LR BT

HEFEI UNIVERSITY

OOP with Java

4. Types, Variables, and Assignments
Thomas Weise - % Z &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &/E%

% AR B2

Faculty of Computer Science and Technology | THHAMLfFE 5 AR Z

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | FE %Z#&4 /‘H’ST %.L X 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | @FH ARAA LR 444 Ki8099%5

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction to Data Types
@ Variables
® Limits of Variables

@ Compatible Types

@ Summary

OOP with Java

Thomas Weise

e A data type describes the nature of data that a variable or expression
can contain/represent

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is
o limited in size

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is

e limited in size and
e ultimately consists of bits (binary values 0 and 1)

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is

e limited in size and
e ultimately consists of bits (binary values 0 and 1)

e Therefore, all data that we can represent must be

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is

e limited in size and
e ultimately consists of bits (binary values 0 and 1)

e Therefore, all data that we can represent must be
e limited in size and

e A data type describes the nature of data that a variable or expression
can contain/represent

e Our computers use memory which is

e limited in size and

e ultimately consists of bits (binary values 0 and 1)
e Therefore, all data that we can represent must be

e limited in size and
o ultimately be broken down to bits

e A data type describes the nature of data that a variable or expression
can contain/represent
e Our computers use memory which is

e limited in size and
e ultimately consists of bits (binary values 0 and 1)

e Therefore, all data that we can represent must be

e limited in size and
o ultimately be broken down to bits

e In Java, we can distinguish different sorts of data types

Types of Data Types %ﬁ)

e A data type describes the nature of data that a variable or expression
can contain/represent
e Our computers use memory which is

e limited in size and
e ultimately consists of bits (binary values 0 and 1)

e Therefore, all data that we can represent must be

e limited in size and
e ultimately be broken down to bits

e In Java, we can distinguish different sorts of data types:

e the type boolean , which uses its bits to represent a Boolean decision
of true or false

OOP with Java Thomas Weise 3/29

Types of Data Types %ﬁ)

e A data type describes the nature of data that a variable or expression
can contain/represent
e Our computers use memory which is
e |limited in size and
e ultimately consists of bits (binary values 0 and 1)
e Therefore, all data that we can represent must be
e limited in size and
e ultimately be broken down to bits
e In Java, we can distinguish different sorts of data types:
e the type boolean , which uses its bits to represent a Boolean decision
of true or false,

e integer types, which use their bits to represent whole numbers, i.e.,
subsets of Z

OOP with Java Thomas Weise 3/29

Types of Data Types %\

e A data type describes the nature of data that a variable or expression
can contain/represent
e Our computers use memory which is
e |limited in size and
o ultimately consists of bits (binary values 0 and 1)
e Therefore, all data that we can represent must be
e limited in size and
e ultimately be broken down to bits
e In Java, we can distinguish different sorts of data types:
e the type boolean , which uses its bits to represent a Boolean decision
of true or false,
e integer types, which use their bits to represent whole numbers, i.e.,
subsets of Z,
e floating point types, which use their bits to represent fractional
numbers, i.e., subsets of R

OOP with Java Thomas Weise 3/29

Types of Data Types %\

1AQ

e A data type describes the nature of data that a variable or expression
can contain/represent
e Our computers use memory which is
e |limited in size and
o ultimately consists of bits (binary values 0 and 1)
e Therefore, all data that we can represent must be
e limited in size and
e ultimately be broken down to bits
e In Java, we can distinguish different sorts of data types:
e the type boolean , which uses its bits to represent a Boolean decision
of true or false,

e integer types, which use their bits to represent whole numbers, i.e.,
subsets of Z,

e floating point types, which use their bits to represent fractional
numbers, i.e., subsets of R, and

e the type char , which uses its bits to represent a character

OOP with Java Thomas Weise 3/29

e in Java, we can process data of several basic primitive data types

boolean either true or false

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e,, —128...127

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e,, —128...127
short signed 16 bit integer, whole numbers from range —21°...215_1 e,
—32768...32767

