LR B

HEFEI UNIVERSITY

OOP with Java
9. Arrays

Thomas Weise - 7 &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | & /2% mit#K R /@2 R

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST &K 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Allocating and Accessing

® Length of Array

@ Iterating over Array Elements
@ Initializing During Construction

@ Multi-Dimensional Arrays

@ Summary

OOP with Java Thomas Weise

e In the Lesson 8: Loops, we learned how to deal with repeated code,
by using loops

e In the Lesson 8: Loops, we learned how to deal with repeated code,
by using loops

e What if we have repeated variables?

e In the Lesson 8: Loops, we learned how to deal with repeated code,
by using loops
e What if we have repeated variables?

e We use arrays!

e An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

e An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

e Arrays are declared as type[] variableName , where type is the
element type can be any type or class

e An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

e Arrays are declared as type[] variableName , where type is the
element type can be any type or class

e New arrays can be allocated using variableName = new type[length] ,

which creates an array of length 1length

Allocating and Accessing §\

An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

Arrays are declared as type[] variableName , where type is the
element type can be any type or class

New arrays can be allocated using variableName = new type[length] ,
which creates an array of length 1length

The elements of the array can be accessed via variableName[index] ,

where index is a O-based index with a valid range from 0 to
length-1

OOP with Java Thomas Weise 4/22

Allocating and Accessing §\

1AQ

An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

Arrays are declared as type[] variableName , where type is the
element type can be any type or class

New arrays can be allocated using variableName = new type[length] ,
which creates an array of length 1length

The elements of the array can be accessed via variableName[index] ,

where index is a O-based index with a valid range from 0 to
length-1

variableName[index] can be treated as a normal variable of type
type with read and write (assignment) access

OOP with Java Thomas Weise 4/22

Allocating and Accessing §\

1AQ

e An array is basically a (fixed-length) sequence of variables of the same
type which can be accessed using an integer index (starting at 0)

e Arrays are declared as type[] variableName , where type is the
element type can be any type or class

e New arrays can be allocated using variableName = new type[length] ,
which creates an array of length 1length

e The elements of the array can be accessed via variableName[index] ,
where index is a O-based index with a valid range from 0 to
length-1

® variableName[index] can be treated as a normal variable of type
type with read and write (assignment) access

e In lesson Lesson 25: Exceptions, we will learn what happens if you use
a value outside of the (... length-1 range as array index.

OOP with Java Thomas Weise 4/22

String Array %\’

Listi example for a String array

public class StringArrayNewAccess {

public static final void main(String[] args) {
String[] array = new Stringl[4];

array [0] = "helloy";
array [1] = "world";
array[2] = ", it'sy";
array [3] = "me!

System.out.print (array [0]);
System.out.print (array [1]);
System.out.print (array[2]);
System.out.println(array[3]);

array [3] = "NigHao,";

System.out.print (array [3]);
System.out.print (array [1]);
System.out.print (array [2]);
System.out.print (array [0]);

OOP with Java Thomas Weise 5/22

Allocating and lterating over a Array

Listing: An example for iterating over a String array

ample for allocatin ind using a string arrays and iterating er th

public class StringArrayNewIterate {

* ignore this parameter for now */
public static final void main(String[] args) {
String[] array = new Stringl4]l; // create an string array ngth 4
array [0] = "hello,";
array [1] = "world"; /
array[2] = ", it's."
array[3] = "me!";
for (int i = 0; i < 4; i++) {
System.out.print (array[i]);
} // prints "hello ld, it's
¥
}

OOP with Java Thomas Weise 6/22

Allocating and lterating over a Integer Array

Listin n example for an integer arr.

public class IntArrayNewIterate {

public static final void main(String[] args) {
int [] array = new int[5];

System.out.print("Initially, all elementsyare 0:");
for (int i = 0; i < 5; i++) {
System.out.print('y');
System.out.print (array[il);
¥

System.out.println();

array [4] H

array [2] 3

array [0] 3

array [1] H

System.out.print ("Now,some elements areyset: ") ;

for (int i = 0; i < 5; i++) {
System.out.print('y');
System.out.print (array[il);

¥

I

5
3
1
2
P

}

OOP with Java Thomas Weise 7/22

Allocating an Array with Length Stored in Variable

public class CharArrayAllocateWithLengthInVariable {

GReTe G
public static flnal void maln(strlng[] args) {
int neededLength = 'Z' - 'A' + 1; yes, this
char [] AtoZ; no e hou
AtoZ = new char[needdeength]
char letter = 'A'; // set etter [A

for (int i = 0; i < neededl.ength, 1++) {
AtoZ[i] = letter++; //
¥

for (int i = 0; i < neededLength; 1++) {
System.out.print (AtoZ[il); 2

OOP with Java Thomas Weise

8/22

e We can read the length of an array array via array.length

e We can read the length of an array array via array.length

e Valid indexes to access the elements of an array array are from 0 to

array.length-1

Array Length

example for getting the len

public class IntArrayNewLengthIterate {

public static final void main(String[] args) {

¥
}

int [] array = new int[5];

