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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Introduction

• There are many optimization algorithms

• For solving an optimization problem, we want to use the algorithm
most suitable for it.

• What does this mean?
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Performance Indicators

• Key parameters [2–5]
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Performance Indicators

• Two key parameter [2–5]:

1 Solution quality reached after a certain runtime
2 Runtime to reach a certain solution quality

• Measure data samples A containing the results from multiple runs
and estimate key parameters.
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Runtime)

• What actually is runtime?
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Absolute Runtime
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Absolute Runtime

Measure the (absolute) consumed runtime of the algorithm in ms

• Advantages:
• Results in many works reported in this format
• A quantity that makes physical sense
• Includes all “hidden complexities” of algorithm

• Disadvantages:
• Strongly machine dependent
• Granularity of about 10ms: many things seem to happen at the same

time
• Can be biased by “outside effects”, e.g., OS, scheduling, other

processes, I/O, swapping, . . .
• Inherently incomparable

• Hardware, software, OS, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific
application. . .
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Function Evaluations: FEs

Measure the number of fully constructed and tested candidate solutions

• Advantages:
• Results in many works reported in this format (or FEss can be deduced)
• Machine-independent measure
• Cannot be influenced by “outside effects”
• In many optimization problems, computing the objective value is the

most time consuming task

• Disadvantages:
• No clear relationship to real runtime
• Does not contain “hidden complexities” of algorithm
• 1 FE: very different costs in different situations!

• Relevant for comparing algorithms, but not so much for the practical
application
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Runtime

• Rewrite the two key parameters by choosing a time measure [2, 4]
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Which Indicator is better?

• Number FEs needed to reach a certain objective function value

• Prefered by Hansen et al. [2]
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Which Indicator is better?

• Number FEs needed to reach a certain objective function value

• Prefered by Hansen et al. [2]:
• Measures a time needed to reach a target function value ⇒ “Algorithm

A is two/ten/hundred times faster than Algorithm B in solving this
problem”

• Benchmark Perspective: No interpretable meaning to the fact that
Algorithm A reaches a function value that is two/ten/hundred times
smaller than the one reached by Algorithm B
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Which Indicator is better?

• Best objective function value reached after a certain number of FEs

• Prefered by many benchmark suites such as [6].

• Practice Perspective: Best results achievable with given time budget
wins.

• This perspective maybe less suitable for benchmarking, but surely
true in practice.

• This is the scenario in our JSSP example, too.
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Key Parameters

• No official consesus on which view is “better”.
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Key Parameters

• No official consesus on which view is “better”.

• This also strongly depends on the situation.

• Best approach: Evaluate algorithm according to both methods. [4, 5, 7]
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Determining Target Values

• How to determine the right maximum FEs or target function values?

1 From the constraints of a practical application
2 From studies in literature regarding similar or the same problem.
3 From experience.
4 From prior, small-scale experiments.
5 Based on known lower bounds
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Randomized Algorithms

• Special situation: Randomized Algorithms

• Performance values cannot be given absolute!

• 1 run = 1 application of an optimization algorithm to a problem, runs
are indepdentent from all prior runs

• Results can be different for each run!

• Executing algorithm one time does not give reliable information

• Statistical evaluation over a set of runs necessary
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Important Distinction

• Crucial Difference: distribution and sample
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Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1 , 2 , 3 , 4 , 5 , or 6?
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Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
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1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
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Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
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Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
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Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000

Metaheuristics for Smart Manufacturing Thomas Weise 20/59



Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
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Important Distinction

# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
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# throws number f( 1 ) f( 2 ) f( 3 ) f( 4 ) f( 5 ) f( 6 )

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000
4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000
5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000
6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000
7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000
8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000
9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000
11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909
12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833
100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770
10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623
100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664
10’000’000 . . . 0.1667 0.1667 0.1666 0.1668 0.1667 0.1665
100’000’000 . . . 0.1667 0.1666 0.1666 0.1667 0.1667 0.1667

1’000’000’000 . . . 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
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Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1 , 2 , 3 , 4 , 5 , or 6?

• Never foget: All measured parameters are just estimates.
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Important Distinction

• Crucial Difference: distribution and sample

• A sample is what we measure.

• A distribution is the asymptotic result of the ideal process

• Statistical parameters of the distribution can be estimated from a
sample

• Example: Dice Throw

• How likely is it to roll a 1 , 2 , 3 , 4 , 5 , or 6?

• Never foget: All measured parameters are just estimates.

