LR B

HEFEI UNIVERSITY

OOP with Java
10. Static Methods

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

B LR
http://iao.hfuu.edu.cn

& he
i HALA

AR R /2R
HEARA

& A AEACEE 7T
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction
@ Method Definitions and Implementations
@ Structuring Programs: Methods in Different Classes

@ Recursion

@ Summary

OOP with Java Thomas Weise

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

e Having multiple copies of the same code is a very bad software design

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)

e Having multiple copies of the same code is a very bad software design:
o if the code needs to be changed, all copies need to be changed

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:

o if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed

e We want one only copy of the code and “invoke” it from different
places

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:
o if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed
e We want one only copy of the code and “invoke” it from different
places

e This can be done by putting it into a method

(Static) Methods %()

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:
e if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed
e We want one only copy of the code and “invoke” it from different
places
e This can be done by putting it into a method
e You already know two methods

OOP with Java Thomas Weise 3/17

(Static) Methods %()

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:
e if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed
e We want one only copy of the code and “invoke” it from different
places
e This can be done by putting it into a method
e You already know two methods:
e the public static final void main(... method of your programs

OOP with Java Thomas Weise 3/17

(Static) Methods §\

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:

e if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed

e We want one only copy of the code and “invoke” it from different
places
e This can be done by putting it into a method
e You already know two methods:
e the public static final void main(... method of your programs

e things like System.out.println(...

OOP with Java Thomas Weise 3/17

(Static) Methods §\

1AQ

e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:

e if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed

e We want one only copy of the code and “invoke” it from different
places
e This can be done by putting it into a method
e You already know two methods:
e the public static final void main(... method of your programs

e things like System.out.println(...

e (static methods are methods that belong to a class, there are also
other types of methods, but we will ignore this for now)

OOP with Java Thomas Weise 3/17

e A method has

e A method has
® a3 name

e A method has
® a name
o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

¢ A method has
e a name
o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)
e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares

e a static method named “position”

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares

e a static method named “position”, which
e return a double as its result

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares

e a static method named “position”, which
e return a double as its result and
o takes three parameters

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares

e a static method named “position”, which
e return a double as its result and
o takes three parameters:

@ 2 double value called x0

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares
e a static method named “position”, which

e return a double as its result and
o takes three parameters:

@ a2 double value called x0 ,
@® a double value called vO

e A method has

e a name

o a list of parameters, where each parameter has a type and a name
(similar to variable declarations)

e a return type (such methods are called functions) or void if it returns
nothing (such methods are called procedures)

° Example: static double position(double x0, double v0O, double t)
declares
e a static method named “position”, which

e return a double as its result and
o takes three parameters:

@ a2 double value called x0 ,
® a double value called vO , and
® a double value called t

e Methods can be called by writing their name and providing the
necessary parameters

e Methods can be called by writing their name and providing the
necessary parameters

® static double position(double x0, double vO, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position

e Methods can be called by writing their name and providing the

necessary parameters
® static double position(double x0, double vO, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and

provides
® =x0-1.8d

e Methods can be called by writing their name and providing the
necessary parameters
® static double position(double x0, double vO, double t) can be
called as position(0.9d*2, 10d, 0.5d) which invokes position and
provides
® =x0-1.8d,
@® vo=10d

e Methods can be called by writing their name and providing the
necessary parameters
® static double position(double x0, double vO, double t) can be
called as position(0.9d*2, 10d, 0.5d) which invokes position and
provides
® =x0-1.8d,
® vo=104, and
® t=0.5d

e Methods can be called by writing their name and providing the
necessary parameters
® static double position(double x0, double vO, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and
provides
® x0=1.8d,
® vo=104, and
©® t=0.5d
o If a method has a return type T, this method can be used as an
expression of type T

e The code of the method follows after the signature inside {..}

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

o If the method has a return type T, then its last instruction must be

return <expression of type T>;

Method Implementation %}

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

o If the method has a return type T, then its last instruction must be

return <expression of type T>;

e Actually, return can be called anywhere in the method, if it is called,
the method exists

OOP with Java Thomas Weise 6/17

Method Implementation §\

e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

o If the method has a return type T, then its last instruction must be

return <expression of type T>;

e Actually, return can be called anywhere in the method, if it is called,
the method exists

e Methods without return value can also use return to exit, but they
cannot specify a expression whose result is to be returned.

OOP with Java Thomas Weise 6/17

The Vertical Ball Throw, now as Function %\’

1AQ

The Vertical Ball Throw, now as Function

public class VerticalBallThrowFunction {

static double position(double x0, double v0, double t) {
return x0 + (vO * t) - 0.5d * 9.80665d * t * t;

public static final void main(String[] args) {
for (dint i = 0; i < 12; i++) {
System.out.println(position(1.8d, 10d, 0.2d * i));
¥
¥
¥

