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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Advanced Metaheuristics

• Advanced metaheuristics like SA or population-based methods like
Evolutionary Algorithms perform global search and can obtain better
results than simple local searches like hill climbers.
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• Advanced metaheuristics like SA or population-based methods like
Evolutionary Algorithms perform global search and can obtain better
results than simple local searches like hill climbers.

• In our experiments, we did not try to squeeze out the last bit of
performance out of each algorithm.

• We focussed on simple, understandable concepts.

• By now, you have a general idea about the basic principles of
metaheuristics and how they can be applied to problems from smart
manufacturing.

• They are easy to use and fast to implement.

• But there is so much more, much more can be done!
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• We could have tried using a different representation.

• Picking a good representation where search operators can make
progress is very very important in metaheuristic optimization! [2, 3].

• Global search yields good results but is slow while local search is fast
but prone to premature convergence – why not combine the two?

• The resulting “Memetic Algorithms” [4, 5] often yield the best results! [6]

• But these are other stories. . .
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• Time required for solving NP-hard problems grows exponential with
input size

• Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

• . . . but their time requirement also grows with problem size. . .

• “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [7, 8]

• Example: search in (1 . . . 10)n

• any algorithm (for non-trivial problems) takes longer for larger
inputs. . .

• This is one of the biggest obstacles for practical applications of
metaheuristic optimization, in my opinion.
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1 When I apply an optimization algorithm to an optimization problem, it
will make most of the improvements in solution quality relatively early
on. For more improvements, I will eventually need to wait longer and
longer. This makes sense: The closer I get to the real absolutely best,
globally optimal, solution, the fewer solutions exist that are better than
the one I have. Hence it takes longer and longer to find them. If I
found the global optimum, it will take infinitely long to improve
further. . .
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1 When I apply an optimization algorithm to an optimization problem, it
will make most of the improvements in solution quality relatively early
on.

2 I can develop better and better optimization algorithms. But I need to
invest more and more research and development time to make smaller
and smaller improvements. We have the biggest improvements from
single random sample to may random samples and from there to the
simple Hill Climber. From then to HC+restarts and from there to EAs,
the improvements were smaller. (SA is another improvement of HC,
not the EA.)

• But in an enterprise, even 1% of improvement can mean millions of
RMB. . .
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Summary

• You now know the basic concepts behind metaheuristic optimization.

• You know how to take an optimization problem, maybe from the real
world, and then how to develop, implement, and evaluate and
optimization approach for it.

• The ideas we have exercised here can be applied in many domains.

• You also know at least some of the limiting factors in our field.

• I hope this course was useful and interesting to you.

• You can find a much more comprehensive discussion in our book [1].
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristics for Smart Manufacturing Thomas Weise 12/14

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristics for Smart Manufacturing Thomas Weise 13/14



Bibliography I

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer
Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018–2019. URL
http://thomasweise.github.io/aitoa/. see also [3].

2. Franz Rothlauf. Representations for Genetic and Evolutionary Algorithms, volume 104 of Studies in Fuzziness and Soft
Computing book series (STUDFUZZ). Springer-Verlag, Berlin/Heidelberg, 2 edition, 2006. doi: 10.1007/3-540-32444-5.

3. Thomas Weise. Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany, 2009. URL
http://www.it-weise.de/projects/book.pdf.

4. Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech Concurrent Computation Program C3P 826, California Institute of Technology (Caltech), Caltech Concurrent
Computation Program (C3P), Pasadena, CA, USA, 1989. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9474.

5. William Eugene Hart, James E. Smith, and Natalio Krasnogor, editors. Recent Advances in Memetic Algorithms, volume
166 of Studies in Fuzziness and Soft Computing book series (STUDFUZZ). Springer, Berlin, Heidelberg, 2005. ISBN
978-3-540-22904-9. doi: 10.1007/3-540-32363-5.
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