• The parameters of a random process cannot be measured directly, but
only be approximated from multiple measures
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Measures of the Average

• Assume that we have obtained a sample A = (a0, a1, . . . , an−1) of
n observations from an experiment.
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Measures of the Average

• Assume that we have obtained a sample A = (a0, a1, . . . , an−1) of
n observations from an experiment, e.g., we have measured the
quality of the best discovered solutions of 101 independent runs of an
optimization algorithm.

• We usually want to get reduce this set of numbers to a single value
which can give us an impression of what the “average outcome” (or
result quality is).

• Two of the most common options for doing so, for estimating the
“center” of a distribution, are to either compute the arithmetic mean
or the median.
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a
data sample A = (a0, a1, . . . , an−1).
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a
data sample A = (a0, a1, . . . , an−1). It is computed as the sum of all n
elements ai in the sample data A divided by the total number n of values.
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a
data sample A = (a0, a1, . . . , an−1). It is computed as the sum of all n
elements ai in the sample data A divided by the total number n of values.

mean(A) =
1

n

n−1
∑

i=0

ai
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Median

Definition (Median)

The median med(A) is the value separating the bigger half from the lower
half of a data sample or distribution.
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Median

Definition (Median)

The median med(A) is the value separating the bigger half from the lower
half of a data sample or distribution. It is the value right in the middle of
a sorted data sample A = (a0, a1, . . . , an−1) where
ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1).

Metaheuristics for Smart Manufacturing Thomas Weise 23/59



Median

Definition (Median)

The median med(A) is the value separating the bigger half from the lower
half of a data sample or distribution. It is the value right in the middle of
a sorted data sample A = (a0, a1, . . . , an−1) where
ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1).

median(A) =

{

an−1
2

if n is odd

1

2

(

an
2
−1 + an

2

)

otherwise
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Outliers

• Sometimes the data contains outliers [8, 9].
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Outliers

• Sometimes the data contains outliers [8, 9], i.e., observations which are
much different from the other measurements.

• They may be important, real data, e.g., represent some unusual
side-effect in a clinical trial of a new medicine.

• However, they also often represent measurement errors or
observations which have been been disturbed by unusual effects.

• For example, maybe the operating system was updating itself during a
run of one of our JSSP algorithms and, thus, took away much of the
3 minute computation budget.

• We can see that such odd times are possible, as our experimental
data shows that there are sometimes outliers in the time it takes to
create and evaluate the first candidate solution.
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Outliers

Metaheuristics for Smart Manufacturing Thomas Weise 24/59

1 10 100 1000

1
2

0
0

1
6

0
0

1
4

0
0

1
8

0
0

2
0

0
0

2
2

0
0

rs

hc_1swap

hcr_256+5%_1swap

yn4f

t in mst in ms

outliers in terms of the time needed for the ✁rst

function evaluation (FE): Normally, the ✁rst FE

completes in less than 1ms, but in very few of

the runs it needs more than 2ms.



Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)
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• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7
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Example for Data Samples w/o Outlier

• Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)

• We find that
• mean(A) = 1

19

∑

18

i=0
ai =

133

19
= 7 and

• mean(B) = 1

19

∑

18

i=0
bi =

10127

19
= 553, while

• med(A) = a9 = 6 and
• med(B) = b9 = 6.
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Mean vs. Median

• When describing a random process, we should always use the median
instead of the mean. [10]
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2 the mean is useful mainly for symmetric distributions and badly

represents skewed distributions [11].
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Mean vs. Median

• When describing a random process, we should always use the median
instead of the mean. [10], because

1 the median is more robust towards outliers,
2 the mean is useful mainly for symmetric distributions and badly

represents skewed distributions [11].

• The median is the first statistic we should take a look at!
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Measures of Spread

• The average gives us a good impression about the central value or
location of a distribution.
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to the median or whether it may differ very much from the mean.
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Measures of Spread

• The average gives us a good impression about the central value or
location of a distribution.

• It does not tell us much about the range of the data.

• We do not know whether the data we have measured is very similar
to the median or whether it may differ very much from the mean.