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e,, —128...127

short signed 16 bit integer, whole numbers from range —21°...215_1 e,
—32768...32767

int signed 32 bit integer, whole numbers from range —931 2311, e,

—2147483648 ... 2147483647

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e,, —128...127

short signed 16 bit integer, whole numbers from range —21°...215_1 e,
—32768...32767

int signed 32 bit integer, whole numbers from range —931 2311, e,
—2147483648 . ..2147483647

long signed 64 bit integer, whole numbers from range —263...203_1 e,

—9223372036854775808 . . . 9223372036854775807

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e,, —128...127

short signed 16 bit integer, whole numbers from range —21°...215_1 e,
—32768...32767

int signed 32 bit integer, whole numbers from range —931 2311, e,
—2147483648 . ..2147483647

long signed 64 bit integer, whole numbers from range —263...203_1 e,

—9223372036854775808 . . . 9223372036854775807

float signed 32 bit floating point number (1 sign bit, 8 bit signed exponent,
23 bit unsigned mantissa + hidden bit), subset of real numbers from
+[2719 (2 - 2728) % 2127) U {0, — 00, 00, 0}

Data Types %ﬁ)

e in Java, we can process data of several basic primitive data types

boolean either true or false

byte signed 8 bit integer, whole numbers from range —27...27—1, i.e., —128...127

short signed 16 bit integer, whole numbers from range —o15 o571 e,
—32768 . ..32767

int signed 32 bit integer, whole numbers from range —23L 9311 e,
—2147483648 . . . 2147483647

long signed 64 bit integer, whole numbers from range —263...263_1 e,

—9223372036854775808 . .. 9223372036854775807

float signed 32 bit floating point number (1 sign bit, 8 bit signed exponent,
23 bit unsigned mantissa + hidden bit), subset of real numbers from
+[27149 (2 — 2723) % 2127 U {0, — 00, 00, B}

double signed 64 bit floating point number (1 sign bit, 11 bit signed exponent,
52 bit unsigned mantissa + hidden bit), subset of real numbers from
+[271074 (2 — 2752) % 21023] 4 {0, —00, 00, 1}

OOP with Java Thomas Weise 4/29

Data Types

>

”

e in Java, we can process data of several basic primitive data types

boolean

either true or false

byte

short

int

long

signed 8 bit integer, whole numbers from range —27...27—1, i.e., —128...127
signed 16 bit integer, whole numbers from range —o15 o571 e,
—32768...32767

signed 32 bit integer, whole numbers from range —23L 9311 e,
—2147483648 . . . 2147483647

signed 64 bit integer, whole numbers from range —263...263_1 e,
—9223372036854775808 . .. 9223372036854775807

float

double

signed 32 bit floating point number (1 sign bit, 8 bit signed exponent,
23 bit unsigned mantissa + hidden bit), subset of real numbers from
+[27149 (2 — 2723) % 2127 U {0, — 00, 00, B}

signed 64 bit floating point number (1 sign bit, 11 bit signed exponent,
52 bit unsigned mantissa + hidden bit), subset of real numbers from
+[271074 (2 — 2752) % 21023] 4 {0, —00, 00, 1}

char

a single 16 bit unicode character, can be any character from any of the major
languages

