
OOP with Java
6. Console I/O

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction to Console I/O

2 Console Output with System.out

3 Console Input with System.in + Scanner

4 Console Status Output with System.err

5 Vertical Ball Throw Revisited

6 Summary

OOP with Java Thomas Weise 2/18

w
e
b
s
it
e

I/O

• Programs usually determine their actions and produce output based
on their input data

OOP with Java Thomas Weise 3/18

I/O

• Programs usually determine their actions and produce output based
on their input data

• We already know that we can create output using
System.out.println(...)

OOP with Java Thomas Weise 3/18

I/O

• Programs usually determine their actions and produce output based
on their input data

• We already know that we can create output using
System.out.println(...)

• We now want to look a bit deeper into the concept of input and
output

OOP with Java Thomas Weise 3/18

I/O

• Programs usually determine their actions and produce output based
on their input data

• We already know that we can create output using
System.out.println(...)

• We now want to look a bit deeper into the concept of input and
output

• For now, we only consider the simplest cases of console interaction

OOP with Java Thomas Weise 3/18

System.out

• System.out is a PrintStream which allows us to write data to the
console

OOP with Java Thomas Weise 4/18

System.out

• System.out is a PrintStream which allows us to write data to the
console

• It has the methods System.out.print and System.out.println for all

basic Java types we had so far

OOP with Java Thomas Weise 4/18

System.out

• System.out is a PrintStream which allows us to write data to the
console

• It has the methods System.out.print and System.out.println for all

basic Java types we had so far:
• System.out.print(a) prints the value of expression a

OOP with Java Thomas Weise 4/18

System.out

• System.out is a PrintStream which allows us to write data to the
console

• It has the methods System.out.print and System.out.println for all

basic Java types we had so far:
• System.out.print(a) prints the value of expression a

• System.out.println(a) prints the value of expression a and then

starts a new line

OOP with Java Thomas Weise 4/18

System.out

• System.out is a PrintStream which allows us to write data to the
console

• It has the methods System.out.print and System.out.println for all

basic Java types we had so far:
• System.out.print(a) prints the value of expression a

• System.out.println(a) prints the value of expression a and then

starts a new line
• System.out.println() without argument just starts a new line

OOP with Java Thomas Weise 4/18

Examples for using System.out

Listing: A program demonstrating how to use System.out.

/** Examples for using System.out */

public class SystemOut {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

System.out.println("This text is printed and afterwards , a new line is started."); //$NON -NLS -1$

System.out.println (34); // just write a number and start a new line

System.out.print("Here , we write the integer value "); // no new line afterwards! //$NON -NLS -1$

System.out.print ((Integer.MAX_VALUE / Short.MAX_VALUE) / Byte.MAX_VALUE);

System.out.print(" and then \""); //$NON -NLS -1$

double a=0.66d/3d;

System.out.print(a>0.25d ? "bla" : "blubb"); //$NON -NLS -1$ //$NON -NLS -2$

System.out.print("\", the result of the expression '"); //$NON -NLS -1$

System.out.print(a);

System.out.println(" >0.25d ? \"bla\" : \"blubb \"'."); //$NON -NLS -1$

System.out.println("Here we just print some empty lines:");// new line afterwards //$NON -NLS -1$

System.out.println (); // another new (empty) line

System.out.println (); // another new (empty) line

System.out.println("... and that's all.");//$NON -NLS -1$

}

}

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized/stored in a resource but to be used as it. Ignore them.

OOP with Java Thomas Weise 5/18

Piping Output to a File

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

OOP with Java Thomas Weise 6/18

Piping Output to a File

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console

OOP with Java Thomas Weise 6/18

Piping Output to a File

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead.

OOP with Java Thomas Weise 6/18

Piping Output to a File

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead.

• Example: java SystemOut > SystemOut.txt creates a text file called

SystemOut.txt in which the output of our program SystemOut

(previous slide) is stored. This file looks as follows:

OOP with Java Thomas Weise 6/18

Piping Output to a File

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead.

• Example: java SystemOut > SystemOut.txt creates a text file called

SystemOut.txt in which the output of our program SystemOut

(previous slide) is stored. This file looks as follows:

Listing: File SystemOut.txt created via java SystemOut > SystemOut.txt.