• For this, we can compute a measure of dispersion, i.e., a value that
tells us whether the observations are stretched and spread far or
squeezed tight around the center.
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Variance

Definition (Variance)

The variance is the expectation of the squared deviation of a random
variable from its mean.
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Variance

Definition (Variance)

The variance is the expectation of the squared deviation of a random
variable from its mean. The variance var(A) of a data
sample A = (a0, a1, . . . , an−1) with n observations can be estimated as:

var(A) =
1

n− 1

n−1
∑

i=0

(ai −mean(A))2
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Standard Deviation

Definition (Standard Deviation)

The statistical estimate sd(A) of the standard deviation of a data
sample A = (a0, a1, . . . , an−1) with n observations is the square root of
the estimated variance var(A).

sd(A) =
√

var(A)
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Standard Deviation

• Small standard deviations indicate that the observations tend to be
similar to the mean.
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Standard Deviation

• Small standard deviations indicate that the observations tend to be
similar to the mean.

• Large standard deviations indicate that they tend to be far from the
mean.

• Small standard deviations in optimization results and runtime indicate
that the algorithm is reliable.

• Large standard deviations indicate unreliable algorithms, but may also
offer a potential that could be exploited (see hill climber with restarts
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Quantiles

Definition (Quantile)

The q-quantiles are the cut points that divide a sorted data sample
A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) into q-equally
sized parts.
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Quantiles

Definition (Quantile)

The q-quantiles are the cut points that divide a sorted data sample
A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) into q-equally
sized parts. quantilekq be the kth q-quantile, with k ∈ 1 . . . (q − n), i.e.,
there are q − 1 of the q-quantiles.

h = (n− 1)k
q

quantilekq (A) =

{

ah if h is integer
a⌊h⌋ + (h− ⌊h⌋) ∗

(

a⌊h⌋+1 − a⌊h⌋
)

otherwise

.
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{
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Quantiles

Definition (Quantile)

The q-quantiles are the cut points that divide a sorted data sample
A = (a0, a1, . . . , an−1) where ai−1 ≤ ai ∀i ∈ 1 . . . (n− 1) into q-equally
sized parts. quantilekq be the kth q-quantile, with k ∈ 1 . . . (q − n), i.e.,
there are q − 1 of the q-quantiles.

h = (n− 1)k
q

quantilekq (A) =

{

ah if h is integer
a⌊h⌋ + (h− ⌊h⌋) ∗

(

a⌊h⌋+1 − a⌊h⌋
)

otherwise

.

• The quantile21A is the median of A

• 4-quantiles are called quartiles.
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Standard Deviation: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

mean(B) = 533
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A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

mean(B) = 533

varA =
1

19− 1

19
∑

i=1

(ai −mean(a))2 =
198

18
= 11

varB =
1

19− 1

19
∑

i=1

(bi −mean(b))2 =
94 763 306

18
≈ 5 264 628.1
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Standard Deviation: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

mean(B) = 533

varA =
1

19− 1

19
∑

i=1

(ai −mean(a))2 =
198

18
= 11

varB =
1

19− 1

19
∑

i=1

(bi −mean(b))2 =
94 763 306

18
≈ 5 264 628.1

sdA =
√
varA =

√
11 ≈ 3.316 624 79

sdB =
√
varB =

√

94 763 306

18
≈ 2 294.477 743
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Quantiles: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)
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Quantiles: Example

• Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)

quantile14(A) = quantile14(B) = 4.5

quantile34(A) = quantile34(B) = 9

Metaheuristics for Smart Manufacturing Thomas Weise 33/59



Further Example

Metaheuristics for Smart Manufacturing Thomas Weise 34/59

measured result objective value

fr
eq

u
en

cy
: 
h
o
w

 o
ft

en
 w

a
s 

th
e 

v
a
lu

e 
m

ea
su

re
d arithmetic mean mean(A)

median med(A)
mean(A) - stddev(A)

mean(A) + stddev(A)

10% quantile = quantile1
10

90% quantile = quantile9
10



Further Example

Metaheuristics for Smart Manufacturing Thomas Weise 34/59

measured result objective value

fr
eq

u
en

cy
: 
h
o
w

 o
ft

en
 w

a
s 

th
e 

v
a
lu

e 
m

ea
su

re
d arithmetic mean mean(A)

median med(A)
mean(A) - stddev(A)

mean(A) + stddev(A)

10% quantile = quantile1
10

90% quantile = quantile9
10



Further Example
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measured result objective value
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d arithmetic mean mean(A)

median med(A)
mean(A) - stddev(A)

mean(A) + stddev(A)

10% quantile = quantile1
10

90% quantile = quantile9
10

mean - stddev is outside
the measured data range!

Standard deviation here
is not useful here to
represent span of data.