OOP with Java Thomas Weise 4/29

Data Types

>

”

e in Java, we can process data of several basic primitive data types

boolean

either true or false

byte

short

int

long

signed 8 bit integer, whole numbers from range —27...27—1, i.e., —128...127
signed 16 bit integer, whole numbers from range —o15 o571 e,
—32768...32767

signed 32 bit integer, whole numbers from range —23L 9311 e,
—2147483648 . . . 2147483647

signed 64 bit integer, whole numbers from range —263...263_1 e,
—9223372036854775808 . .. 9223372036854775807

float

double

signed 32 bit floating point number (1 sign bit, 8 bit signed exponent,
23 bit unsigned mantissa + hidden bit), subset of real numbers from
+[27149 (2 — 2723) % 2127 U {0, — 00, 00, B}

signed 64 bit floating point number (1 sign bit, 11 bit signed exponent,
52 bit unsigned mantissa + hidden bit), subset of real numbers from
+[271074 (2 — 2752) % 21023] 4 {0, —00, 00, 1}

char

String

a single 16 bit unicode character, can be any character from any of the major
languages

a piece of text, at most 2147483647 characters (but literals are limited to 65536
characters), (not actually a primitive type)

OOP with Java Thomas Weise 4/29

e A variable is a container which has a specific data type and can store
exactly one value of that type

e A variable is a container which has a specific data type and can store
exactly one value of that type

e Variables are declared with statements of the form
[type] [variableName]; which creates a variable with name

variableName and of type type .

Variables §\

e A variable is a container which has a specific data type and can store
exactly one value of that type

e Variables are declared with statements of the form
[type] [variableName]; which creates a variable with name
variableName and of type type .

e We can store a value in a variable by using statements of the form
[variableName] = [expression] , where variableName is the name of
the variable and expression must be an expression of the right type

OOP with Java Thomas Weise 5/29

Variables §\

A variable is a container which has a specific data type and can store
exactly one value of that type

Variables are declared with statements of the form
[type] [variableNamel; which creates a variable with name

variableName and of type type .

e We can store a value in a variable by using statements of the form
[variableName] = [expression] , where variableName is the name of
the variable and expression must be an expression of the right type

When a program is executed, variables exist in the RAM assigned to
the process. After the process has terminated, they disappear.

OOP with Java Thomas Weise 5/29

Examples for boolean Variables

: A program allocating, initializing, and printing

variables.

public class BooleanVariables {

public static final void main(final Stringl[] args) {

boolean var;

var = true;
System.out.println(var);

var = false;
System.out.println(var);

var = false;
var = true;
System.out.println(var);

boolean a = false, b = true, c = false;
System.out.println(a);
System.out.println(b);
System.out.println(c);

OOP with Java Thomas Weise

6/29

Examples for byte Variables

and printing variables.

public class ByteVariables {

public static final void mam(fmal Strlng[] args) {
byte var; ca : riabl

var = -1; ariable var to -
System.out.println(var);

var = -128; t abl ar to -128
System.out. pr1ntln(var)

var = 1_.2.7; et riabl)a t
System.out. pr1ntln(var)

byte hex = 0x10; set hex to hezadecimal 10, which s 1%16+0 5: starts with
System.out.println(hex);

byte bin = 0b0110_1111; set bin to bimary 01101111, which is 1+2+4+8+32+6/

System out.println(bin); prints 111

OOP with Java Thomas Weise

7/29

e Numbers are always represented relative to a given base

e Numbers are always represented relative to a given base

e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e Numbers are always represented relative to a given base

e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e We usually use numbers relative to base 10

e Numbers are always represented relative to a given base

e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e We usually use numbers relative to base 10:

e 1234 means
44100 4+3%10' +2%102+1%10% = 4% 1+ 3% 1942100+ 1 %1000

e Numbers are always represented relative to a given base

e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e We usually use numbers relative to base 10:

e 1234 means
44100 4+3%10' +2%102+1%103 = 4% 1+ 3% 1942100+ 1 %1000

e 10100 means
0109+ 0% 10"+ 1 %1024+ 0% 10% 4+ 1 %« 10* = 1 % 100 + 1 * 10000

Numbers are always represented relative to a given base

The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

We usually use numbers relative to base 10

e Binary numbers are relative to base 2 and written in the form of
Ob... in Java

e Numbers are always represented relative to a given base
e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e We usually use numbers relative to base 10
e Binary numbers are relative to base 2 and written in the form of
Ob... in Java:
e 0bl1234 is invalid, since only digits 0 and 1 can occur

