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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Idea

• So far, we have only discussed one variant of local search: the hill
climbing algorithm.
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Idea

• So far, we have only discussed one variant of local search: the hill
climbing algorithm.

• A hill climbing algorithm is likely to get stuck at local optima, which
may vary in quality.

• We found that we can utilize this variance of the result quality by
restarting the optimization process when it could not improve any
more.

• Such a restart is costly, as it forces the local search to start
completely from scratch (while we, of course, remember the best-ever
solution in a variable hidden from the algorithm).
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Idea

• A schedule which is a local optimum probably is somewhat similar to
what the globally optimal schedule would look like.

• It must, obviously, also be somewhat different.

• This difference is shaped such that it cannot be conquered by the
unary search operator that we use.

• If we do a restart, we also dispose of the similarities to the global
optimum that we have already discovered.

• We will subsequently spend time to re-discover them in the hope that
this will happen in a way that allows us to eventually reach the global
optimum itself.

• But maybe there is a less-costly way?
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Simulated Annealing

• Simulated Annealing (SA) [2–5] is a local search which provides another
approach to escape local optima [6, 7].
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Simulated Annealing

• Simulated Annealing (SA) [2–5] is a local search which provides another
approach to escape local optima [6, 7].

• Instead of restarting the algorithm when reaching a local optima, it
tries to preserve the parts of the current best solution by permitting
search steps towards worsening objective values.

• This algorithm therefore introduces three principles:

1 Worse candidate solutions are sometimes accepted, too.
2 The probability P of accepting them is decreases with increasing

differences ∆E of the objective values to the current best solution.
3 The probability also decreases with the number of performed search

steps.
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Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

• The metal is heated to, like 0.4 * melting temperature

Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

• The metal is heated to, like 0.4 * melting temperature

• Ions inside metal can move around

Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

• The metal is heated to, like 0.4 * melting temperature

• Ions inside metal can move around

• Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal → metal becomes more stable

Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

• The metal is heated to, like 0.4 * melting temperature

• Ions inside metal can move around

• Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal → metal becomes more stable

• Due to their movement, ions may temporarily assume positions of
high energy

Metaheuristics for Smart Manufacturing Thomas Weise 10/32



Annealing of Metal

• Cold working metal causes/increases defects in crystal structure

• After cold working, annealing [8] is performed

• The metal is heated to, like 0.4 * melting temperature

• Ions inside metal can move around

• Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal → metal becomes more stable

• Due to their movement, ions may temporarily assume positions of
high energy

• An initial, brittle crystal structure is transformed to a much better
configuration by stepping over good and bad states
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Metropolis Algorithm
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• Metropolis [9] wants to simulate this process.
• First, we need to understand: What is temperature T?
• Each material consists of many different particles (atoms, ions,
molecules, etc.)
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• Each material consists of many different particles

• The micro-state of a material is the tuple of the positions and
velocities of all particles – this is uninteresting

• With each such state, there is an energy E associated: If many of the
particles move around quickly or are in an unfavourable position, the
energy E is high and if they form a nice crystal and don’t move, the
energy is low

• Now we consider a value of E as a macro-state of the system
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Metropolis Algorithm

• Metropolis [9] wants to simulate this process.
• First, we need to understand: What is temperature T?
• Each material consists of many different particles
• The micro-state of a material is the tuple of the positions and
velocities of all particles – this is uninteresting

• With each such state, there is an energy E associated: If many of the
particles move around quickly or are in an unfavourable position, the
energy E is high

• Now we consider a value of E as a macro-state of the system and to
each such state, there belong many possible micro-states

• A system at temperature T has the probability e
−

E

kB∗T to be in a
macro state with energy E.

kb = 1.380650524 ∗ 10−27J/K is the Boltzmann constant (1)
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Metropolis Algorithm

• Metropolis [9] wants to simulate this process.

• First, we need to understand: What is temperature T?