Robust Statistics

• We should prefer robust statistical measures
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Robust Statistics
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Robust Statistics

• We should prefer robust statistical measures, which are:

1 Median
2 Quantiles

• Only if necessary, compute the estimates of the

1 Arithmetic Mean
2 Standard Deviation
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Introduction

• We can now e.g., perform 20 runs each with two different
optimization algorithms on one problem and compute the median of
one of the two performance measures.
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Introduction

• We can now e.g., perform 20 runs each with two different
optimization algorithms on one problem and compute the median of
one of the two performance measures.

• Likely, they will be different.

• For one of the two algorithms, the results will be better.

• What does this mean?

• It means that one of the two algorithms is better with a certain
probability

• If we say “A is better than B”, we have a certain chance α to be
wrong.

• The statement “A is better than B” makes only sense if we can give
an upper bound α for the error probability!
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Statistical Tests

• Compare two data samples A = (a1, a2, . . .) and B = (b1, b2, . . .) and
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• Get a result (e.g., “The median of A is bigger than the median of
B”) together with an error probability p that the conclusion is wrong.
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Statistical Tests

• Compare two data samples A = (a1, a2, . . .) and B = (b1, b2, . . .) and

• Get a result (e.g., “The median of A is bigger than the median of
B”) together with an error probability p that the conclusion is wrong.

• If p is less than a significance level (upper bound) α, we can accept
the conclusion.

• Otherwise, the observation is not significant.

Metaheuristics for Smart Manufacturing Thomas Weise 38/59



Underlying General Idea

• We observe some ongoing process P and make some kind of
observation O.
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Underlying General Idea

• We observe some ongoing process P and make some kind of
observation O.

• Question: Can we say: “The observation O is a good approximation
of what process P does”?

• Question: How likely is this observation O in the case that it is NOT
an approximation of P.

• In other words: What is the probability that O occurs if it does not
represent the statistical distribution of the sampled process P?
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Example for Underlying Idea

• Coin flip game: We flip a coin. If it is heads, I give you 1 RMB, if it is
tails, you give me 1 RMB.
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tails, you give me 1 RMB.

• We play 160 times.

• I win 128 times. You win 32 times.
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Example for Underlying Idea

• Coin flip game: We flip a coin. If it is heads, I give you 1 RMB, if it is
tails, you give me 1 RMB.

• We play 160 times.

• I win 128 times. You win 32 times.

• Did I cheat? Is my coin “fixed”? (i.e., is your chance to win 6= 50%)

• Assumption: I cheat. (alternative hypothesis H1)

• It is impossible to compute my winning probability if I cheated. . .

• Counter-Assumption: I did not cheat. (null hypothesis H0)

• How likely is it that I win at least 128 times if I did not cheat?

• (What we will do right now is called binomial test.)
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =
n
∑

i=z

P (i|n)
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• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =

n
∑

i=z

P (i|n) =
160
∑

i=128

P (i|160) =
160
∑

i=128

[(

160

i

)

1

2160

]
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• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:
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0.5k ∗ (1− 0.5)n−k =

(

n

k

)
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∑
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =

n
∑

i=z

P (i|n) = 1

2160

160
∑

i=128

(

160

i

)

= 1′538′590′628′148′134′280′316′221′828′039′113

365′375′409′332′725′729′550′921′208′179′070′754′913′983′135′744
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =

n
∑

i=z

P (i|n) = 1

2160

160
∑

i=128

(

160

i

)

≈ 1.539 ∗ 1033
3.654 ∗ 1047
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =

n
∑

i=z

P (i|n) = 1

2160

160
∑

i=128

(

160

i

)

≈ 1.539 ∗ 1033
3.654 ∗ 1047

≈ 0.00000000000000421098571
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Example for Underlying Idea

• How likely is it that I win at least 128 times if I did not cheat?

• Then, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

• Flipping a coin n times is a Bernoulli Process

• The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

• For winning at least z = 128 times, we need to compute:

P (k ≥ z|n) =
n
∑

i=z

P (i|n) = 1

2160

160
∑

i=128

(

160

i

)

≈ 1.539 ∗ 1033
3.654 ∗ 1047

≈ 4.211 ➲ 10−15

Metaheuristics for Smart Manufacturing Thomas Weise 41/59



Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not
cheat?

➲

➲
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Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not
cheat?

• If the coin was an ideal coin, the chance that I win at least 128 out of
160 times is about 4 ➲ 10−15.

➲
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Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not
cheat?

