is thrown

* @param t the time at which we want to get the position x(t)
* @return the position x(t) of the ball at time step t

*/

static double position(double x0, double v0, double t) {

return x0 + (v0 * t) - 0.5d * 9.80665d * t * t;

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for (int i = 0; i < 12; i++) { // using an integer for counting

System.out.println(position (1.8d, 10d, 0.2d * i)); // prints the current position

}

}

}

OOP with Java Thomas Weise 7/17

Multiplying and Printing Matrices

Listing: Multiplying and Printing Matrices

/** An example program printing and multiplying matrices. */

public class MultiplyMatrices {

static void print(double [][] matrix , String name) {

System.out.println("Matrix " + name + ':'); //$NON -NLS -1$

for (double [] row : matrix) {// fast read -only iteration over matrix rows

for (double value : row) { // fast read -only iteration of values in row

System.out.print(' ');

System.out.print(value);

}

System.out.println ();

}

}

static double [][] multiply(double [][] a, double [][] b) {

int aColumns = a[0]. length;

int bColumns = b[0]. length;

double [][] result = new double[a.length][bColumns]; // allocate and initialize all values to 0

for (int i = 0; i < a.length; i++) { // iterate over the rows of a

for (int j = 0; j < bColumns; j++) { // iterate over the columns of b

for (int k = 0; k < aColumns; k++) { // iterate over the columns of A

result[i][j] += a[i][k] * b[k][j];

}

}

}

return result; // return result

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

double [][] a = { { 4d, 3d }, { 2d, 1d } }; // allocate and initialize first matrix

double [][] b = { { -0.5d, 1.5d }, { 1d, -2d } }; // allocate and initialize second matrix

print(a, "a");// call a procedure printing a //$NON -NLS -1$

print(b, "b");// call a procedure printing b //$NON -NLS -1$

print(multiply(a,b), "a*b");// call a procedure printing the result of the multiplication //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 8/17

Structuring Programs: Methods in Different Classes

• A class can have (almost) arbitrarily many methods.

OOP with Java Thomas Weise 9/17

Structuring Programs: Methods in Different Classes

• A class can have (almost) arbitrarily many methods.

• But if we have many methods in one class, the code gets much harder
to understand.

OOP with Java Thomas Weise 9/17

Structuring Programs: Methods in Different Classes

• A class can have (almost) arbitrarily many methods.

• But if we have many methods in one class, the code gets much harder
to understand.

• Actually, we can also call methods specified in another class!

OOP with Java Thomas Weise 9/17

Structuring Programs: Methods in Different Classes

• A class can have (almost) arbitrarily many methods.

• But if we have many methods in one class, the code gets much harder
to understand.

• Actually, we can also call methods specified in another class!

• In this case, we cannot just use the name of the method, but need to
specify “ canonical-name-of-class.name-of-method ” instead

OOP with Java Thomas Weise 9/17

Using Methods from another Class

Listing: Using Methods from another Class: Matrices

/** An example program printing and multiplying matrices

* using our other program MultiplyMatrices. */

public class MultiplyMatricesUsingMethodsFromOtherClass {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

double [][] a = { { 4d, 3d }, { 2d, 1d } }; // allocate and initialize first matrix

double [][] b = { { -0.5d, 1.5d }, { 1d, -2d } }; // allocate and initialize second matrix

MultiplyMatrices.print(a, "a");// call a procedure printing a //$NON -NLS -1$

MultiplyMatrices.print(b, "b");// call a procedure printing b //$NON -NLS -1$

MultiplyMatrices.print(MultiplyMatrices.multiply(a,b), "a*b");// multiply and print //$NON -NLS -1$

}

}

OOP with Java Thomas Weise 10/17

Example: The (Java-Provided) Class Math

Listing: Using the Static Methods of the (Java-Provided) Class Math

/** An example program using the methods of java.lang.Math */

public class MathMethods {

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(Math.exp(Math.sin (6)));

System.out.println(Math.atan(Math.tan (1)));

System.out.println(Math.hypot(3, 4));

