

Metaheuristics for Smart Manufacturing 4. Stochastic Hill Climbing

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn http://iao.hfuu.edu.cn

Hefei University, South Campus 2 Faculty of Computer Science and Technology Institute of Applied Optimization 230601 Shushan District, Hefei, Anhui, China Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 合肥学院 南艳湖校区/南2区 计算机科学与技术系 应用 优化研究所 中国 安徽省 合肥市 蜀山区 230601 经汶技术开发区 镍矮大道00号

Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- Improved Algorithm Concept 2
- Combining the Two Ideas

The slides are available at http://iao.hfuu.edu.cn/155, the book at http://thomasweise.github.io/aitoa, and the source code at http://www.github.com/thomasWeise/aitoa-code

An Introduction to Optimization Algorithms

The contents of this course are available as free electronic book "An Introduction to Optimization Algorithms" [1] at http://thomasweise.github.io/aitoa in pdf, <a href="http://thomasweise.github.io/aitoa in pdf, <a h

Section Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- 4 Improved Algorithm Concept 2
- 6 Combining the Two Ideas

• Our first algorithm, random sampling, was not very efficient.

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.
- A search step consists of creating an entirely new, entirely random candidate solution.

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.
- A search step consists of creating an entirely new, entirely random candidate solution.
- Every search step is thus independent of all prior steps.

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.
- A search step consists of creating an entirely new, entirely random candidate solution.
- Every search step is thus independent of all prior steps.
- So how we can make use of the information we have seen during the search?

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.
- A search step consists of creating an entirely new, entirely random candidate solution.
- Every search step is thus independent of all prior steps.
- So how we can make use of the information we have seen during the search?
- Instead of generating a completely random new candidate solution in each step. . .

- Our first algorithm, random sampling, was not very efficient.
- It does not make any use of the information it "sees" during the optimization process.
- A search step consists of creating an entirely new, entirely random candidate solution.
- Every search step is thus independent of all prior steps.
- So how we can make use of the information we have seen during the search?
- Instead of generating a completely random new candidate solution in each step. . .
- ... why can't we try to iteratively improve the best solution we have seen so far?

- Instead of generating a completely random new candidate solution in each step. . .
- ... why can't we try to iteratively improve the best solution we have seen so far?

Section Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- 4 Improved Algorithm Concept 2
- 5 Combining the Two Ideas

• This is the concept of Local Search [2-5] and its simplest realization is Stochastic Hill Climbing [2].

- This is the concept of Local Search [2-5] and its simplest realization is Stochastic Hill Climbing [2].
- Simple Concept:
 - create random initial solution

- This is the concept of Local Search [2-5] and its simplest realization is Stochastic Hill Climbing [2].
- Simple Concept:
 - create random initial solution
 - make a modified copy of best-so-far solution

- This is the concept of Local Search [2-5] and its simplest realization is Stochastic Hill Climbing [2].
- Simple Concept:
 - create random initial solution
 - make a modified copy of best-so-far solution
 - if it is better, it becomes the new best-so-far solution (if it is not better, discard it).

- This is the concept of Local Search [2-5] and its simplest realization is Stochastic Hill Climbing [2].
- Simple Concept:
 - create random initial solution
 - make a modified copy of best-so-far solution
 - if it is better, it becomes the new best-so-far solution (if it is not better, discard it).
 - go back to (until the time is up)

 Local searches like hill climbers exploit a property of many optimization problems called causality [6-9].

- Local searches like hill climbers exploit a property of many optimization problems called causality [6-9].
- Causality means that small changes in the features of an object (or candidate solution) also lead to small changes in its behavior (or objective value)

- Local searches like hill climbers exploit a property of many optimization problems called causality [6-9].
- Causality means that small changes in the features of an object (or candidate solution) also lead to small changes in its behavior (or objective value)
- The idea is that if we have a good candidate solution, then there may exist similar solutions which are better.

- Local searches like hill climbers exploit a property of many optimization problems called causality [6-9].
- Causality means that small changes in the features of an object (or candidate solution) also lead to small changes in its behavior (or objective value)
- The idea is that if we have a good candidate solution, then there may exist similar solutions which are better.
- We hope to find one of them and then continue trying to do the same from there.