• If the coin was an ideal coin, the chance that I win at least 128 out of
160 times is about 4 ➲ 10−15.

• If you claim that I cheat, your chance to be wrong is about 4 ➲ 10−15.
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Example for Underlying Idea

• Question: How likely is it that I win at least 128 times if I did not
cheat?

• If the coin was an ideal coin, the chance that I win at least 128 out of
160 times is about 4 ➲ 10−15.

• If you claim that I cheat, your chance to be wrong is about 4 ➲ 10−15.

• Thus, if we cannot accept a chance p to be wrong higher than a
significance level α = 1%, we can still say:

The observation is significant, I did likely cheat.
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A More Specific Example for Tests

• We want to compare two algorithms A and B on a given problem
instance.
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A More Specific Example for Tests

• We want to compare two algorithms A and B on a given problem
instance.

• We have conducted a small experiment and measured objective values
of their final runs in a few runs in form of the two data sets A and B,
respectively:
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B = (1, 3, 4, 8)
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A More Specific Example for Tests

• We want to compare two algorithms A and B on a given problem
instance.

• We have conducted a small experiment and measured objective values
of their final runs in a few runs in form of the two data sets A and B,
respectively:

A = (2, 5, 6, 7, 9, 10)

B = (1, 3, 4, 8)

• From this, we can estimate the arithmetic means:

mean(a) =
39

6
= 6.5

mean(b) =
16

4
= 4
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A More Specific Example

mean(a) =
39

6
= 6.5

mean(b) =
16

4
= 4

• It looks like algorithm B may produce the smaller objective values.
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A More Specific Example

mean(a) =
39

6
= 6.5

mean(b) =
16

4
= 4

• It looks like algorithm B may produce the smaller objective values.

• But is this assumption justified based on the data we have?
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A More Specific Example

mean(a) =
39

6
= 6.5

mean(b) =
16

4
= 4

• It looks like algorithm B may produce the smaller objective values.

• But is this assumption justified based on the data we have?

• Is the difference between mean(A) and mean(B) significant at a
threshold of α = 2?
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A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we
cannot calculate anything.
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A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we
cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference
did just happen by chance and, well, A ≡ B.
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did just happen by chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the
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union set O with 10 elements:
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A More Specific Example

• If B is truly better than A, which is our hypothesis H1, then we
cannot calculate anything.

• Let us therefore assume as null hypothesis H0 the observed difference
did just happen by chance and, well, A ≡ B.

• Then, this would mean that the data samples A and B stem from the
same algorithm (as A ≡ B).

• The division into the two sets would only be artificial, an artifact of
our experimental design.

• Instead of having two data samples, we only have one, namely the
union set O with 10 elements:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O
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• Any division C into two sets with 4 and 6 elements has the same
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• There are
(
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= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• Use a program to test the combinations
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• Use a program to test the combinations
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Listing: Small tester program. . .

public class EnumerateAtLeastAsExtremeScenarios {

public static void main(String [] args) {

int meanLowerOrEqualTo4 = 0; //how often did we find a mean <= 4

int totalCombinations = 0; //total number of tested combinations

for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10

for (int j = (i - 1); j > 0; j--) { // we can conveniently iterate

for (int k = (j - 1); k > 0; k--) { // over all 4-element combos

for (int l = (k - 1); l > 0; l--) { // with 4 such nested loops

if (((i + j + k + l) / 4.0) <= 4) { // check for the extreme cases

meanLowerOrEqualTo4 ++; } // count the extreme case

totalCombinations ++; // add up combos , to verify

} } } }

System.out.println(meanLowerOrEqualTo4 + " " + totalCombinations);

}

}



A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• There are 27 such combinations with a mean of less or equal 4.
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• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• There are 27 such combinations with a mean of less or equal 4.

• The probability p to observe a situation at least as extreme as A
and B under H0 is thus:
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A More Specific Example

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Any division C into two sets with 4 and 6 elements has the same
probability

• |O| = 10

• There are
(

10

4

)

= 210 different ways to draw 4 (or 6) elements from O

• If H0 holds, all have the same probability

• There are 27 such combinations with a mean of less or equal 4.

