
OOP with Java
7. Conditionals

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 If-Then-Else

3 Switch-Case

4 Summary

OOP with Java Thomas Weise 2/12

w
e
b
s
it
e

Conditionals

• Sometimes, we need to make a decision based on the data we have

OOP with Java Thomas Weise 3/12

Conditionals

• Sometimes, we need to make a decision based on the data we have

• If a certain condition is met, we may do thing A and otherwise thing
B

OOP with Java Thomas Weise 3/12

Conditionals

• Sometimes, we need to make a decision based on the data we have

• If a certain condition is met, we may do thing A and otherwise thing
B

• In other words, we want to structure the flow of our program to
perform different actions based on the values of our variables.

OOP with Java Thomas Weise 3/12

If-Then-Else

• An if-then statement in Java has the form if (cond){ code } , where
cond is a boolean expression. code is executed if cond evaluates
to true.

OOP with Java Thomas Weise 4/12

If-Then-Else

• An if-then statement in Java has the form if (cond){ code } , where
cond is a boolean expression. code is executed if cond evaluates
to true.

• An if-then-else statement in Java has the form
if (cond){ code } else { otherwise } , where cond is a boolean

expression. code is executed if cond evaluates to true, otherwise

will be executed if cond evaluates to false.

OOP with Java Thomas Weise 4/12

If-Then-Else

• An if-then statement in Java has the form if (cond){ code } , where
cond is a boolean expression. code is executed if cond evaluates
to true.

• An if-then-else statement in Java has the form
if (cond){ code } else { otherwise } , where cond is a boolean

expression. code is executed if cond evaluates to true, otherwise

will be executed if cond evaluates to false.

• Inside the code and otherwise blocks, there can be arbitrarily many
other commands

OOP with Java Thomas Weise 4/12

If-Then-Else

• An if-then statement in Java has the form if (cond){ code } , where
cond is a boolean expression. code is executed if cond evaluates
to true.

• An if-then-else statement in Java has the form
if (cond){ code } else { otherwise } , where cond is a boolean

expression. code is executed if cond evaluates to true, otherwise

will be executed if cond evaluates to false.

• Inside the code and otherwise blocks, there can be arbitrarily many
other commands, including more conditionals. . .

OOP with Java Thomas Weise 4/12

If-Then-Else Example

Listing: Examples for if-then and if-then-else.

import java.util.Scanner; // import the scanner class: ignore this for now

/** Examples for using if-then -else */

public class HelloIfThenElse {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

System.err.println("Please enter your name: "); // <--- using System.err for status //$NON -NLS -1$

String name = scanner.nextLine (); // read next line from input and store in variable "string"

System.err.println("Please your gender [f=female , m=male]: "); // <--- using System.err for status

//$NON -NLS -1$

char gender = scanner.next().charAt (0); // read the next character from stdin

System.out.print("Hello "); //$NON -NLS -1$

if (gender == 'f') {

System.out.print("Mrs. "); //$NON -NLS -1$

} else {

if (gender == 'm') {

System.out.print("Mr. "); //$NON -NLS -1$

}

}

System.out.println(name);

}

}

OOP with Java Thomas Weise 5/12

Switch-Case

• Nesting many if-then-else can be complicated

• For cases where we make decisions based on the values of char ,
integer type, or String , we can use the switch-case statement:

Listing: The structure of switch-case

switch(expression) { // expression must be char , integer , or String -valued

case value1: {

// what to do if expression == value1

break; // exit switch -case statement

}

case value2: {

// what to do if expression == value2

// here I leave "break" away , i.e., we fall -through

}

case value3: {

// what to do if expression == value3 OR expression == value2

break; // exit switch -case statement

}

// ...

default: { // optional

// what to do if expression is different from all of the above

}

}

OOP with Java Thomas Weise 6/12

Switch-Case Example

Listing: Examples for switch-case.

import java.util.Scanner; // import the scanner class: ignore this for now

/** Examples for using if-then -else */

public class HelloSwitchCase {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

System.err.println("Please enter your name: "); // <--- using System.err for status //$NON -NLS -1$

String name = scanner.nextLine (); // read next line from input and store in variable "string"

System.err.println("Please your gender [f=female , m=male]: "); // <--- using System.err for status //$NON -NLS -1$

