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e Sometimes, a program uses the same code, but at different places (so
we cannot use loops)
e Having multiple copies of the same code is a very bad software design:

e if the code needs to be changed, all copies need to be changed
e if there is an error, there are multiple errors that need to be fixed

e We want one only copy of the code and “invoke” it from different
places
e This can be done by putting it into a method
e You already know two methods:
e the public static final void main(... method of your programs

e things like System.out.println(...

e ( static methods are methods that belong to a class, there are also
other types of methods, but we will ignore this for now)
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e Methods can be called by writing their name and providing the
necessary parameters
® static double position(double x0, double vO, double t) can be

called as position(0.9d*2, 10d, 0.5d) which invokes position and
provides
® x0=1.8d,
® vo=104, and
©® t=0.5d
o If a method has a return type T, this method can be used as an
expression of type T
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e The code of the method follows after the signature inside {..}, just
like in the main methods we did so far

e Inside the code, you can access the method parameters as if they
were local variables, just like we did with args in our main methods

o If the method has a return type T, then its last instruction must be

return <expression of type T>;

e Actually, return can be called anywhere in the method, if it is called,
the method exists

e Methods without return value can also use return to exit, but they
cannot specify a expression whose result is to be returned.
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The Vertical Ball Throw, now as Function %\’
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The Vertical Ball Throw, now as Function

public class VerticalBallThrowFunction {

static double position(double x0, double v0, double t) {
return x0 + (vO * t) - 0.5d * 9.80665d * t * t;

public static final void main(String[] args) {
for (dint i = 0; i < 12; i++) {
System.out.println(position(1.8d, 10d, 0.2d * i));
¥
¥
¥
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Multiplying and Printing Matrices

public class MultiplyMatrices {

static void print(double (][] matrix, String name) {
System.out.printin("Matrix, " + name + ':
for (double[] row : matrix) {
for (double value : row) {
System.out.print(',');
System.out.print (value);
b
System.out.println();

b3
}

static double[] (] multiply(double(J(] a, double[J[] b) {
int aColumns = a[0].length;
int bColumns = b[0].length;

double[][] result = new doublela.length][bColumns];

for (int i = 0; i < a.lemgth; i++) {
for (int j = 0; j < bColumms; j++) {

for (int k = 0; k < aColumms; k++) {

result[41[3] += ali][k] * bIKI[51;

b
b3

return result;

public static final void main(Stringl(] args) {
double[1[] a = { { 4d, 3 }, { 24, 1d } };
double[J[] b = { { -0.5d, 1.6d }, { 1d, -2d } };

print(a, "a");
print (b, "b");
print (multiply(a,b), "a+b");
3
3}
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A class can have (almost) arbitrarily many methods.

But if we have many methods in one class, the code gets much harder
to understand.

Actually, we can also call methods specified in another class!

In this case, we cannot just use the name of the method, but need to
specify “ canonical-name-of-class.name-of-method " instead




Using Methods from another Class

ther Class: Matrices

public class MultiplyMatricesUsingMethodsFromOtherClass {

public static final void maim(Strimg[] azgs) L
double[1[] a = { { 4d, 3d }, { 2d, 1d } }; //
double[1[] b = { { -0.5d, 1.5d }, { 1d, -2d } };

MultiplyMatrices.print(a, "a");
MultiplyMatrices.print(b, "b"); a nting /
MultiplyMatrices. prlnt(MnltlplyMatrlces mult)ply(a b) "axb");/
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Example: The (Java-Provided) Class tath %\’

1AQ

Listing: Using the Static Methods of the (Java-Provided) Class Math

public class MathMethods {

public static final void main(String[] args) {
System.out.println(Math.exp(Math.sin(6)));
System.out.println(Math.atan(Math.tan(1)));
System.out.println(Math.hypot (3, 4));

}
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You can define multiple methods of the same name

If they are in different classes, they can have the exactly same
signature (since we know which one is called because of the
prepended class name)

If they are in the same class, they need to have different parameter
types

You cannot have two methods with the same name and same
parameter types in the same class, even if the parameter names are
different

You cannot have two methods with the same name and parameter
types, even if the method's return type is different
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Example: Two Methods with Same Name

Listing: Two Methods with Same Name but Different Parameters

public class MethodsOfSameName {

static double log(final double number) {
return Math.log(number) ;

}

static double log(final double base, final double number) {
return log(number) / log(base);
}

public static final void main(String[] args) {
System.out.println(log(8d));
System.out.println(log(2d, 8d));

}
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e We can put arbitrary code inside a method.

We can also call other methods from within a method (obviously,
think System.out.print)

We can also call the method itself, which is called recursion

If @ method calls itself, we need to make sure that this does not
repeat infinitely




Recursion: The Fibonacci Numbers §\

Listing: Recursion: The Fibonacci Numbers F'(i) = F(i — 1) + F (i — 2), stopping

condition F(1) = F(2) =1

public class FibonacciRecursive {

static long F(int i) {
if ((i == 1L) || (i == 2L)) {
return 1L;
}
return F(i-1) + F(i-2);
¥

public static final void main(String[] args) {
for(int i = 1; i <= 40; i++){
System.out.print ("F(");
System.out.print (i);
System.out.print (") =,");
System.out.println(F(i));
}
¥
}
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e We have learned what static methods are.

e We have learned how to define them, how to call them, and how to
implement them.

¢ One class can have (almost) arbitrarily many methods.

e We have learned that we can put methods into different classes and
call methods from different classes.

e We have even used recursion.




il
Thank you
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