
Metaheuristics for Smart Manufacturing
5. Evolutionary Algorithms

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Introduction

2 Algorithm Concept: Population

3 Experiment and Analysis: Population

4 Algorithm Concept: Binary Operator

5 Experiment and Analysis: Binary Operator

The slides are available at http://iao.hfuu.edu.cn/155, the

book at http://thomasweise.github.io/aitoa, and the source

code at http://www.github.com/thomasWeise/aitoa-code

Metaheuristics for Smart Manufacturing Thomas Weise 2/28

c
o
u
rs
e
b
o
o
k

c
o
u
rs
e
m
a
t
e
ri
a
l

http://iao.hfuu.edu.cn/155
http://thomasweise.github.io/aitoa
http://www.github.com/thomasWeise/aitoa-code


An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Introduction

• Hill Climbers are local search.

• They begin at some point x in the search space and then investigate
its neighborhood N(x).

• The neighborhood is defined by the (unary) search operator, in our
case 1swap.

• If they reach a local optimum, they are trapped.

• We then can restart them, but this means

1 to start again at “0” and
2 they may still land again in a local optimum.

• Idea: Why not investigate multiple points in the search space at once
and use the additional information in a clever way?
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Population-Based Metaheuristics

• Population-based metaheuristics [2–7] try to maintain a set of points in
the search space which are iteratively refined.
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Population-Based Metaheuristics

• Population-based metaheuristics [2–7] try to maintain a set of points in
the search space which are iteratively refined.

• This has a couple of advantages:
• we are less likely to get trapped in a local optimum.
• we are more likely to find a better (local) optimum.
• if we have different good points from the search space in our

population, we can try to use this additional information. . .

Metaheuristics for Smart Manufacturing Thomas Weise 6/28



Section Outline

1 Introduction

2 Algorithm Concept: Population

3 Experiment and Analysis: Population

4 Algorithm Concept: Binary Operator

5 Experiment and Analysis: Binary Operator

Metaheuristics for Smart Manufacturing Thomas Weise 7/28



(µ+ λ) EA

• Evolutionary Algorithms (EAs) are the most successful family of
population-based metaheuristics. [2, 4–6]
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(µ+ λ) EA

• Evolutionary Algorithms (EAs) are the most successful family of
population-based metaheuristics. [2, 4–6]

• Here we focus on (µ+ λ) EAs, which work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the population, select the µ best points as “parents” for the next
“generation”, discard the remaining λ points.

3 Generate λ new “offspring” points by applying a unary search operator
(which creates a randomly modified copy from a selected point).

4 Evaluate the λ offsprings, add them to the population, and go back to
step 2 .
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Setup

• The hill climber had no parameters.

• The hill climber with restarts had 2, namely the starting steps until
restarts and their increment (256 and 5% in case of
hcr 256+5% 1swap, respectively).

• Our basic (µ+ λ) EA also has two, namely µ and λ.

• Let us choose µ = λ and test the two values µ = λ = 2048 and
µ = λ = 4096.
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 hcr 256+5% 1swap 723 742 743 7 21s 5’681’591
ea2048 1swap 695 719 718 13 11s 2’581’614
ea4096 1swap 688 716 716 12 19s 4’416’129

la24 hcr 256+5% 1swap 970 997 998 9 6s 3’470’368
ea2048 1swap 945 983 983 16 2s 927’000
ea4096 1swap 941 980 978 14 5s 1’897’387

swv15 hcr 256+5% 1swap 3701 3850 3857 40 60s 9’874’102
ea2048 1swap 3395 3535 3530 78 128s 19’290’521
ea4096 1swap 3397 3533 3533 54 171s 25’073’630

yn4 hcr 256+5% 1swap 1095 1129 1130 14 22s 4’676’669
ea2048 1swap 1032 1082 1082 22 26s 4’792’622
ea4096 1swap 1020 1076 1074 21 39s 6’907’692
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So what do we get?

hcr 256+5% 1swap: HC with restarts after 256+5% non-improv steps
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So what do we get?
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Progress over Time

What progress does the algorithm make over time?
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• Or the other way around: A hill climber is a (1 + 1) EA, i.e., an EA
where we always remember the µ = 1 best solutions and use them as
parents for λ = 1 new solutions, which we create using the unary
modification operator as modified copy of the µ = 1 parent.
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• We can imagine an EA to be a generalized version of a hill climber

• Or the other way around: A hill climber is a (1 + 1) EA, i.e., an EA
where we always remember the µ = 1 best solutions and use them as
parents for λ = 1 new solutions, which we create using the unary
modification operator as modified copy of the µ = 1 parent.