• But how can we create a modified copy of an existing solution?

- But how can we create a modified copy of an existing solution?
- We cannot change the number of times any job appears in a string.

- But how can we create a modified copy of an existing solution?
- We cannot change the number of times any job appears in a string.
- Simple idea:
 - We randomly pick two indices i and j in the string and swap the job IDs at them.

- But how can we create a modified copy of an existing solution?
- We cannot change the number of times any job appears in a string.
- Simple idea:
 - We randomly pick two indices i and j in the string and swap the job IDs at them.
 - To make sure that the result is different, we can first check if the job IDs are different and if not, pick two new indices i and j.

Example on our demo Problem Instance

Example on our demo Problem Instance

demo, makespan: 180

Example on our demo Problem Instance

Example on our demo Problem Instance

- But how can we create a modified copy of an existing solution?
- We cannot change the number of times any job appears in a string.
- Simple idea:
 - We randomly pick two indices i and j in the string and swap the job IDs at them.
 - To make sure that the result is different, we can first check if the job IDs are different and if not, pick two new indices i and j.
- Many modifications will lead to worse results, but some can be improvements.

Interface for Creating Modified Copy of Solution

Listing: An Java interface for generating a modified copy of a solution.

```
public interface IUnarySearchOperator<X> {
   public abstract void apply(X x, X dest, Random random);
}
```


Listing: Swap sub-jobs of two different jobs.

```
public class JSSPUnaryOperator1Swap
    implements IUnarySearchOperator<int[]> {
  public void apply(int[] x, int[] dest, Random random) {
    System.arraycopy(x, 0, dest, 0, x.length);
    int i = random.nextInt(dest.length);
    int job_i = dest[i];
    for (;;) {
      int j = random.nextInt(dest.length);
      int job_j = dest[j];
      if (job_i != job_j) {
        dest[i] = job_j;
        dest[j] = job_i;
        return;
```

So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

		makespan				last improvement	
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)
abz7	rs	895	945	948	12	77s	8'246'019
	hc_1swap	717	800	798	28	0s	16'978
1a24	rs	1154	1206	1207	15	81s	17'287'329
	hc_1swap	999	1095	1086	56	0s	6612
swv15	rs	4988	5165	5174	49	85s	5'525'082
	hc_1swap	3837	4108	4108	137	1s	104'598
yn4	rs	1459	1496	1498	15	83s	6'549'694
	hc_1swap	1109	1222	1220	48	0s	31'789

So what do we get?

		makespan				last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)	
abz7	rs	895	945	948	12	77s	8'246'019	
	hc_1swap	717	800	798	28	0s	16'978	
1a24	rs	1154	1206	1207	15	81s	17'287'329	
	hc_1swap	999	1095	1086	56	0s	6612	
swv15	rs	4988	5165	5174	49	85s	5'525'082	
	hc_1swap	3837	4108	4108	137	1s	104'598	
yn4	rs	1459	1496	1498	15	83s	6'549'694	
	hc_1swap	1109	1222	1220	48	0s	31'789	

		makespan				last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)	
abz7	rs	895	945	948	12	77s	8'246'019	
	hc_1swap	717	800	798	28	0s	16'978	
1a24	rs	1154	1206	1207	15	81s	17'287'329	
	hc_1swap	999	1095	1086	56	0s	6612	
swv15	rs	4988	5165	5174	49	85s	5'525'082	
	hc_1swap	3837	4108	4108	137	1s	104'598	
yn4	rs	1459	1496	1498	15	83s	6'549'694	
	hc_1swap	1109	1222	1220	48	0s	31'789	

We have 3min, but our hill climber stops improving after basically 1s!

• Our algorithm makes most of its progress early during the search.

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x)\subset \mathbb{X}$ around a point x.

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x) \subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- \bullet The search operator 1swap defines a neighborhood $N(x)\subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.
- Only the schedules that I can reach by swapping two sub-jobs from two different jobs.