}

}

OOP with Java Thomas Weise 11/17

Methods of the Same Name

• You can define multiple methods of the same name

OOP with Java Thomas Weise 12/17

Methods of the Same Name

• You can define multiple methods of the same name

• If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

OOP with Java Thomas Weise 12/17

Methods of the Same Name

• You can define multiple methods of the same name

• If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

• If they are in the same class, they need to have different parameter
types

OOP with Java Thomas Weise 12/17

Methods of the Same Name

• You can define multiple methods of the same name

• If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

• If they are in the same class, they need to have different parameter
types

• You cannot have two methods with the same name and same
parameter types in the same class, even if the parameter names are
different

OOP with Java Thomas Weise 12/17

Methods of the Same Name

• You can define multiple methods of the same name

• If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

• If they are in the same class, they need to have different parameter
types

• You cannot have two methods with the same name and same
parameter types in the same class, even if the parameter names are
different

• You cannot have two methods with the same name and parameter
types, even if the method’s return type is different

OOP with Java Thomas Weise 12/17

Example: Two Methods with Same Name

Listing: Two Methods with Same Name but Different Parameters

/** An example program specifying two methods of the same name

* (but , of course , with different parameters) */

public class MethodsOfSameName {

// compute lnnumber

static double log(final double number) {

return Math.log(number);

}

// compute logbasenumber

static double log(final double base , final double number) {

return log(number) / log(base);

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

System.out.println(log(8d)); // ln8
System.out.println(log(2d, 8d)); // log28

}

}

OOP with Java Thomas Weise 13/17

Recursion

• We can put arbitrary code inside a method.

OOP with Java Thomas Weise 14/17

Recursion

• We can put arbitrary code inside a method.

• We can also call other methods from within a method (obviously,
think System.out.print)

OOP with Java Thomas Weise 14/17

Recursion

• We can put arbitrary code inside a method.

• We can also call other methods from within a method (obviously,
think System.out.print)

• We can also call the method itself, which is called recursion

OOP with Java Thomas Weise 14/17

Recursion

• We can put arbitrary code inside a method.

• We can also call other methods from within a method (obviously,
think System.out.print)

• We can also call the method itself, which is called recursion

• If a method calls itself, we need to make sure that this does not
repeat infinitely

OOP with Java Thomas Weise 14/17

Recursion: The Fibonacci Numbers

Listing: Recursion: The Fibonacci Numbers F (i) = F (i− 1) + F (i− 2), stopping
condition F (1) = F (2) = 1

/** An example program computing Fibonacci numbers F (n) = F (n− 1) + F (n− 2) with

* F (1) = F (2) = 1 recursively. */

public class FibonacciRecursive {

/** Recursively compute the ith Fibonacci number

* @param i the index of the number to compute

* @return ith Fibonacci number

*/

static long F(int i) {

if((i == 1L) || (i == 2L)) {

return 1L; // take care of cases F (1) and F (2)
}

return F(i-1) + F(i-2); // recurse

}

/** The main routine

* @param args

* we ignore this parameter */

public static final void main(String [] args) {

for(int i = 1; i <= 40; i++){ // print the first 40 Fibonacci numbers

System.out.print("F("); //$NON -NLS -1$

System.out.print(i);

System.out.print(") = "); //$NON -NLS -1$

System.out.println(F(i));

}

}

}

OOP with Java Thomas Weise 15/17

Summary

• We have learned what static methods are.

• We have learned how to define them, how to call them, and how to
implement them.

• One class can have (almost) arbitrarily many methods.

• We have learned that we can put methods into different classes and
call methods from different classes.

• We have even used recursion.

OOP with Java Thomas Weise 16/17

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 17/17

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	(Static) Methods

	Method Definitions and Implementations
	Method Signature
	Calling Methods
	Method Implementation
	The Vertical Ball Throw, now as Function
	Multiplying and Printing Matrices

	Structuring Programs: Methods in Different Classes
	Structuring Programs: Methods in Different Classes
	Using Methods from another Class
	Example: The (Java-Provided) Class Math
	Methods of the Same Name
	Example: Two Methods with Same Name

	Recursion
	Recursion
	Recursion: The Fibonacci Numbers

	Summary
	Summary

	Presentation End