• The probability p to observe a situation at least as extreme as A
and B under H0 is thus:

p =
#cases C : mean(c) ≤ mean(b)

#all cases
=

27

210
=

9

70
≈ 0.1286
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A More Specific Example

• Extreme cases into the other direction are the same:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
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A More Specific Example

• Extreme cases into the other direction are the same:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

∑

∀o∈O

o =

10
∑

o=1

o =
10(10 + 1)

2
= 55

Metaheuristics for Smart Manufacturing Thomas Weise 47/59



A More Specific Example

• Extreme cases into the other direction are the same:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

∑

∀o∈O

o =

10
∑

o=1

o =
10(10 + 1)

2
= 55

mean(b) =

(

1

4

∑

∀b∈B

b

)

≤ 4 =⇒

(

∑

∀b∈B

b

)

≤ 4 ∗ 4 ≤ 16
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A More Specific Example

• Extreme cases into the other direction are the same:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

∑

∀o∈O

o =

10
∑

o=1

o =
10(10 + 1)

2
= 55

mean(b) =

(

1

4

∑

∀b∈B

b

)

≤ 4 =⇒

(

∑

∀b∈B

b

)

≤ 4 ∗ 4 ≤ 16

O = A ∪B =⇒
∑

∀a∈A

a =

(

∑

∀o∈O

o

)

−

(

∑

∀b∈B

b

)
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A More Specific Example

• Extreme cases into the other direction are the same:

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

∑
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2
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1

4
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∀b∈B

b
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b
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(

∑

∀a∈A

a

)
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• So – of course – we could have also done the test the other way
around with the same result!
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A More Specific Example

• The probability p to observe a constallation at least as extreme as A
or B under H0 is thus:

p =
#cases C : mean(c) ≤ mean(b)

#all cases
=
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=
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≈ 0.1286
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#all cases
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210
=

9

70
≈ 0.1286

• If we claim that A and B are from distributions with different
means. . .

• . . . we are wrong with probability p ≈ 0.13

• At a significance level of α = 2%, the means of A and B are not
significantly different! (2% < 0.13)

• Actually: This here is an example for an Randomization Test [12, 13].

• The method here is only feasible for small sample sets, real tests are
more sophisticated
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Statistical Tests: Types

• Two types of tests:
1 Parametric Tests

• Assume that the data samples follow a certain distribution
• Examples [14]: t-test (assumes normal distribution)
• The distribution of the data we measure is unknown. . .
• . . . and usually not normal, see further example on statistical measures.
• The condition for using such tests cannot be met (known distribution)
• Parametric Tests cannot be used here!
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Statistical Tests: Types

• Two types of tests:

1 Parametric Tests
2 Non-Parametric Tests

• Make no assumption about the distribution from which the data was
sampled.

• Examples [10]: the Wilcoxon rank sum test with continuity correction
(also called Mann-Whitney U test [15–18], Fisher’s Exact Test [19], the
Sign Test [16, 20], the Randomization Test [12, 13], and
Wilcoxon’s Signed Rank Test [21].

• These tests are more robust (less assumptions)
• This is the kind of test we want to use!
• They work similar to the previous test example, but with larger sample

sizes
• Often, the most suitable test is the Mann-Whitney U test.
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Compare N ≥ 2 Algorithms

• For comparing N ≥ 2 algorithms, we can compare any two algorithms
with each other
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The question of termination

• Literature usually reports tuples “(instance, result, runtime)”

• Problem: Papers often use a different termination criterion

• Anytime Algorithms [23]: Always have approximate solution, refine it
iteratively

• One measure point per run or instance does not tell the whole story!
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The question of termination

• Literature usually reports tuples “(instance, result, runtime)”

• Problem: Papers often use a different termination criterion

• Anytime Algorithms [23]: Always have approximate solution, refine it
iteratively

• One measure point per run or instance does not tell the whole story!

• Using statistical tests cannot solve this issue (still: at one point in
time).

• We Should have the “whole curves”! . . . ideally median curves over
several runs!
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Progress Diagrams

• Plot the median of the best objective value reached over time, over
all runs, on a given benchmark instance or aggregated over several
instances

• The smaller the value, the better
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Summary

• The optimization algorithms we consider in this lecture are
randomized.

• Comparing them must be done in a statistical way using data from
multiple runs

• Two key performance indicators:

1 best result after fixed number of FEs/runtime
2 number of FEs/runtime needed to get certain result

• For every single algorithm/configuration, compute:

1 median of key performance indicators
2 quartiles or top/bottom 1% quantile
3 don’t trust arithmetic mean or standard deviation

• Do not only collect one data sample per run, try to plot progress
curves

• For given problem class: Look for well-known benchmarks!
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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