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x) \subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.
- Only the schedules that I can reach by swapping two sub-jobs from two different jobs.
- Clearly $|N(x)| \ll |\mathbb{X}|!$

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x)\subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.
- Only the schedules that I can reach by swapping two sub-jobs from two different jobs.
- Clearly $|N(x)| \ll |\mathbb{X}|!$
- What happens if $f(\gamma(x^{\times})) \leq f(\gamma(x)) \forall x \in N(x^{\times})$ but x^{\times} is not the global optimum?

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x)\subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.
- Only the schedules that I can reach by swapping two sub-jobs from two different jobs.
- Clearly $|N(x)| \ll |\mathbb{X}|!$
- What happens if $f(\gamma(x^{\times})) \leq f(\gamma(x)) \forall x \in N(x^{\times})$ but x^{\times} is not the global optimum?
- Our algorithm gets trapped in the local optimum x^{\times} and cannot escape!

- Our algorithm makes most of its progress early during the search.
- Later, it basically stagnates and cannot improve.
- Why is that?
- The search operator 1swap defines a neighborhood $N(x)\subset \mathbb{X}$ around a point x.
- The hill climber can only find solutions which are in the neighborhood of the current best solution.
- Only the schedules that I can reach by swapping two sub-jobs from two different jobs.
- Clearly $|N(x)| \ll |\mathbb{X}|!$
- What happens if $f(\gamma(x^\times)) \le f(\gamma(x)) \forall x \in N(x^\times)$ but x^\times is not the global optimum?
- Our algorithm gets trapped in the local optimum x^{\times} and cannot escape!
- This is called Premature Convergence. [8, 9]

Section Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- 4 Improved Algorithm Concept 2
- 5 Combining the Two Ideas

• Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.

		makespan				last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)	
abz7	rs	895	945	948	12	77s	8'246'019	
	hc_1swap	717	800	798	28	0s	16'978	
1a24	rs	1154	1206	1207	15	81s	17'287'329	
	hc_1swap	999	1095	1086	56	0s	6612	
swv15	rs	4988	5165	5174	49	85s	5'525'082	
	hc_1swap	3837	4108	4108	137	1s	104'598	
yn4	rs	1459	1496	1498	15	83s	6'549'694	
	hc_1swap	1109	1222	1220	48	0s	31'789	

- Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.
- At the same time, a single run of the algorithm converges quickly.

		makespan				last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)	
abz7	rs	895	945	948	12	77s	8'246'019	
	hc_1swap	717	800	798	28	0s	16'978	
1a24	rs	1154	1206	1207	15	81s	17'287'329	
	hc_1swap	999	1095	1086	56	0s	6612	
swv15	rs	4988	5165	5174	49	85s	5'525'082	
	hc_1swap	3837	4108	4108	137	1s	104'598	
yn4	rs	1459	1496	1498	15	83s	6'549'694	
	hc_1swap	1109	1222	1220	48	0s	31'789	

- Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.
- At the same time, a single run of the algorithm converges quickly.
- Let us exploit this variation!

- Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.
- At the same time, a single run of the algorithm converges quickly.
- Let us exploit this variation!
- Idea: If we did not make any progress for some time *t*, we simply restart at a new random solution.

- Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.
- At the same time, a single run of the algorithm converges quickly.
- Let us exploit this variation!
- Idea: If we did not make any progress for some time t, we simply restart at a new random solution.
- Of course, we will always remember the overall best solution we ever had (in another variable).

Stochastic Hill Climber with Restarts

- Idea: We have seen that the results of the hill climber exhibit a relatively high standard deviation.
- At the same time, a single run of the algorithm converges quickly.
- Let us exploit this variation!
- Idea: If we did not make any progress for some time t, we simply restart at a new random solution.
- Of course, we will always remember the overall best solution we ever had (in another variable).
- Since we do not know which value of t is good, start small and increase it after each restart.

• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

		makespan				last improvement	
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)
abz7	rs	895	945	948	12	77s	8'246'019
	hc_1swap	717	800	798	28	0s	16'978
	hcr_256+5%_1swap	723	742	743	7	21s	5'681'591
1a24	rs	1154	1206	1207	15	81s	17'287'329
	hc_1swap	999	1095	1086	56	0s	6612
	hcr_256+5%_1swap	970	997	998	9	6s	3'470'368
swv15	rs	4988	5165e	5174	49	85s	5'525'082
	hc_1swap	3837	4108	4108	137	1s	104'598
	hcr_256+5%_1swap	3701	3850	3857	40	60s	9'874'102
yn4	rs	1459	1496	1498	15	83s	6'549'694
	hc_1swap	1109	1222	1220	48	0s	31'789
	hcr_256+5%_1swap	1095	1129	1130	14	22s	4'676'669

• It is still the *same* algorithm. Restarting will not always make it better (e.g., if I restart too early) – but it will often do.

		makespan				last improvement	
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)
abz7	rs	895	945	948	12	77s	8'246'019
	hc_1swap	717	800	798	28	0s	16'978
	hcr_256+5%_1swap	723	742	743	7	21s	5'681'591
1a24	rs	1154	1206	1207	15	81s	17'287'329
	hc_1swap	999	1095	1086	56	0s	6612
	hcr_256+5%_1swap	970	997	998	9	6s	3'470'368
swv15	rs	4988	5165e	5174	49	85s	5'525'082
	hc_1swap	3837	4108	4108	137	1s	104'598
	hcr_256+5%_1swap	3701	3850	3857	40	60s	9'874'102
yn4	rs	1459	1496	1498	15	83s	6'549'694
	hc_1swap	1109	1222	1220	48	0s	31'789
	hcr_256+5%_1swap	1095	1129	1130	14	22s	4'676'669

hcr_256+5%_1swap: hill climber with restarts after 256+5% non-improv steps

hcr_256+5%_1swap: hill climber with restarts after 256+5% non-improv steps

hcr_256+5%_1swap: hill climber with restarts after 256+5% non-improv steps

Section Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- 4 Improved Algorithm Concept 2
- 5 Combining the Two Ideas

• Our (original) hill climber will stop improving if it can no longer finder better solutions.

- Our (original) hill climber will stop improving if it can no longer finder better solutions.
- This happens when it reaches a local optimum.

- Our (original) hill climber will stop improving if it can no longer finder better solutions.
- This happens when it reaches a local optimum.
- A local optimum is a point x^{\times} in $\mathbb X$ where no 1swap-move can yield any improvement.

- Our (original) hill climber will stop improving if it can no longer finder better solutions.
- This happens when it reaches a local optimum.
- A local optimum is a point x^{\times} in $\mathbb X$ where no 1swap-move can yield any improvement.
- It does not matter which two job ids I exchange in the current best string x^{\times} , the result is not better than x^{\times} .

- Our (original) hill climber will stop improving if it can no longer finder better solutions.
- This happens when it reaches a local optimum.
- A local optimum is a point x^{\times} in $\mathbb X$ where no 1swap-move can yield any improvement.
- It does not matter which two job ids I exchange in the current best string x^{\times} , the result is not better than x^{\times} .
- Notice: Which a local optimum is, is determined by the unary search operator!

- Our (original) hill climber will stop improving if it can no longer finder better solutions.
- This happens when it reaches a local optimum.
- A local optimum is a point x^{\times} in $\mathbb X$ where no 1swap-move can yield any improvement.
- It does not matter which two job ids I exchange in the current best string x^{\times} , the result is not better than x^{\times} .
- Notice: Which a local optimum is, is determined by the unary search operator!
- If we had a different operator with a bigger neighborhood, then maybe x^{\times} would no longer be a local optimum and we could still improve the results after reaching it...

• Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".
- The neighborhood determines what a local optimum is.

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".
- The neighborhood determines what a local optimum is.
- Let's make it bigger.

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".
- The neighborhood determines what a local optimum is.
- Let's make it bigger.
- We could swap more than 2 job ids!

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".
- The neighborhood determines what a local optimum is.
- Let's make it bigger.
- We could swap more than 2 job ids!
- But we should respect the causality: small changes to the solution cause small changes in the objective value – big changes will lead to unpredictable results.