Excursion Binary and Hexadecimal Numbers %\’

Numbers are always represented relative to a given base
The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side
We usually use numbers relative to base 10
Binary numbers are relative to base 2 and written in the form of
Ob... in Java:

e 0b1234 is invalid, since only digits 0 and 1 can occur

e 0b10100 means, in base 10,
029 4+0%2 + 1%x22 4 0% 25+ 124 =1%x4+1%x16=20

OOP with Java Thomas Weise 8/29

Excursion Binary and Hexadecimal Numbers %\’

Numbers are always represented relative to a given base

The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

We usually use numbers relative to base 10

Binary numbers are relative to base 2 and written in the form of
Ob... in Java

Hexadecimal numbers are relative to base 16 (using digits
0...9,a...f) and written in form ox... in Java

OOP with Java Thomas Weise 8/29

1AQ

Excursion Binary and Hexadecimal Numbers %\’

Numbers are always represented relative to a given base

The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

We usually use numbers relative to base 10

e Binary numbers are relative to base 2 and written in the form of

Ob... in Java
e Hexadecimal numbers are relative to base 16 (using digits
0...9,a...f) and written in form ox... in Java:

e 0x1234 means, in base 10,
451694+ 3% 161+ 25162+ 1%16% = 4+ 3% 16+ 2256+ 1 x4096 = 4660

OOP with Java Thomas Weise 8/29

Excursion Binary and Hexadecimal Numbers %c)

Numbers are always represented relative to a given base

The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

We usually use numbers relative to base 10

e Binary numbers are relative to base 2 and written in the form of

Ob... in Java
e Hexadecimal numbers are relative to base 16 (using digits
0...9,a...f) and written in form ox... in Java:

e 0x1234 means, in base 10,
45160 +3%161 +2%162+1%16° = 4+ 3% 16+2%256 4+ 1 %4096 = 4660
e 0x10100 means, in base 10,
0%16°4+0%1614+1%1624+0% 163+ 1% 16* = 1 %256+ 1 x65536 = 65792

OOP with Java Thomas Weise 8/29

Excursion Binary and Hexadecimal Numbers %c)

Numbers are always represented relative to a given base

The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

We usually use numbers relative to base 10

e Binary numbers are relative to base 2 and written in the form of

Ob... in Java
e Hexadecimal numbers are relative to base 16 (using digits
0...9,a...f) and written in form ox... in Java:

e 0x1234 means, in base 10,

4%1694+3%161+2%162+1%163 = 44+ 3% 16+ 2% 256+ 1 %4096 = 4660
e 0x10100 means, in base 10,

0%16°4+0%161 4+ 1%162+0% 163+ 1% 16* = 1 %256+ 1 x65536 = 65792
e Oxef means, in base 10, 15 % 169 4+ 14 % 16" = 15 + 14 % 16 = 239

OOP with Java Thomas Weise 8/29

Excursion Binary and Hexadecimal Numbers %c)

e Numbers are always represented relative to a given base

e The least significant/important digit is always the right-most one
whereas the one with the highest value is on the left side

e We usually use numbers relative to base 10

e Binary numbers are relative to base 2 and written in the form of
Ob... in Java
e Hexadecimal numbers are relative to base 16 (using digits
0...9,a...f) and written in form ox... in Java:
e 0x1234 means, in base 10,
45169 4+3%161 +2%162 415163 = 4+ 3% 16+2%256 4 1%4096 = 4660
e 0x10100 means, in base 10,
0%16°+0%16"+1%1624+0%163+1%16* = 1 %256+ 1%65536 = 65792
o Oxef means, in base 10, 15 % 167 + 14 % 161 = 15 + 14 % 16 = 239
e Hexadecimal numbers are heavily used when operations on bits (e.g.,
|, =, see Lesson 5: Operators Expressions) are performend