• On the other hand: For the first µ+ λ (random) solutions, the EA
always behaves exactly like a random sampling algorithm.

• Actually, for µ+ λ ≥ η, with an η large enough to completely exhaust
our computational budget (here: 3min), the EA is a random sampling
algorithm.

• An EA is a way to choose an algorithm behavior in between
random sampling and hill climbing!
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• An EA is a way to choose an algorithm behavior in between
random sampling and hill climbing!

• The parameter µ basically allows us to “tune” between these two
behaviors [8]

• If we pick it small, our algorithm becomes more “greedy”.

• It will investigate (exploit) the neighborhood current best solutions
more eagerly, which means that it will trace down local optima faster
but be trapped more easily in local optima as well.

• The bigger µ, the more points in the search space are maintained and
the more likely are we do to good “global” search, we do more
exploration. We pay for that by a slower exploitation (investigation)
of the current best solution (because we always work on all µ points,
not just one).

• This is dilemma of “Exploration versus Exploitation” [2, 9–11].
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Binary Search Operator

• We now have more than one candidate solution in our “population”

• But we only use one existing point from X as “blueprint” when we
create a new one.

• Why can’t we use two instead?
• If two candidate solutions have been selected, they are probably good.
• If two candidate solutions are good, they may have different positive

characteristics.
• Let’s try to create a new “offspring” solution which inherits

characteristics from both “parents”.
• It could maybe inherit the positiv traits and combine them. . .

• This is the idea of the crossover or recombination operator in
Evolutionary Algorithms. [2, 3, 7]

Metaheuristics for Smart Manufacturing Thomas Weise 16/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

3 Generate λ new “offspring” points

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

3 Generate λ new “offspring” points by

1 applying a binary recombination operator which combines two existing
parents to one new offspring

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

3 Generate λ new “offspring” points by

1 applying a binary recombination operator which combines two existing
parents to one new offspring with probability cr

Metaheuristics for Smart Manufacturing Thomas Weise 17/28



(µ+ λ) EA with Recombination

• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

3 Generate λ new “offspring” points by either

1 applying a binary recombination operator which combines two existing
parents to one new offspring with probability cr or

2 applying a unary search operator which creates a randomly modified
copy from a parent as offspring.

Metaheuristics for Smart Manufacturing Thomas Weise 17/28
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• The (µ+ λ) EAs with recombination work as follows:

1 Generate a population of µ+ λ random points in the search space (and
map them to solutions and evaluate them).

2 From the complete population, select the µ best points as “parents”
for the next “generation”, discard the remaining λ points.

3 Generate λ new “offspring” points by either

1 applying a binary recombination operator which combines two existing
parents to one new offspring with probability cr or

2 applying a unary search operator which creates a randomly modified
copy from a parent as offspring.

4 Evaluate the λ offsprings, add them to the population, and go back to
step 2 .
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1 Repeat until new point in search space is completely constructed

1 Randomly choose one of the two input points x1 or x2 with equal
probability as source x for the next job id.

2 Select the first job id J in x that has not yet been used.
3 Append the job id J of this sub-job to the new point
4 Mark the first unmarked occurrence of J as “already used” in x1.
5 Mark the first unmarked occurrence of J as “already used” in x2.
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The Binary Operator in Java

Listing: Recombination for our Representation

public class JSSPBinaryOperatorSequence implements IBinarySearchOperator <int[]> {

public void apply(int[] x0, int[] x1, int[] dest , Random random) {

boolean [] done_x0 = this.m_done_x0;

Arrays.fill(done_x0 , false);

boolean [] done_x1 = this.m_done_x1;

Arrays.fill(done_x1 , false);

int length = done_x0.length;

int desti = 0, x0i = 0, x1i = 0;

for (;;) {

int add = random.nextBoolean () ? x0[x0i] : x1[x1i];

dest[desti ++] = add;

if (desti >= length) return;

for (int i = x0i;; i++) {

if ((x0[i] == add) && (! done_x0[i])) {

done_x0[i] = true; break;

}

}

while (done_x0[x0i]) x0i++;

for (int i = x1i;; i++) {

if ((x1[i] == add) && (! done_x1[i])) {

done_x1[i] = true; break;

}

}

while (done_x1[x1i]) x1i++;

}

}

}
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So what do we get?

• We now test the same EAs as before, but apply the binary operator at
5%
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So what do we get?

