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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Why is optimization difficult?

• So far, we have discussed several different optimization methods.

• You now have some experience in solving optimization problems.

• In optimization, there are problems that tend to be easy, where we
can get good solutions quickly.

• There are also other problems, where it takes a long time to even gut
some barely acceptable results.

• Why?

• What makes optimization difficult?
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Why is optimization difficult?

• Some things are pretty clear:
• For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
• For other problems, either no such method exists or it is not feasible

(too slow).
• We have looked on some of these problems (Job Shop Scheduling,

TSP, . . . )
• And used different algorithms to solve the Job Shop Scheduling

Problem
• Some algorithms worked well, some worked not so well.
• The solution quality we get depends on the algorithm we use.
• Different algorithms deal with the difficulties of optimization tasks

differently.
• There may be different aspects that render a problem difficult.
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Preface

• Assume we chose to use a randomized metaheuristic algorithm that
gives an approximate solution for a problem.

• We cannot expect to get the global optimum.

• We are interested in the quality of the solutions that we can get.

• What features of problems or algorithms allow us to get good
solutions?

• When/why can we not get good solutions?
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• Let us start at the end!

• Sooner or later, every optimization process ends (converges)

Definition (Convergence)

An optimization algorithm has converged if it cannot reach new candidate
solutions anymore or if it keeps on producing candidate solutions from a
small subset of the solution space Y. [2, 3]

Definition (multi-modality)

A function/optimization problem is multi-modal if it has more than one
minimum / maximum /optimum. [4–8]
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Exploration versus Exploitation

• Which should we use more?

• This is called the Exploration versus Exploitation Dilemma [9–16]
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Countermeasures

• Countermeasures against Premature Convergence
1 Restarting [17, 18]:

• if no improvement for some time, restart algorithm
• in case of EA: restart with bigger population size

2 Low selection pressure and/or larger population size [19–21]:
• allows for more exploration by putting less pressure to move to better

solutions
• slows down search
• only sometimes helpful [21, 22]

3 Sometimes accepting worse candidate solutions, as in, e.g., Simulated
Annealing [23–26]

4 Sharing, Niching, and Clearing in EAs [27–40]:
• In an EA, give solutions that are very similar to each other a worse

fitness
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Ruggedness and Weak Causality

• Why??
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Causality

• Basic assumption behind metaheuristic optimization:

Definition (Strong Causality)

Small changes to an object should lead to small changes in its behavior /
objective values. [41–43]

• What happens if the causality in a problem is weak?

• The “memory” inside the search becomes useless, because a better
solution may appear anywhere, not just next to a good solution (and
the same holds for worse solutions the other way around. . . )
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• Baldwin effect [45–48]

• Memetic Algorithms [49–58]

• other hybrid approaches [59–66]:
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combinations of Evolutionary Algorithms with other concepts from
Machine Learning
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1 Hybridization of EAs with local search:
• Lamarckian evolution [44, 45]

• Baldwin effect [45–48]

• Memetic Algorithms [49–58]

• other hybrid approaches [59–66]

2 Landscape approximation [67]:
• Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

• Optimize on this simple model (which has stronger causality)
• After a few steps, go back to original f and test solutions
• Update M , then repeat
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Deceptiveness

• Gradient and information lead optimizer away from optimum [60, 68, 69]

• Why??
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• Countermeasures
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Countermeasures

• Countermeasures

1 Choose appropriate representation, maybe combine representations [70]

2 Preventing convergence:
• Fitness Uniform Selection Scheme [71–74]

• Novelty Search [75–77]

• Frequency Fitness Assignment [78]

Metaheuristics for Smart Manufacturing Thomas Weise 19/53



Neutrality

• Neutrality: Many candidate solutions have same objective values

• Little or no information gained from sampling the solution space

• Why??

• Countermeasures: Same as for Deceptiveness
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Epistasis: The other root of all evil. . .