- Two solutions x_1 and x_2 are "neighbors" if I can reach x_2 by applying the search operator one time to x_1 .
- The search operator determines which solutions are "neighbors".
- The neighborhood determines what a local optimum is.
- Let's make it bigger.
- We could swap more than 2 job ids!
- But we should respect the causality: small changes to the solution cause small changes in the objective value – big changes will lead to unpredictable results.
- If we just change everything always, we basically have random sampling again...

• Idea: Let's most often swap 2 jobs

• Idea: Let's most often swap 2 jobs, but sometimes 3

• Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4

• Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5

• Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6

• Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7

• Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, ...

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, ...
- nswap operator idea

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - ② otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - 10 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - 6 otherwise (it was tail), we again flip a coin.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - 10 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - 6 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 3.125% in total), we swap 6 job ids and quit.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - 10 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - 6 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 3.125% in total), we swap 6 job ids and quit.
 - and so on.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - 6 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 3.125% in total), we swap 6 job ids and quit.
 - and so on.
- We most often make small moves, but sometimes bigger ones.

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - 10 otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 3.125% in total), we swap 6 job ids and quit.
 - and so on.
- We most often make small moves, but sometimes bigger ones.
- Thereotically, we could always escape from local any optima

- Idea: Let's most often swap 2 jobs, but sometimes 3, less often 4, from time to time 5, rarely 6, hardly ever 7, . . .
- nswap operator idea:
 - flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 25% in total), we swap 3 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 12.5% in total), we swap 4 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 6.25% in total), we swap 5 job ids and quit.
 - otherwise (it was tail), we again flip a coin. if it is heads (50% probability, now 3.125% in total), we swap 6 job ids and quit.
 - 6 and so on.
- We most often make small moves, but sometimes bigger ones.
- Thereotically, we could always escape from local any optima, but the probability may sometimes be very very small.

Create Modified Copy of Existing Solution 2

Listing: Swap a random number of sub-jobs.

```
public class JSSPUnaryOperatorNSwap
    implements IUnarySearchOperator<int[]> {
  public void apply(int[] x, int[] dest, Random random) {
    System.arraycopy(x, 0, dest, 0, x.length);
    int i = random.nextInt(dest.length);
    int first = dest[i]:
   int last = first;
    boolean hasNext:
    do {
      hasNext = random.nextBoolean();
      inner: for (::) {
        final int j = random.nextInt(dest.length);
        final int job_j = dest[j];
        if ((last != job_j) &&
            (hasNext || (first != job_j))) {
          dest[i] = job_j;
          i = j;
          last = job_j;
          break inner;
```


• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

• I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

			make	span	last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)
abz7	hc_1swap	717	800	798	28	0s	16'978
	hc_nswap	724	757	757	17	30s	8'145'596
1a24	hc_1swap	999	1095	1086	56	0s	6612
	hc_nswap	945	1017	1015	29	21s	11'123'744
swv15	hc_1swap	3837	4108	4108	137	1s	104'598
	hc_nswap	3599	3867	3859	113	70s	11'559'667
yn4	hc_1swap	1109	1222	1220	48	0s	31'789
	hc_nswap	1087	1160	1156	33	63s	13'111'115

Section Outline

- Introduction
- Algorithm Concept
- Improved Algorithm Concept
- 4 Improved Algorithm Concept 2
- **⑤** Combining the Two Ideas

Combining the two ideas

• We had two entirely different ideas how to improve the hill climber.

Combining the two ideas

- We had two entirely different ideas how to improve the hill climber.
- Let's see how they work together!