System.out.print ("Initially,,all elements are, 0:");
for (int i = 0; i < array.length; i++) {
System.out.print('y');
System.out.print (array[il);
}

System.out.println();

array[4] = &
array[2] = 3
array[0] = 1
=2

)2

array [1] H
System.out.print ("Now,some elements areyset: ") ;
for (int i 0; i < array.length; i++) {
System.out.print('y');
System.out.print (array[il);

¥

OOP with Java Thomas Weise

10/22

Iterating Backwards

public class IntArrayIterateBackwards {

public static final void main(String[] args) {
int [] array = new int[5];

System.out.print ("Initially,,all elements are, 0:");
for (int i = 0; i < array.length; i++) {
System.out.print('y');
System.out.print (array[il);
}

System.out.println();

array [4] H

array [2] 3

array [0] 3

array [1] H

System.out.print ("Now,some elements areyset: ") ;

for (int i = array.length; (--i) >= 0;) {
System.out.print('y');
System.out.print (array[il);

¥

I

5
3
1
2
P

}

OOP with Java Thomas Weise 11/22

e We already know one way to iterate over the elements of an array a:
for(int i=0; i<a.length; i++){ System.out.print(a[il); }

e We already know one way to iterate over the elements of an array a:
for(int i=0; i<a.length; i++){ System.out.print(al[il); }

e We can also do it the other way around, which is even slightly faster:
for(int i=a.length; (--i)>= 0;){ System.out.print(a[il); } , which

is slightly faster since --i is compared with constant 0 instead of
array.length

Iterating over Array Elements %()

e We already know one way to iterate over the elements of an array a:
for(int i=0; i<a.length; i++){ System.out.print(al[il); }

e We can also do it the other way around, which is even slightly faster:
for(int i=a.length; (--i)>= 0;){ System.out.print(alil); }, which
is slightly faster since --i is compared with constant 0 instead of
array.length

e Since Java 7, there is a very fast way of read-only forward array
iteration: for(int value : a){ System.out.print(value); } .

OOP with Java Thomas Weise 12/22

Iterating over Array Elements %\

We already know one way to iterate over the elements of an array a:
for(int i=0; i<a.length; i++){ System.out.print(alil); }

We can also do it the other way around, which is even slightly faster:
for(int i=a.length; (--i)>= 0;){ System.out.print(alil); }, which
is slightly faster since --i is compared with constant 0 instead of
array.length

Since Java 7, there is a very fast way of read-only forward array
iteration: for(int value : a){ System.out.print(value); } .

This truly is read-only, changing value & la value = ... has no
effect

OOP with Java Thomas Weise 12/22

Fast Read-Only Iteration %\’

Listing: Fast Read-Only lteration over String Array

public class StringArrayNewFastIterate {

% ignore this parameter [w */
public static final void main(String[] args) {
String[] array = new Stringl4]l; // create an string array ngth 4
array [0] = "hello,";
array [1] = "world"; /
array[2] = ", it's."
array [3] = "me!"

for (String str : array) { /
System.out.print(str); /

}

¥
}

OOP with Java Thomas Weise 13/22

Fast Read-Only Iteration with Break %\’

1AQ

Listing: Fast Read-Only Iteration over int Array with Break

public c‘lass‘IntArrayNewaerateBreai({

his 1

public static final void ma:m(Str:Lng[] args) {
int [] array = new int[5]; // crea an integer ar

array [4]
array [2]
array [0]
array [1]

5;

for (int in : array) { //
if (in == 3) { //
break;

System.out.print (in);
}
¥

OOP with Java Thomas Weise 14/22

o If we create an array, its elements are set to 0 (or null in object
arrays such as String[] , but we haven't learned yet what that is. . .)

o If we create an array, its elements are set to 0 (or null in object
arrays such as String[] , but we haven't learned yet what that is. . .)

e We can also specify all the values of the array directly.

o If we create an array, its elements are set to 0 (or null in object
arrays such as String[] , but we haven't learned yet what that is. . .)

e We can also specify all the values of the array directly.
e The syntax is to use a comma-separated value list in curly braces

If we create an array, its elements are set to 0 (or null in object
arrays such as String[] , but we haven't learned yet what that is. . .)

We can also specify all the values of the array directly.