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 ea2048 1swap 695 719 718 13 11s 2’581’614
ea4096 1swap 688 716 716 12 19s 4’416’129
ea2048 1swap 5 689 713 712 11 12s 2’641’808
ea4096 1swap 5 680 712 712 10 20s 4’145’924

la24 ea2048 1swap 945 983 983 16 2s 927’000
ea4096 1swap 941 980 978 14 5s 1’897’387
ea2048 1swap 5 948 980 982 15 2s 789’223
ea4096 1swap 5 945 976 975 15 4s 1’601’925

swv15 ea2048 1swap 3395 3535 3530 78 128s 1’9290’521
ea4096 1swap 3397 3533 3533 54 171s 25’073’630
ea2048 1swap 5 3390 3545 3536 81 117s 15’999’092
ea4096 1swap 5 3413 3543 3539 66 169s 22’266’887

yn4 ea2048 1swap 1032 1082 1082 22 26s 4’792’622
ea4096 1swap 1020 1076 1074 21 39s 6’907’692
ea2048 1swap 5 1027 1072 1072 19 19s 3’212’839
ea4096 1swap 5 1034 1068 1068 18 37s 5’943’196
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So what do we get?

ea4096 1swap: (4096 + 4096) EA without Recombination
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Progress over Time

What progress does the algorithm make over time?
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Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 ea2048 1swap 695 719 718 13 11s 2’581’614
ea4096 1swap 688 716 716 12 19s 4’416’129
ea2048 1swap 5 689 713 712 11 12s 2’641’808
ea4096 1swap 5 680 712 712 10 20s 4’145’924

la24 ea2048 1swap 945 983 983 16 2s 927’000
ea4096 1swap 941 980 978 14 5s 1’897’387
ea2048 1swap 5 948 980 982 15 2s 789’223
ea4096 1swap 5 945 976 975 15 4s 1’601’925

swv15 ea2048 1swap 3395 3535 3530 78 128s 1’9290’521
ea4096 1swap 3397 3533 3533 54 171s 25’073’630
ea2048 1swap 5 3390 3545 3536 81 117s 15’999’092
ea4096 1swap 5 3413 3543 3539 66 169s 22’266’887

yn4 ea2048 1swap 1032 1082 1082 22 26s 4’792’622
ea4096 1swap 1020 1076 1074 21 39s 6’907’692
ea2048 1swap 5 1027 1072 1072 19 19s 3’212’839
ea4096 1swap 5 1034 1068 1068 18 37s 5’943’196

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget.

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget, so it may be too late to reap any benefit from the binary
operator.

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget, so it may be too late to reap any benefit from the binary
operator.

• This is another lesson: Any statement about the result quality is only
valid if accompanied by a statement about the consumed runtime!

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget, so it may be too late to reap any benefit from the binary
operator.

• This is another lesson: Any statement about the result quality is only
valid if accompanied by a statement about the consumed runtime!

• If I just let the algorithms run longer, I could probably report better
results. . .

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget, so it may be too late to reap any benefit from the binary
operator.

• This is another lesson: Any statement about the result quality is only
valid if accompanied by a statement about the consumed runtime!

• If I just let the algorithms run longer, I could probably report better
results. . .

• . . . which would be useless for our scenario, though.

Metaheuristics for Smart Manufacturing Thomas Weise 24/28



Binary Operator Results

• The improvements that the binary operator offered us in this scenario
are quite small.

• Nethertheless, in three out of four instances, it gives us better results.

• In swv15, we already are close to the limit of the computational
budget, so it may be too late to reap any benefit from the binary
operator.

• This is another lesson: Any statement about the result quality is only
valid if accompanied by a statement about the consumed runtime!

• If I just let the algorithms run longer, I could probably report better
results. . .

• . . . which would be useless for our scenario, though.

• Anyway, overall, using the binary operator brings some gain.
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Summary

• Population-based metaheuristics like Evolutionary Algorithms perform
global search and can obtain better results than local searches like hill
climbers.
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Summary

• Population-based metaheuristics like Evolutionary Algorithms perform
global search and can obtain better results than local searches like hill
climbers.

• But they are also considerably slower.

• Sometimes, operators do not work as well as expected (e.g., the
binary search operator here).

• Sometimes, the reason may be that we just do not have enough time
to benefit from it.

• This can be different for any optimization problem.

• Sometimes a different operator might work better.

• This holds for all algorithm modules.

• We always need to check whether the overall algorithm performs
better with or without the module.

• . . . but even small improvements might be worthwhile.
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