This text is printed and afterwards , a new line is started.

34

Here , we write the integer value 516 and then "blubb", the result of the expression '0.22 >0.25d ? "bla" : "blubb"'.

Here we just print some empty lines:

... and that 's all.

OOP with Java Thomas Weise 6/18

Piping Output to another Program 1

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead

OOP with Java Thomas Weise 7/18

Piping Output to another Program 1

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead or to the input of another program!

OOP with Java Thomas Weise 7/18

Piping Output to another Program 1

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead or to the input of another program!

• Example 1: java SystemOut | head -n 3 > SystemOutToHead.txt writes

the output of our SystemOut program to the input of the program

head and tells it to keep print the first three lines of its input to its
output, which is then piped to file SystemOutToHead.txt

OOP with Java Thomas Weise 7/18

Piping Output to another Program 1

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead or to the input of another program!

• Example 1: java SystemOut | head -n 3 > SystemOutToHead.txt writes

the output of our SystemOut program to the input of the program

head and tells it to keep print the first three lines of its input to its
output, which is then piped to file SystemOutToHead.txt

Listing: Contents of file SystemOutToHead.txt

This text is printed and afterwards , a new line is started.

34

Here , we write the integer value 516 and then "blubb", the result of the expression '0.22 >0.25d ? "bla" : "blubb"'.

OOP with Java Thomas Weise 7/18

Piping Output to another Program 2

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead or to the input of another program!

• Example 2: java SystemOut | sed 's/blubb/COOL!/g' writes the

output of our SystemOut program to the input of the stream editor

sed and tells sed to replace all occurrences of blubb with COOL .
The output of sed is thus:

OOP with Java Thomas Weise 8/18

Piping Output to another Program 2

• In Unix/Linux (and also Windows), there exists the “Pipes & Filters”
Paradigm

• If an program writes output to the console, then this output can be
written to a file instead or to the input of another program!

• Example 2: java SystemOut | sed 's/blubb/COOL!/g' writes the

output of our SystemOut program to the input of the stream editor

sed and tells sed to replace all occurrences of blubb with COOL .
The output of sed is thus:

Listing: Output of java SystemOut | sed 's/blubb/COOL!/g'

This text is printed and afterwards , a new line is started.

34

Here , we write the integer value 516 and then "COOL!", the result of the expression '0.22 >0.25d ? "bla" : "COOL!"'.

Here we just print some empty lines:

... and that 's all.

OOP with Java Thomas Weise 8/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data:

• scanner.nextLine() reads a full line of text as a String

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data:

• scanner.nextLine() reads a full line of text as a String

• scanner.nextInt() reads an int number (from text)

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data:

• scanner.nextLine() reads a full line of text as a String

• scanner.nextInt() reads an int number (from text)

• scanner.nextDouble() reads a double number (from text)

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data:

• scanner.nextLine() reads a full line of text as a String

• scanner.nextInt() reads an int number (from text)

• scanner.nextDouble() reads a double number (from text)
• . . . and so on. . .

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

System.in and Scanner

• System.in is an InputStream * which allows us to write read single

characters** from the console

• Usually, we want to read structured stuff, like words or numbers

• We can get this by wrapping System.in into a Scanner object

scanner by doing Scanner scanner = new Scanner(System.in);

• Well, we did not yet learn what an object is and what new does, so
let us ignore this aspect for now and focus just on reading data:

• scanner.nextLine() reads a full line of text as a String

• scanner.nextInt() reads an int number (from text)

• scanner.nextDouble() reads a double number (from text)
• . . . and so on. . .
• scanner.hasNext() check if there is something else to read

* We will discuss in Lesson 28: I/O and Streams in detail what InputStream s are and how to create and use them.