String gender = scanner.next(); // read the gender from stdin

switch (gender) { // choose what to do based on gender

case "f": //$NON -NLS -1$

case "F": {// we will get here if gender is either "f" or "F" //$NON -NLS -1$

System.out.print("Mrs. "); //$NON -NLS -1$

break;

}

case "m": //$NON -NLS -1$

case "M": {// we will get here if gender is either "m" or "M" //$NON -NLS -1$

System.out.print("Mr. "); //$NON -NLS -1$

break;

}

default: { // we will get here if the gender is neither "f", "F", "m", "M"

System.out.print(gender);

System.out.print(' ');

break;

}

}

System.out.println(name);

}

}

OOP with Java Thomas Weise 7/12

Switch-Case: More Explanations

• We can write multiple case conditions and the case body is
executed if any of them is met (like with logical or)

OOP with Java Thomas Weise 8/12

Switch-Case: More Explanations

• We can write multiple case conditions and the case body is
executed if any of them is met (like with logical or)

• The default body is executed if no case condition is met

OOP with Java Thomas Weise 8/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

• Why do you think it is there?

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

• Why do you think it is there?

• If a case condition was met and the corresponding body does not
contain any break , then the control flow will simply continue by
executing the body of the next case statement, until it hits a break

or the end of the switch body

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

• Why do you think it is there?

• If a case condition was met and the corresponding body does not
contain any break , then the control flow will simply continue by
executing the body of the next case statement, until it hits a break

or the end of the switch body

• This is called fall-though

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

• Why do you think it is there?

• If a case condition was met and the corresponding body does not
contain any break , then the control flow will simply continue by
executing the body of the next case statement, until it hits a break

or the end of the switch body

• This is called fall-though

• Fall-throughs into the default case are allowed

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through

• Did you notice the little break keyword at the end of each
case -body?

• break here basically means “we are finished with this switch , jump
to the end of it (and then execute the next instruction, if any)”

• Why do you think it is there?

• If a case condition was met and the corresponding body does not
contain any break , then the control flow will simply continue by
executing the body of the next case statement, until it hits a break

or the end of the switch body

• This is called fall-though

• Fall-throughs into the default case are allowed

• This makes code very hard to read.

OOP with Java Thomas Weise 9/12

Switch-Case Fall-Through Example

Listing: Examples for switch-case fall-through.

import java.util.Scanner; // import the scanner class: ignore this for now

/** Examples for using if-then -else */

public class HelloSwitchCaseFallThrough {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

System.err.println("Please enter your name: "); // <--- using System.err for status //$NON -NLS -1$

String name = scanner.nextLine (); // read next line from input and store in variable "string"

System.err.println("Please your gender [f=female , m=male]: "); // <--- using System.err for status //$NON -NLS -1$

String gender = scanner.next(); // read the gender from stdin

switch (gender) { // choose what to do based on gender

case "f": //$NON -NLS -1$

case "F": {// we will get here if gender is either "f" or "F" //$NON -NLS -1$

System.out.print("Mrs. "); //$NON -NLS -1$

// break; <- We comment out the break , so if the user types in "f", we will fall -through to the next

// body after printing Mrs., i.e., we will print "Mrs. Mr. " as greeting

}

//$FALL -THROUGH$

case "m": // we will get here if gender is either "m" or "M" //$NON -NLS -1$

case "M": { // or if the user entered "f" or "F" and we fell -through //$NON -NLS -1$

System.out.print("Mr. "); //$NON -NLS -1$

break;

}

default: { // we will get here if the gender is neither "f", "F", "m", "M"

System.out.print(gender);

System.out.print(' ');

break;

}

}

System.out.println(name);

}

} OOP with Java Thomas Weise 10/12

Summary

• We have learned how to make decisions in a program.

• We can make binary decisions in the form of
“if-this-then-do-that-otherwise-do-that-other-thing”

• We can make more complex choices by “switching” over the values of
an expression

OOP with Java Thomas Weise 11/12

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 12/12

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction
	Conditionals

	If-Then-Else
	If-Then-Else
	If-Then-Else Example

	Switch-Case
	Switch-Case
	Switch-Case Example
	Switch-Case: More Explanations
	Switch-Case Fall-Through
	Switch-Case Fall-Through Example

	Summary
	Summary

	Presentation End