OOP with Java Thomas Weise 8/29

Examples for snort Variables

, initializing, and printing variables.

public class ShortVariables {

public static final void maln(flnal Str1ng[] args) {
short var; allocate short e 2

var = -1; a b ¢
System.out.println(var); printes 1

var = -32768; ar to -32768
System.out. pr1nt1n(var) 7

var = 3_2767; a
System.out.println(var);

short hex = 0x10; t hez to hezadecimal 1 hich is 1%16+0 = 16: start
System.out.println (hex); !

short bin = 0b0110_1111; set bin to bimary 01 11, which {424 +8+32+64=

System.out.println(bin); prints 111

OOP with Java Thomas Weise

9/29

Examples for int Variables %\’

initializing, and printin variables.

public class IntVariables {

public static final void main(final Stringl[] args) {
int var;

var = -1;
System.out.println(var);

var = -2147483648;
System.out.println(var);

var = 2_147_483_647;
System.out.println(var);

int hex = 0x10;
System.out.println(hex);

int bin = 0b0110_1111;
System.out.println(bin);

OOP with Java Thomas Weise 10/29

Examples for 1ong Variables

initializin

variables.

public class LongVariables {
public static fmal void maln(f1nal Strlng[] args) {
long var; 2 te] ria

var = -1L; Sie e ar -1 otice he "L h
System.out. pr;ntln(var) prints -1

var = -9223372036854775808L; set wvariable var to -9
System.out.println(var); prints -922337203685477

var = 9_223_372_036_854_775_807L;
System.out.println(var);

long hex = 0x10L; et hes hezadecimal 1
System.out.println(hex); prints 1

long bin = 0b0110_1111L; set bin to binary
System.out.println(bin); prints 111

OOP with Java Thomas Weise

11/29

Examples for f10at Variables

public class FloatVariables {

public static final void main(final String(] args) {
float var;

var = -1f;
System.out.println(var);

float fraction = 0.8f;
System.out.println(fraction);

var = 1.4e-45f;
System.out.println(var);

var = 3.4028235e38f;
System.out.println(var);

float pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286¢ ;

System.out.println(pi);

OOP with Java Thomas Weise 12/29

Examples for doupbie Variables

public class DoubleVariables {

public static final void main(final String(] args) {
double var;

var = -1d;
System.out.println(var);

double fraction = 0.8d;
System.out.println(fraction);

var = 4.9e-324d;
System.out.println(var);

var = 1.7976931348623157e308d;
System.out.println(var);

double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286d;

System.out.println(pi);

OOP with Java Thomas Weise 13/29

Examples for char Variables

A program allocating, initializing, and printin variables.

public class CharVariables {
public static final void maln(flnal Strlng[] args) {
char var; hara 2 a

var = 'T'; ble a
System.out. prlntln(var) prints 'T ithou he primes

var = '\u597d'; riabl r to un 1
System.out. prlntln(var) prints the Chines

var = '\n'; ble war litera hich stands
System.out. prlntln(var) 1
char space = 'y'; set sp
System.out. pr;ntln(space),

var = '\''; 4 0 LS caped gle ¢
System. out . prlntln(var) prints

OOP with Java Thomas Weise

14/29

Examples for string Variables

and printing String variables.

public static final vold maln(flnal Strlng[] args) {
String var; // allocate String 2 wble "war

var = "HelloyWorld!"; /,
System.out.println(var);

var = "Hello\nWorld!"; /
System.out.println(var);

String niHao="\u4f60\u597d"
System.out.println(niHao);

var = "\"Hello\""; // se

System.out.println(var);

Remark: These //NON-NLS-1 things can safely be ignored, they are just there to tell Eclipse that a String literal is not internationalized /stored in a resource but to be used as it. Ignore them

OOP with Java Thomas Weise

15/29

The limits of the type byte %\’

1AQ

Listing: The limits of the type .

public class ByteLimits {

public static final void main(final S;:ring[] args) {
byte var; // allocate byte ariable

var = Byte.MIN_VALUE;
System.out.println(var);

var = Byte.MAX_VALUE; // se vartable var) he
System.out.println(var); // prints 127
var = Byte.SIZE; // set wariable wvar to the
System.out.println(var); // prints
}
I

OOP with Java Thomas Weise 16/29

The limits of the type short %\’

Listi he limits of the type .