• Each material consists of many different particles

• The micro-state of a material is the tuple of the positions and
velocities of all particles – this is uninteresting

• With each such state, there is an energy E associated: If many of the
particles move around quickly or are in an unfavourable position, the
energy E is high

• Now we consider a value of E as a macro-state of the system and to
each such state, there belong many possible micro-states

• A system at temperature T has the probability e
−

E

kB∗T to be in a
macro state with energy E.

• In other words: The higher the temperature, the higher the chance to
be in a high-energy state
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Metropolis Algorithm

• Based on this, Metropolis [9] develops a simulation for annealing in
form of a randomized algorithm
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• s1 be the current configuration of the ions and s2 a possible new
configuration, T be the temperature (decreasing over time)

∆E = E (s2)− E (s1) (1)

• ∆E is the energy difference between the states

P (∆E) =

{

e
−
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kB∗T if ∆E > 0
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Metropolis Algorithm

• Based on this, Metropolis [9] develops a simulation for annealing in
form of a randomized algorithm

• s1 be the current configuration of the ions and s2 a possible new
configuration, T be the temperature (decreasing over time)

∆E = E (s2)− E (s1) (1)

• ∆E is the energy difference between the states

P (∆E) =

{

e
−

∆E

kB∗T if ∆E > 0
1 otherwise

(2)

• P (∆E) is the probability that the new state s2 will be accepted
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4 If it is worse, it may stil be accepted as current state with a certain

probability.
5 In the end, the system usually arrives in a very good state.

• Wait.

Metaheuristics for Smart Manufacturing Thomas Weise 14/32
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• Metropolis’ simulation has the following behavior:

1 It starts with a random, probably bad solution.
2 In each step, a new solution which is similar to the current solution is

created using the unary search operation.
3 If the new state is better, it becomes the current solution.
4 If it is worse, it may stil be accepted as current solution with a certain

probability.
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From Simulating Annealing to Simulated Annealing

• Metropolis’ simulation has the following behavior:

1 It starts with a random, probably bad solution.
2 In each step, a new solution which is similar to the current solution is

created using the unary search operation.
3 If the new state is better, it becomes the current solution.
4 If it is worse, it may stil be accepted as current solution with a certain

probability.
5 In the end, the system usually arrives at a very good solution.

• Wait. Could we just. . . . . . and so Simulated Annealing was invented.
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Realization of Idea

• ∆E be the difference between the objective value of the freshly
sampled point x′ from the search space and the current best point x
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• ∆E be the difference between the objective value of the freshly
sampled point x′ from the search space and the current best point x:

∆E = f(γ(x′))− f(γ(x)) (3)

• ∆E < 0 means that x′ is better than x since f(γ(x′)) < f(γ(x)).
• ∆E > 0 means that the new solution is worse.
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Realization of Idea

• ∆E be the difference between the objective value of the freshly
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• The probability P to overwrite x with x′ then be

P =







1 if ∆E ≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(4)
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Realization of Idea

• ∆E be the difference between the objective value of the freshly
sampled point x′ from the search space and the current best point x:

∆E = f(γ(x′))− f(γ(x)) (3)

• The probability P to overwrite x with x′ then be

P =







1 if ∆E ≤ 0

e−
∆E

T if ∆E > 0 ∧ T > 0
0 otherwise (∆E > 0 ∧ T = 0)

(4)

• If the new candidate solution is actually better than the current best
one, i.e., ∆E < 0, then we will definitely accept it.

• If the new solution is worse (∆E > 0), the acceptance probability then
gets smaller the larger ∆E is and gets smaller the smaller the so-called
“temperature” T ≥ 0 is.
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Annealing

• The temperature T > 0 and the objective value difference ∆E > 0

enter the equation in an exponential term e−
∆E

T and it holds that
e−a < e−b∀a > b and e−a ∈ [0, 1]∀a > 0.
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T and it holds that
e−a < e−b∀a > b and e−a ∈ [0, 1]∀a > 0.