OOP with Java Thomas Weise 7/17

Multiplying and Printing Matrices

public class MultiplyMatrices {

static void print(double (][] matrix, String name) {
System.out.printin("Matrix, " + name + ':
for (double[] row : matrix) {
for (double value : row) {
System.out.print(',');
System.out.print (value);
b
System.out.println();

b3
}

static double[] (] multiply(double(J(] a, double[J[] b) {
int aColumns = a[0].length;
int bColumns = b[0].length;

double[][] result = new doublela.length][bColumns];

for (int i = 0; i < a.lemgth; i++) {
for (int j = 0; j < bColumms; j++) {

for (int k = 0; k < aColumms; k++) {

result[41[3] += ali][k] * bIKI[51;

b
b3

return result;

public static final void main(Stringl(] args) {
double[1[] a = { { 4d, 3 }, { 24, 1d } };
double[J[] b = { { -0.5d, 1.6d }, { 1d, -2d } };

print(a, "a");
print (b, "b");
print (multiply(a,b), "a+b");
3
3}

OOP with Java Thomas Weise 8/17

e A class can have (almost) arbitrarily many methods.

e A class can have (almost) arbitrarily many methods.

e But if we have many methods in one class, the code gets much harder
to understand.

e A class can have (almost) arbitrarily many methods.

e But if we have many methods in one class, the code gets much harder
to understand.

e Actually, we can also call methods specified in another class!

A class can have (almost) arbitrarily many methods.

But if we have many methods in one class, the code gets much harder
to understand.

Actually, we can also call methods specified in another class!

In this case, we cannot just use the name of the method, but need to
specify “ canonical-name-of-class.name-of-method " instead

Using Methods from another Class

ther Class: Matrices

public class MultiplyMatricesUsingMethodsFromOtherClass {

public static final void maim(Strimg[] azgs) L
double[1[] a = { { 4d, 3d }, { 2d, 1d } }; //
double[1[] b = { { -0.5d, 1.5d }, { 1d, -2d } };

MultiplyMatrices.print(a, "a");
MultiplyMatrices.print(b, "b"); a nting /
MultiplyMatrices. prlnt(MnltlplyMatrlces mult)ply(a b) "axb");/

OOP with Java Thomas Weise 10/17

Example: The (Java-Provided) Class tath %\’

1AQ

Listing: Using the Static Methods of the (Java-Provided) Class Math

public class MathMethods {

public static final void main(String[] args) {
System.out.println(Math.exp(Math.sin(6)));
System.out.println(Math.atan(Math.tan(1)));
System.out.println(Math.hypot (3, 4));

}

OOP with Java Thomas Weise 11/17

e You can define multiple methods of the same name

e You can define multiple methods of the same name

o If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

e You can define multiple methods of the same name

o If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

o If they are in the same class, they need to have different parameter
types

Methods of the Same Name §\

e You can define multiple methods of the same name

o If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

o If they are in the same class, they need to have different parameter
types
e You cannot have two methods with the same name and same

parameter types in the same class, even if the parameter names are
different

OOP with Java Thomas Weise 12/17

Methods of the Same Name §\

You can define multiple methods of the same name

If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

If they are in the same class, they need to have different parameter
types

You cannot have two methods with the same name and same
parameter types in the same class, even if the parameter names are
different

You cannot have two methods with the same name and parameter
types, even if the method's return type is different

OOP with Java Thomas Weise 12/17

Example: Two Methods with Same Name

Listing: Two Methods with Same Name but Different Parameters

public class MethodsOfSameName {

static double log(final double number) {
return Math.log(number) ;

}

static double log(final double base, final double number) {
return log(number) / log(base);
}

public static final void main(String[] args) {
System.out.println(log(8d));
System.out.println(log(2d, 8d));

}

OOP with Java Thomas Weise 13/17

e We can put arbitrary code inside a method.

e We can put arbitrary code inside a method.

e We can also call other methods from within a method (obviously,
think System.out.print)

e We can put arbitrary code inside a method.

e We can also call other methods from within a method (obviously,
think System.out.print)

e We can also call the method itself, which is called recursion

e We can put arbitrary code inside a method.

We can also call other methods from within a method (obviously,
think System.out.print)

We can also call the method itself, which is called recursion

If @ method calls itself, we need to make sure that this does not
repeat infinitely

Recursion: The Fibonacci Numbers §\

Listing: Recursion: The Fibonacci Numbers F'(i) = F(i — 1) + F (i — 2), stopping

condition F(1) = F(2) =1

public class FibonacciRecursive {

static long F(int i) {
if ((i == 1L) || (i == 2L)) {
return 1L;
}
return F(i-1) + F(i-2);
¥

public static final void main(String[] args) {
for(int i = 1; i <= 40; i++){
System.out.print ("F(");
System.out.print (i);
System.out.print (") =,");
System.out.println(F(i));
}
¥
}

OOP with Java Thomas Weise 15/17

e We have learned what static methods are.

e We have learned how to define them, how to call them, and how to
implement them.

¢ One class can have (almost) arbitrarily many methods.

e We have learned that we can put methods into different classes and
call methods from different classes.

e We have even used recursion.

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	(Static) Methods

	Method Definitions and Implementations
	Method Signature
	Calling Methods
	Method Implementation
	The Vertical Ball Throw, now as Function
	Multiplying and Printing Matrices

	Structuring Programs: Methods in Different Classes
	Structuring Programs: Methods in Different Classes
	Using Methods from another Class
	Example: The (Java-Provided) Class Math
	Methods of the Same Name
	Example: Two Methods with Same Name

	Recursion
	Recursion
	Recursion: The Fibonacci Numbers

	Summary
	Summary

	Presentation End