 I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

 I execute the program 101 times for each of the datasets abz7, la24, swv15, and yn4

			make	span	last improvement		
\mathcal{I}	algo	best	mean	med	sd	med(t)	med(FEs)
abz7	hc_1swap	717	800	798	28	0s	16978
	hcr_256+5%_1swap	723	742	743	7	21s	5681591
	hc_nswap	724	757	757	17	30s	8145596
	hcr_256+5%_nswap	707	733	734	7	64s	17293038
1a24	hc_1swap	999	1095	1086	56	0s	6612
	hcr_256+5%_1swap	970	997	998	9	6s	3470368
	hc_nswap	945	1017	1015	29	21s	11123744
	hcr_256+5%_nswap	945	981	984	9	57s	29246097
swv15	hc_1swap	3837	4108	4108	137	1s	104598
	hcr_256+5%_1swap	3701	3850	3857	40	60s	9874102
	hc_nswap	3599	3867	3859	113	70s	11559667
	hcr_256+5%_nswap	3645	3804	3811	44	91s	14907737
yn4	hc_1swap	1109	1222	1220	48	0s	31789
	hcr_256+5%_1swap	1095	1129	1130	14	22s	4676669
	hc_nswap	1087	1160	1156	33	63s	13111115
	hcr_256+5%_nswap	1081	1117	1119	14	55s	11299461

 By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.
- We can also improve them by searching a nicer neighborhood.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.
- We can also improve them by searching a nicer neighborhood.
- And we can combine both concepts to get even better results.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.
- We can also improve them by searching a nicer neighborhood.
- And we can combine both concepts to get even better results.
- But we still sometimes get bad results.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.
- We can also improve them by searching a nicer neighborhood.
- And we can combine both concepts to get even better results.
- But we still sometimes get bad results.
- Because it is still the same algorithm.

- By making use of the best point in the search space we have seen so far and iteratively trying to improve it, we can dramatically improve the results.
- We can further improve the results restarting the same algorithm from time to time if it has converged to a local optimum.
- We can also improve them by searching a nicer neighborhood.
- And we can combine both concepts to get even better results.
- But we still sometimes get bad results.
- Because it is still the same algorithm.
- A hill climber can always get trapped in a local optimum, even with restarts... if the basins of attraction of the local optima are larger than those of the global optimum.

谢谢 Thank you

Thomas Weise [汤卫思] tweise@hfuu.edu.cn http://iao.hfuu.edu.cn

Hefei University, South Campus 2 Institute of Applied Optimization Shushan District, Hefei, Anhui, China

Bibliography

Bibliography I

- Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018–2019. URL http://thomasweise.github.io/aitoa/. see also [2].
 Thomas Weise. Global Optimization Algorithms Theory and Application. it-weise.de (self-published), Germany, 2009. URL
- Thomas Weise. Global Optimization Algorithms Theory and Application. it-weise.de (self-published), Germany, 2009. URL http://www.it-weise.de/projects/book.pdf.
- Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series in Artificial Intelligence. Elsevier, 2005. ISBN 1493303732.
- Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (AIMA). Prentice Hall International Inc., Upper Saddle River, NJ, USA, 2 edition, 2002. ISBN 0-13-080302-2.
- James C. Spall. Introduction to Stochastic Search and Optimization, volume 6 of Estimation, Simulation, and Control Wiley-Interscience Series in Discrete Mathematics and Optimizationn. Wiley Interscience, Chichester, West Sussex, UK, April 2003. ISBN 0-471-33052-3. URL https://www.jhuapl.edu/ISSO/.
- Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD thesis, Technische Universität Berlin, Berlin, Germany, 1971–1973.
- Ingo Rechenberg. Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Frommann-Holzboog Verlag, Bad Cannstadt, Stuttgart, Baden-Württemberg, Germany, 1994. ISBN 3-7728-1642-8.
- Thomas Weise, Raymond Chiong, and Ke Tang. Evolutionary optimization: Pitfalls and booby traps. Journal of Computer Science and Technology (JCST), 27:907–936, September 2012. doi: 10.1007/s11390-012-1274-4.
- Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jesús Nebro Urbaneja. Why is optimization difficult? In Raymond Chiong, editor, Nature-Inspired Algorithms for Optimisation, volume 193/2009 of Studies in Computational Intelligence (SCI), chapter 1, pages 1–50. Springer-Verlag, Berlin/Heidelberg, April 2009. ISBN 978-3-642-00266-3. doi: 10.1007/978-3-642-00267-0_1.