/** Ezamples f the limits of short wariables

public class Shortlelts {

public static final void ma1n(f1na1 Strlng[] args) {
short var; // allocate short wariable "var”

var = Short.MIN_VALUE; /
System.out.println(var);

var = Short.MAX_VALUE; /
System.out.println(var);

var = Short.SIZE; // set
System.out.println(var);

OOP with Java Thomas Weise 17/29

The limits of the type int %\’

Listi he limits of the type .

public class IntLimits {

public static final void main(final String[] args) {
int var; // allocate int wvariable "war"

var = Integer .MIN_VALUE;
System.out.println(var);

var = Integer.MAX_VALUE;
System.out.println(var);

var = Integer.SIZE; // se ar
System.out.println(var);

OOP with Java Thomas Weise 18/29

The limits of the type 1ong

Listi he limits of the type .

public class L

public stati
long var;

var = Long
System.out

var = Long.

System.out

var = Long.

System.out

ongLimits {

we ignore this g
c final void mai

cate

.MIN_VALUE;
.println(var);

MAX_VALUE;
.println(var);

SIZE; // set w
.println(var);

n(final Séring[] args) {

OOP with Java

Thomas Weise

19/29

The limits of the type float

public class FloatLimits {

public static final void main(final String[] args) {
float var;

var = Float.MIN_VALUE;
System.out.println(var);

var = Float.MIN_NORMAL;
System.out.println(var);

var = Float.MAX_VALUE;
System.out.println(var);

int size = Float.SIZE;
System.out.println(size);

var = Float.NEGATIVE_INFINITY;
System.out.println(var);

var = Float.POSITIVE_INFINITY;
System.out.println(var);

var = Float.NaN;
System.out.println(var);

OOP with Java Thomas Weise 20/29

The limits of the type double

public class DoubleLimits {

public static final void main(final String[] args) {
double var;

var = Double.MIN_VALUE;
System.out.println(var);

var = Double.MIN_NORMAL;
System.out.println(var);

var = Double.MAX_VALUE;
System.out.println(var);

int size = Double.SIZE;
System.out.println(size);

var = Double.NEGATIVE_INFINITY;
System.out.println(var);

var = Double.POSITIVE_INFINITY;
System.out.println(var);

var = Double.Nal;
System.out.println(var);

OOP with Java Thomas Weise 21/29

e It is possible to store values of a smaller type into a variable of a
larger type of the same sort without any loss

e It is possible to store values of a smaller type into a variable of a
larger type of the same sort without any loss, i.e.

® a2 byte value in a short variable

@® a short valuein an int variable
® an int valuein a long variable

® a2 float value in a double variable

Losslessly Compatible Types Example

Listi Example for lossless compatible types.

public class CompatibleTypesi {

public static final void main(final String[] args) {

byte myByte = -128;
short myShort = myByte;
System.out.println(myShort);

nyShort = 32767;
int myInt = myShort;
System.out.println(myInt);

myInt = 2147483647;
long mylLong = myInt;
System.out.println(myLong);

float myFloat = 1.4E-45f;
double myDouble = myFloat;
System.out.println(myDouble);

OOP with Java

Thomas Weise

23/29

e It is possible to store values of an integer type into a floating point
variable, but maybe with loss of information

Integer-to-Floating Point: Potential Loss of Information %c)’

e It is possible to store values of an integer type into a floating point
variable, but maybe with loss of information, i.e.