** actually, byte s, but let’s ignore this for now

OOP with Java Thomas Weise 9/18

Examples for using System.out and Scanner

Listing: A program reading a line and a number.

import java.util.Scanner; // import the scanner class: ignore this for now

/** Examples for using System.in and Scanner */

public class SystemIn {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

String string;

System.out.println("Please enter string: ");//$NON -NLS -1$

string = scanner.nextLine (); // read next line from input and store in variable "string"

System.out.print("You wrote: '"); //$NON -NLS -1$

System.out.print(string); // print the stuff we read

System.out.println(" '.");//$NON -NLS -1$

System.out.println("Please enter int number: "); // tell user to enter number //$NON -NLS -1$

int value = scanner.nextInt (); // read the next integer from the input

System.out.print("You wrote "); //$NON -NLS -1$

System.out.print(value); // print the value we read

System.out.print(" and 5 times "); //$NON -NLS -1$

System.out.print(value); // print the value we read

System.out.print(" is "); //$NON -NLS -1$

System.out.println(value * 5); // print the value we read times 5, start new line

}

}

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized/stored in a resource but to be used as it. Ignore them.

OOP with Java Thomas Weise 10/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

OOP with Java Thomas Weise 11/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

OOP with Java Thomas Weise 11/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

• We created a program SystemIn which reads one line of text from its
input, then reads one line with a number, then ignores everything else
and is finished.

OOP with Java Thomas Weise 11/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

• We created a program SystemIn which reads one line of text from its
input, then reads one line with a number, then ignores everything else
and is finished.

• Let’s plug them together and do java SystemOut | java SystemIn or
even
java SystemOut | java SystemIn > SystemOutToSystemInViaPipe.txt

OOP with Java Thomas Weise 11/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

• We created a program SystemIn which reads one line of text from its
input, then reads one line with a number, then ignores everything else
and is finished.

• Let’s plug them together and do java SystemOut | java SystemIn or
even
java SystemOut | java SystemIn > SystemOutToSystemInViaPipe.txt

Listing: Output of java SystemOut | java SystemIn

Please enter string:

You wrote: 'This text is printed and afterwards , a new line is started.'.

Please enter int number:

You wrote 34 and 5 times 34 is 170

OOP with Java Thomas Weise 11/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

• We created a program SystemIn which reads one line of text from its
input, then reads one line with a number, then ignores everything else
and is finished.

• Or let’s pipe file SystemOut.txt into SystemIn and do

java SystemIn < SystemOut.txt > SystemOutToSystemInViaFile.txt

(which writes its output to SystemOutToSystemInViaFile.txt)

OOP with Java Thomas Weise 12/18

Piping Input into Our Program

• We have already seen that we can “pipe” the output of (our) one
program to the input of another program

• We created a program SystemOut which prints one line of text to its
output, then prints one line with a number, then prints some more
text.

• We created a program SystemIn which reads one line of text from its
input, then reads one line with a number, then ignores everything else
and is finished.

• Or let’s pipe file SystemOut.txt into SystemIn and do

java SystemIn < SystemOut.txt > SystemOutToSystemInViaFile.txt

(which writes its output to SystemOutToSystemInViaFile.txt)

Listing: Contents of SystemOutToSystemInViaFile.txt

Please enter string:

You wrote: 'This text is printed and afterwards , a new line is started.'.

Please enter int number:

You wrote 34 and 5 times 34 is 170

OOP with Java Thomas Weise 12/18

stderr vs. stdout

• So far, we have written to the console and read data from the
console, which can either come from a user or from a pipe

OOP with Java Thomas Weise 13/18

stderr vs. stdout

• So far, we have written to the console and read data from the
console, which can either come from a user or from a pipe

• The stuff we have used is called “Streams” and we used the two
streams stdout (to write) stdin (to read)

OOP with Java Thomas Weise 13/18

stderr vs. stdout

• So far, we have written to the console and read data from the
console, which can either come from a user or from a pipe

• The stuff we have used is called “Streams” and we used the two
streams stdout (to write) stdin (to read)

• There is one more output stream: stderr

OOP with Java Thomas Weise 13/18

stderr vs. stdout

• So far, we have written to the console and read data from the
console, which can either come from a user or from a pipe

• The stuff we have used is called “Streams” and we used the two
streams stdout (to write) stdin (to read)

• There is one more output stream: stderr

• While stdout is for the real output of our program, stderr is for
status and error information

OOP with Java Thomas Weise 13/18

stderr vs. stdout

• So far, we have written to the console and read data from the
console, which can either come from a user or from a pipe

• The stuff we have used is called “Streams” and we used the two
streams stdout (to write) stdin (to read)

• There is one more output stream: stderr

• While stdout is for the real output of our program, stderr is for
status and error information

• In the console, it looks similar, but the difference becomes clear when
we modify our SystemIn program a bit.