• The temperature decreases and approaches zero with the algorithm
iteration τ , i.e., the performed objective function evaluations.

• The optimization process is initially “hot.”

• Then, the search progresses wildly any may accept even significantly
worse solutions.

• As the process “cools” down, the search tends to accept fewer and
fewer worse solutions and more likely such which are only a bit worse.

• Eventually, at temperature T = 0, the algorithm only accepts better
solutions.

• T is actually a monotonously decreasing function T (τ) called the
“temperature schedule” and it holds that limτ→∞ T (τ) = 0.
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Temperature Schedule

• There are two common types of temperature schedules, i.e., methods
to decrease over time

1 the exponential schedule, with start temperature Ts, it has a
parameter ǫ ∈ (0,+∞)

T (τ) = Ts ∗ (1− ǫ)τ−1 (5)

2 the logarithmic schedule, with start temperature Ts, it has a
parameter ǫ ∈ (0, 1)

T (τ) =
Ts

ln (ǫ(τ − 1) + e)
(6)
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Abstract Class for Temperature Schedules

Listing: Abstract Class for Temperature Schedules.

public abstract class TemperatureSchedule {

public abstract double temperature(long tau);

}
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Exponential Temperature Schedule

Listing: Exponential Temperature Schedule.

public class Exponential extends TemperatureSchedule {

public double temperature(long tau) {

return (this.startTemperature * Math.pow(

(1d - this.epsilon), (tau - 1L)));

}

}
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Logarithmic Temperature Schedule

Listing: Logarithmic Temperature Schedule.

public class Logarithmic extends TemperatureSchedule {

public double temperature(long tau) {

if (tau >= Long.MAX_VALUE) return 0d;

return (this.startTemperature / Math.log(

((tau - 1L) * this.epsilon) + Math.E));

}

}
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How to use?

• We want to use the temperature schedules such that the probability
of accepting reasonably worse solution decreases reasonably smoothly
during the optimization process.
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How to use?

• We want to use the temperature schedules such that the probability
of accepting reasonably worse solution decreases reasonably smoothly
during the optimization process.

• We have 3min of runtime.

• We found from our previous experiments that a hill climber can do
about 30’000’000 steps on swv15 and 97’000’000 on abz7 within
these 3min.

• We know that schedules that an acceptable scale of “worse” is
somewhere around 1 to 10 from the best solutions we have seen so
far.

• We make the following choices. . .
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Simulated Annealing Algorithm

• Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions
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• Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

• Simple Concept:

1 create random initial solution, which also becomes the first “current
solution”

2 make a modified copy of the current solution
3 if it is better: it becomes the new current solution
4 if it is worse: accept it as current solution with probability P (∆E, τ)

(which gets smaller over time and also the smaller the worse the new
solution is) or otherwise reject it.
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Simulated Annealing Algorithm

• Simulated Annealing = Hill Climbing + probabilistically accepting
worse solutions

• Simple Concept:

1 create random initial solution, which also becomes the first “current
solution”

2 make a modified copy of the current solution
3 if it is better: it becomes the new current solution
4 if it is worse: accept it as current solution with probability P (∆E, τ)

(which gets smaller over time and also the smaller the worse the new
solution is) or otherwise reject it.

5 go back to 2 (until the time is up)
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Section Outline

1 Introduction

2 What is “Annealing”?

3 Simulated Annealing for Optimization

4 Experiment and Analysis
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So what do we get?

• We test the following configurations
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So what do we get?

• We test the following configurations

1 sa e 20 2e-7 1swap: Simulated Annealing with Exponential Schedule
at Ts = 20 with ǫ = 2 ∗ 10−7

2 sa e 20 4e-7 1swap: Simulated Annealing with Exponential Schedule
at Ts = 20 with ǫ = 4 ∗ 10−7

3 sa e 20 8e-7 1swap: Simulated Annealing with Exponential Schedule
at Ts = 20 with ǫ = 8 ∗ 10−7

4 sa l 10 1swap: Simulated Annealing with Logarithmic Schedule at
Ts = 10 with ǫ = 1
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So what do we get?