Epistasis is a concept from biology, which we can similarly find in
optimization. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [34, 79–86]

Definition (Separability)

A function of n variables is separable if it can be rewritten as a sum of n
functions of just one variable [87–90]

• non-epistatic (separable) problems can be solved efficiently by
decomposition
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Epistasis
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Influence of Epistasis
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Countermeasures

1 See countermeasures for ruggedness, deceptiveness, multi-modality. . .
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2 Choose appropriate representation [91–94] and search operators [95]
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3 Parameter Tweaking [95]

4 Linkage learning [96–102] and Variable Interaction Learning [103]:
• Try to find out which variables in the points of the search space are

(epistatically) linked together
• Try to change these variables only together, consider them as a unit
• For example: In binary operator, try to always pass such variables

together to the offspring and to not separate them
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Countermeasures

1 See countermeasures for ruggedness, deceptiveness, multi-modality. . .

2 Choose appropriate representation [91–94] and search operators [95]

3 Parameter Tweaking [95]

4 Linkage learning [96–102] and Variable Interaction Learning [103]

5 If epistasis is limited: cooperative-coevolution approach [103–105] (see
later)
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Scalability

• Time required for solving NP-hard problems grows exponential with
input size

• Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

• . . . but their time requirement also grows with problem size. . .

• “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [106, 107]

• Example: search in (1 . . . 10)n

• any algorithm (for non-trivial problems) takes longer for larger
inputs. . .
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• Countermeasures
1 Parallelization and distribution:

• sub-linear speed-up can be achieved [116]

• Parallelization: Use multi-core CPU + multiple threads or GPUs [117–122]

• Distribution: Use multiple computers in a network [123, 124], a cluster, or a
grid
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1 Parallelization and distribution
2 Indirect Representation 1: Generative [108, 109]:

• points in search space have few variables, search space is smaller, can
be explored more easily

• They are mapped to larger, more complex candidate solutions by a
simple functional mapping γ

• Utilizes/assumes symmetries in the candidate solutions
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1 Parallelization and distribution
2 Indirect Representation 1: Generative [108, 109]

3 Indirect Representation 2: Development [110, 111]:
• Similar to generative mapping, the search space is smaller
• But: Mapping γ is more complex, a simulation which incorporates

feedback from an environment or the objective function
• Better behavior than generative mappings
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Countermeasures

• Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [108, 109]

3 Indirect Representation 2: Development [110, 111]

4 Exploiting Separability, e.g., with coevolution [103–105, 112, 113]:
• Try to divide the problem into (almost) unrelated problems with

smaller search spaces
• Solve them more or less separately, combine solutions to get overall

solution, and repeat
• Cooperative Coevolution [103, 105]: Use an EA that can find our how to

divide the problem by itself and then applies the above
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Countermeasures

• Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [108, 109]

3 Indirect Representation 2: Development [110, 111]

4 Exploiting Separability, e.g., with coevolution [103–105, 112, 113]

5 Using multiple algorithms at once [114] or portfolios [115]

Metaheuristics for Smart Manufacturing Thomas Weise 28/53



Section Outline

1 Premature Convergence

2 Ruggedness & Causality

3 Deceptiveness & Neutrality

4 Epistasis

5 Scalability

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 29/53



No Free Lunch Theorem
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No Free Lunch Theorem

• Question: Can an optimization algorithm A be better than algorithm
B?

• Question: Can an optimization algorithm A be better than Random
Sampling?

• Wolpert and Macready [125] – No Free Lunch Theorem: Over all
optimization problems φ over finite domains, the sum of the
probabilities to reach a certain objective value y after m steps with
algorithm A is the same as with algorithm B∑

∀φ

P (y|φ,m,A) =
∑

∀φ

P (y|φ,m,B) (1)
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No Free Lunch Theorem

• Different algorithms are good for different problems
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No Free Lunch Theorem

• Different algorithms are good for different problems and not all
possible problems actually occur in practice [34, 126, 127]
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Summary

• Optimization is difficult

• Metaheuristic optimizers may converge prematurely or non-uniformly

• Ruggedness is not good

• Deceptiveness is not good

• Neutrality is not good

• Epistasis is always bad – and often a representation issue!

• Large problem scales are not good

• No Free Lunch Theorem
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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112. Phil Husbands and Frank Mill. Simulated co-evolution as the mechanism for emergent planning and scheduling. In
Richard K. Belew and Lashon Bernard Booker, editors, Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA’91), pages 264–270, San Diego, CA, USA: University of California (UCSD), July 13–16, 1991. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.informatics.sussex.ac.uk/users/philh/pubs/icga91Husbands.pdf.

113. Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooperative coevolution. Information
Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal, 178(15), August
1, 2008. doi: 10.1016/j.ins.2008.02.017. URL http://nical.ustc.edu.cn/papers/yangtangyao_ins.pdf.
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