OOP with Java Thomas Weise 13/18

Examples for using System.err for status

Listing: System.in, System.out, and System.err.

import java.util.Scanner; // import the scanner class: ignore this for now

/** Examples for using System.in and Scanner using System.err instead of System.out for user

interaction */

public class SystemInSystemErr {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

String string;

System.err.println("Please enter string: ");//$NON -NLS -1$ // <--- using System.err for status

string = scanner.nextLine (); // read next line from input and store in variable "string"

System.out.print("You wrote: '"); //$NON -NLS -1$

System.out.print(string); // print the stuff we read

System.out.println(" '.");//$NON -NLS -1$

System.err.println("Please enter int number: "); // tell user to enter number using StdErr

//$NON -NLS -1$

int value = scanner.nextInt (); // read the next integer from the input

System.out.print("You wrote "); //$NON -NLS -1$

System.out.print(value); // print the value we read

System.out.print(" and 5 times "); //$NON -NLS -1$

System.out.print(value); // print the value we read

System.out.print(" is "); //$NON -NLS -1$

System.out.println(value * 5); // print the value we read times 5, start new line

}

}

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized/stored in a resource but to be used as it. Ignore them.OOP with Java Thomas Weise 14/18

The Output

Listing: java SystemOut | java SystemInSystemErr

You wrote: 'This text is printed and afterwards , a new line is started.'.

You wrote 34 and 5 times 34 is 170

• And we can also pipe the contents of a file into the input of our
program. . .

Listing: java SystemInSystemErr < SystemOut.txt

You wrote: 'This text is printed and afterwards , a new line is started.'.

You wrote 34 and 5 times 34 is 170

• As you see, the questions to the user are no longer in the output. . .

OOP with Java Thomas Weise 15/18

Vertical Ball Throw Revisited

• We can now improve our “vertical ball throw” program from the
previous lesson to read all of the parameters x0, v0, t from stdin

Listing: The vertical ball throw revisited.

import java.util.Scanner;

/**

* A ball is thrown vertically upwards into the air by a x0m tall person

* with velocity v0m/s. Where is it after t seconds?

* x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

*/

public class VerticalBallThrowRevisited {

/** The main routine

* @param args

* we ignore this parameter for now */

public static final void main(String [] args) {

Scanner scanner = new Scanner(System.in); // initiate reading from System.in, ignore for now

System.err.println("Enter size x0 of person in m:"); //$NON -NLS -1$

double x0 = scanner.nextDouble (); // read initial vertical position x0

System.err.println("Enter initial upward velocity v0 of ball in m/s:"); //$NON -NLS -1$

double v0 = scanner.nextDouble (); // read initial velocity upwards v0
double g = 9.80665d; // free fall acceleration downwards

System.err.println("Enter time t in s:"); //$NON -NLS -1$

double t = scanner.nextDouble (); // read the time t

double xt = x0 + (v0*t) - 0.5d*g*t*t; // x(t) = x0 + v0 ∗ t− 0.5 ∗ g ∗ t2

System.out.println ((xt > 0d) ? xt : 0d); // prints result and makes sure the ball stops at ground

}

}

OOP with Java Thomas Weise 16/18

Summary

1 We have learned how to write output to the console.

2 We have learned how to read input from the console.

3 We can now write programs which interact with a user.

4 We have learned how to write status output to the console.

5 We have learned how to write the output of a program to a file, the
output of a program to the input of another program, and a file to
the input of a program.

6 We can now write programs which can be plugged together with
many other tools.

7 All of this has nothing to do with Java, it works for all console
programs!

OOP with Java Thomas Weise 17/18

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

OOP with Java Thomas Weise 18/18

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction to Console I/O
	I/O

	Console Output with System.out
	System.out
	Examples for using System.out
	Piping Output to a File
	Piping Output to another Program 1
	Piping Output to another Program 2

	Console Input with System.in + Scanner
	System.in and Scanner
	Examples for using System.out and Scanner
	Piping Input into Our Program
	Piping Input into Our Program

	Console Status Output with System.err
	stderr vs. stdout
	Examples for using System.err for status
	The Output

	Vertical Ball Throw Revisited
	Vertical Ball Throw Revisited

	Summary
	Summary

	Presentation End