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 ea4096 1swap 5 680 712 712 10 20s 4’145’924
sa e 20 2e-7 1swap 663 673 672 5 92s 22’456’822
sa e 20 4e-7 1swap 658 674 675 5 55s 13’388’301
sa e 20 8e-7 1swap 663 675 675 6 36s 8’625’161
sa l 10 1swap 659 672 671 4 86s 21’271’077

la24 ea4096 1swap 5 945 976 975 15 4s 1’601’925
sa e 20 2e-7 1swap 938 949 946 8 27s 12’358’941
sa e 20 4e-7 1swap 935 949 946 9 16s 7’135’423
sa e 20 8e-7 1swap 935 951 950 8 9s 4’044’217
sa l 10 1swap 938 953 950 11 7s 3’210’824

swv15 ea4096 1swap 5 3413 3543 3539 66 169s 22’266’887
sa e 20 2e-7 1swap 2937 2990 2988 28 148s 21’949’073
sa e 20 4e-7 1swap 2941 2993 2993 28 128s 18’244’751
sa e 20 8e-7 1swap 2936 3000 3002 28 111s 16’029’528
sa l 10 1swap 2964 3021 3018 30 141s 21’252’052

yn4 ea4096 1swap 5 1034 1068 1068 18 37s 5’943’196
sa e 20 2e-7 1swap 973 985 985 5 113s 20’676’041
sa e 20 4e-7 1swap 971 987 986 7 68s 12’193’934
sa e 20 8e-7 1swap 972 988 988 7 58s 10’178’219
sa l 10 1swap 975 997 996 11 108s 19’850’143
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So what do we get?

ea4096 1swap 5: (4096 + 4096) EA with 5% crossover

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14



So what do we get?

sa e 20 4e-7 1swap: SA with exp. Schedule (Ts = 20, ǫ = 4 ∗ 10−7)

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14



So what do we get?

ea4096 1swap 5: (4096 + 4096) EA with 5% crossover

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 200 400 600 800

0

1

2

3

4

5

6

7

8

9



So what do we get?

sa e 20 4e-7 1swap: SA with exp. Schedule (Ts = 20, ǫ = 4 ∗ 10−7)

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 200 400 600 800

0

1

2

3

4

5

6

7

8

9



So what do we get?

ea4096 1swap 5: (4096 + 4096) EA with 5% crossover

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

5

6

7

8

9



So what do we get?

sa e 20 4e-7 1swap: SA with exp. Schedule (Ts = 20, ǫ = 4 ∗ 10−7)

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

5

6

7

8

9



So what do we get?

ea4096 1swap 5: (4096 + 4096) EA with 5% crossover

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19



So what do we get?

sa e 20 4e-7 1swap: SA with exp. Schedule (Ts = 20, ǫ = 4 ∗ 10−7)

Metaheuristics for Smart Manufacturing Thomas Weise 27/32

0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19



Progress over Time

What progress does the algorithm make over time?
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Summary

• Simulated Annealing outperformed all algorithms that we have tested
before.
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Summary

• Simulated Annealing outperformed all algorithms that we have tested
before.

• But it also requires us to put more knowledge into the configuration:
• We need to know approximately how many algorithm steps we can do

within the computational budget.
• We need to know what “a bit worse” means in terms of the objective

function.
• We then need to determine a starting temperature Ts and a

parameter ǫ to tune the temperature schedule accordingly.

• Perspective:
• An Evolutionary Algorithm allows us to pick a behavior in between a

hill climber and a random sampling algorithm by choosing a small or
large population size.

• The Simulated Annealing algorithm allows for a smooth transition of a
random search behavior towards a hill climbing behavior over time.

• Compared to the hill climber with restarts, it offers a “softer” way to
escape from local optima which sacrifices less solution information.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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