The syntax is to use a comma-separated value list in curly braces

e int[] array = {1, 2, 3, } creates an int array with the three
elements 1, 2, and 3

Initialization of Array %\’

A double array with specified initial values

public class DoubleArrayInitialization {

public static final void main(String[j args) {
double[] array = { 0.3d, 0.7d, 1.0d, 0.2d, 0.8d, 0.6d, 0.4d }; // initials
double sum = 0d;
for (double value : array) { // iterate
sum += value; // a ek

+

System.out.println(sum);// prints 4, the

OOP with Java Thomas Weise 16/22

e An array can have elements which are arrays too

e An array can have elements which are arrays too

e This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

e An array can have elements which are arrays too

e This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

o All the things discussed so far then apply fully to the
multi-dimensional arrays as well

e An array can have elements which are arrays too

e This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

o All the things discussed so far then apply fully to the
multi-dimensional arrays as well

e Creating a 3-D integer array with 3 X 4 x 5 elements is done via
int[1[1[] a = new int[3][4][5]

Multi-Dimensional Arrays %()

e An array can have elements which are arrays too
e This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

o All the things discussed so far then apply fully to the
multi-dimensional arrays as well

e Creating a 3-D integer array with 3 x 4 x 5 elements is done via
int[J[[0 a = new int[3][4][5]

e a[1][2]1[4] accesses the 5th element of the third one-dimensional
array in the second two-dimensional array stored in the
three-dimensional array

OOP with Java Thomas Weise 17/22

Multi-Dimensional Arrays %\

An array can have elements which are arrays too
This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

All the things discussed so far then apply fully to the
multi-dimensional arrays as well

Creating a 3-D integer array with 3 x 4 X 5 elements is done via
int[J[[0 a = new int[3][4][5]

a[1][2][4] accesses the 5th element of the third one-dimensional
array in the second two-dimensional array stored in the
three-dimensional array

Initialization can be done via nested braces, e.g.,
char[1[] z =4 {'a', 'b'}, {'c', 'd'}}

OOP with Java Thomas Weise 17/22

Multi-Dimensional Arrays %\

1AQ

e An array can have elements which are arrays too

e This can be used to represent 2-D matrices or data of a pixel graphic,
for instance

o All the things discussed so far then apply fully to the
multi-dimensional arrays as well

e Creating a 3-D integer array with 3 x 4 x 5 elements is done via
int[J[J [0 a = new int[3] [4] [5]

e a[1][2]1[4] accesses the 5th element of the third one-dimensional
array in the second two-dimensional array stored in the
three-dimensional array

e Initialization can be done via nested braces, e.g.,
char[1[] z = { {'a', '0'}, {'c', 'd'}}

e We can allocate and initialize each element/dimension of the array
separately as well

OOP with Java Thomas Weise 17/22

Allocation and Access of 2-D Array %\’

1AQ

Listing: Allocation and Access of 2-D Array

public class IntArray2DNewIterate {

public static final void main(String[] args) {
int [J[] array = new int[5][3];

for (int j 0; j < array[il.length; j++) {

for (int i = 0; i < array.length; i++) {
array[i]l[j] = (i * j);

for (int[] row : array) {
for (int value : row) {
System.out.print('y');
System.out.print(value);
}
System.out.println();
}
¥
¥

OOP with Java Thomas Weise 18/22

2-D Array with Different Row-Lengths

Different Row-Lengths

public class IntArray2DwithDifferentLengthRowsNewIterate {

public static final void main(String[] args) {
int [J[] array;

array = new int[5]1[];
for (int i = 0; i < array.length; i++) {
array[i] = new int[(i + 1) * 2];

for (int j = j < array[il.length; j++) {
array[i]1[j] = (i * j);
}
}

for (int[] row : array) {
for (int value : row) {
System.out.print('y');
System.out.print (value);
}
System.out.println();

OOP with Java Thomas Weise

19/22

Initializing Multi-Dimensional Arrays During Creation %\’

Listing: Initializing Multi-Dimensional Arrays During Creati

public c‘lass‘DoubleArraySDIilitialization {

public static final void main(String[] args) {
double [1[1[] array = { { { 0d, 3d }, { 1d, 2d } },
{{0.3d, 0.7d }, { 1.0d, 0.2d, 0.8d }, { 0.6d, 0.4d } } };

for (double[][] matrix : array) { // ite
System.out.println("---, strange matrix,
for (double[] row : matrix) { // itera
for (double value : row) { // erat
System.out.print(',');
System.out.print (value);
¥
System.out.println();

¥

OOP with Java Thomas Weise 20/22

Summary %ﬁ)

e We have learned how to create “repetitive data structures”: arrays.

e We have learned how to allocate arrays of fixed sizes or with sizes
provided in variables/expressions.

e We have learned how to access (read, write) array elements
e We have learned how to loop over array elements
e We have learned how to initialize arrays upon creation

e We have learned how to deal with multi-dimensional, i.e., nested
arrays

OOP with Java Thomas Weise 21/22

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Arrays

	Allocating and Accessing
	Allocating and Accessing
	String Array
	Allocating and Iterating over a Array
	Allocating and Iterating over a Integer Array
	Allocating an Array with Length Stored in Variable

	Length of Array
	Length of an Array
	Array Length
	Iterating Backwards

	Iterating over Array Elements
	Iterating over Array Elements
	Fast Read-Only Iteration
	Fast Read-Only Iteration with Break

	Initializing During Construction
	Initializing During Construction
	Initialization of Array

	Multi-Dimensional Arrays
	Multi-Dimensional Arrays
	Allocation and Access of 2-D Array
	2-D Array with Different Row-Lengths
	Initializing Multi-Dimensional Arrays During Creation

	Summary
	Summary

	Presentation End