® a byte valuein a float variable (no loss of infos)

® a short valuein an float variable (no loss of infos)

® an int valuein a float variable (possible loss of infos)
® 2 long valuein a float variable (possible loss of infos)
® a byte value in a double variable (no loss of infos)

® a short valuein an double variable (no loss of infos)
@ an int value in a double variable (no loss of infos)

® a long valuein a double variable (possible loss of infos)

OOP with Java Thomas Weise 24/29

Conversation of Integer Types to fioat

er Types t

public class CompatibleTypes2Float {

public static final void main(final Stringl[]l args) {

byte myByte = -128;
float myFloat = myByte;
System.out.println(myFloat);

short myShort = 32767;
myFloat= myShort;
System.out.println(myFloat);

int myInt = 2147483646;
myFloat= myInt;
System.out.println(myFloat);

long myLong = 9223372036854775806L;

myFloat= myLong;
System.out.println(myFloat);

OOP with Java

Thomas Weise

25/29

Conversation of Integer Types to double

er Types t

public class CompatibleTypes2Double {

public static final void main(final Stringl[]l args) {

byte myByte = -128;
double myDouble = myByte;
System.out.println(myDouble);

short myShort = 32767;
myDouble= myShort;
System.out.println(myDouble);

int myInt = 2147483646;
myDouble= myInt;
System.out.println(myDouble);

long myLong = 9223372036854775806L;

myDouble= myLong;
System.out.println(myDouble);

OOP with Java

Thomas Weise

26/29

e When doing /O (seel Lesson 28: /0O and Streams, a char is
sometimes represented as int value, which allows us to express that
no more character can be read from a file as -1 ... but this is
subject to another lesson (Lesson 28: [/O and Streams)

Other Compatibilities %()

e When doing I/O (seel Lesson 28: //O and Streams, a char is
sometimes represented as int value, which allows us to express that
no more character can be read from a file as -1 ... but this is
subject to another lesson (Lesson 28: I/O and Streams)

e Type casting allows us to transform floating point numbers back to
integers via truncation, likely resulting in loss of information ... and
this is also subject of a later lesson (Lesson 20: Type Casts)

OOP with Java Thomas Weise 27/29

Other Compatibilities §\

1AQ

e When doing I/O (seel Lesson 28: //O and Streams, a char is
sometimes represented as int value, which allows us to express that
no more character can be read from a file as -1 ... but this is
subject to another lesson (Lesson 28: I/O and Streams)

e Type casting allows us to transform floating point numbers back to
integers via truncation, likely resulting in loss of information ... and
this is also subject of a later lesson (Lesson 20: Type Casts)

e Types can be automatically transformed to string when appearing

in a String expression ... and this is subject to a later lesson as well
(Lesson 5: Operators Expressions).

OOP with Java Thomas Weise 27/29

® We have learned the basic primitive types of Java (plus the
non-primitive type String).

@® We have learned how to declare variables.
® We have learned how to store values in variables.

® We have learned how to print out variables to the console (via
System.out.println(...) .

® We have learned that some types are losslessly compatible.

® We have learned that some conversations are lossy.

il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

OOP with Java

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Introduction to Data Types
	Types of Data Types
	Data Types

	Variables
	Variables
	Examples for boolean Variables
	Examples for byte Variables
	Excursion Binary and Hexadecimal Numbers
	Examples for short Variables
	Examples for int Variables
	Examples for long Variables
	Examples for float Variables
	Examples for double Variables
	Examples for char Variables
	Examples for String Variables

	Limits of Variables
	The limits of the type byte
	The limits of the type short
	The limits of the type int
	The limits of the type long
	The limits of the type float
	The limits of the type double

	Compatible Types
	Losslessly Compatible Types
	Losslessly Compatible Types Example
	Integer-to-Floating Point: Potential Loss of Information
	Conversation of Integer Types to float
	Conversation of Integer Types to double
	Other Compatibilities

	Summary
	Summary

	Presentation End

