
Metaheuristics for Smart Manufacturing
4. Stochastic Hill Climbing

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Introduction

2 Algorithm Concept

3 Improved Algorithm Concept

4 Improved Algorithm Concept 2

5 Combining the Two Ideas

The slides are available at http://iao.hfuu.edu.cn/155, the

book at http://thomasweise.github.io/aitoa, and the source

code at http://www.github.com/thomasWeise/aitoa-code

Metaheuristics for Smart Manufacturing Thomas Weise 2/35

co
u
rs
e
b
o
o
k

co
u
rs
e
m
a
te
ri
a
l

http://iao.hfuu.edu.cn/155
http://thomasweise.github.io/aitoa
http://www.github.com/thomasWeise/aitoa-code


An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Stoachstic Hill Climbing

• This is the concept of Local Search [2–5] and its simplest realization is
Stochastic Hill Climbing [2].
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• This is the concept of Local Search [2–5] and its simplest realization is
Stochastic Hill Climbing [2].

• Simple Concept:

1 create random initial solution
2 make a modified copy of best-so-far solution
3 if it is better, it becomes the new best-so-far solution (if it is not

better, discard it).
4 go back to 2 (until the time is up)
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Causality

• Local searches like hill climbers exploit a property of many
optimization problems called causality [6–9].
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Causality

• Local searches like hill climbers exploit a property of many
optimization problems called causality [6–9].

• Causality means that small changes in the features of an object (or
candidate solution) also lead to small changes in its behavior (or
objective value)

• The idea is that if we have a good candidate solution, then there may
exist similar solutions which are better.

• We hope to find one of them and then continue trying to do the same
from there.
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Create Modified Copy of Existing Solution

Example on our demo Problem Instance

(2, 0, 1, 0, 1, 1, 2, 3, 2, 3,

2, 0, 0, 1, 3, 3, 2, 3, 1, 0)
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Create Modified Copy of Existing Solution

• But how can we create a modified copy of an existing solution?

• We cannot change the number of times any job appears in a string.

• Simple idea:
• We randomly pick two indices i and j in the string and swap the job

IDs at them.
• To make sure that the result is different, we can first check if the job

IDs are different and if not, pick two new indices i and j.

• Many modifications will lead to worse results, but some can be
improvements.
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Interface for Creating Modified Copy of Solution

Listing: An Java interface for generating a modified copy of a solution.

public interface IUnarySearchOperator <X> {

public abstract void apply(X x, X dest , Random random);

}
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Create Modified Copy of Existing Solution

Listing: Swap sub-jobs of two different jobs.

public class JSSPUnaryOperator1Swap

implements IUnarySearchOperator <int[]> {

public void apply(int[] x, int[] dest , Random random) {

System.arraycopy(x, 0, dest , 0, x.length);

int i = random.nextInt(dest.length);

int job_i = dest[i];

for (;;) {

int j = random.nextInt(dest.length);

int job_j = dest[j];

if (job_i != job_j) {

dest[i] = job_j;

dest[j] = job_i;

return;

}

}

}

}
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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So what do we get?

rs: 3min of random sampling
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So what do we get?

hc 1swap: 3min of hill climber
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Progress over Time

What progress does the algorithm make over time?
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But we waste time. . .

What if we look at this without log-scaling the time axis?
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But we waste time. . .

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 rs 895 945 948 12 77s 8’246’019
hc 1swap 717 800 798 28 0s 16’978

la24 rs 1154 1206 1207 15 81s 17’287’329
hc 1swap 999 1095 1086 56 0s 6612

swv15 rs 4988 5165 5174 49 85s 5’525’082
hc 1swap 3837 4108 4108 137 1s 104’598

yn4 rs 1459 1496 1498 15 83s 6’549’694
hc 1swap 1109 1222 1220 48 0s 31’789

We have 3min, but our hill climber stops improving after basically 1s!
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Premature Convergence

• Our algorithm makes most of its progress early during the search.

• Later, it basically stagnates and cannot improve.

• Why is that?

• The search operator 1swap defines a neighborhood N(x) ⊂ X around
a point x.

• The hill climber can only find solutions which are in the neighborhood
of the current best solution.

• Only the schedules that I can reach by swapping two sub-jobs from
two different jobs.

• Clearly |N(x)| ≪ |X|!

• What happens if f(γ(x×)) ≤ f(γ(x))∀x ∈ N(x×) but x× is not the
global optimum?

• Our algorithm gets trapped in the local optimum x× and cannot
escape!

• This is called Premature Convergence. [8, 9]
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Stochastic Hill Climber with Restarts

• Idea: We have seen that the results of the hill climber exhibit a
relatively high standard deviation.
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• At the same time, a single run of the algorithm converges quickly.

• Let us exploit this variation!

• Idea: If we did not make any progress for some time t, we simply
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• Let us exploit this variation!

• Idea: If we did not make any progress for some time t, we simply
restart at a new random solution.

• Of course, we will always remember the overall best solution we ever
had (in another variable).

• Since we do not know which value of t is good, start small and
increase it after each restart.
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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I algo best mean med sd med(t) med(FEs)

abz7 rs 895 945 948 12 77s 8’246’019
hc 1swap 717 800 798 28 0s 16’978
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yn4 rs 1459 1496 1498 15 83s 6’549’694
hc 1swap 1109 1222 1220 48 0s 31’789
hcr 256+5% 1swap 1095 1129 1130 14 22s 4’676’669
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So what do we get?

hc 1swap: hill climber
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So what do we get?

hc 1swap: hill climber
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So what do we get?

hcr 256+5% 1swap: hill climber with restarts after 256+5% non-improv steps
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Progress over Time

What progress does the algorithm make over time?
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Section Outline

1 Introduction

2 Algorithm Concept

3 Improved Algorithm Concept

4 Improved Algorithm Concept 2

5 Combining the Two Ideas
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How else can we stop premature convergence?

• Our (original) hill climber will stop improving if it can no longer finder
better solutions.
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How else can we stop premature convergence?

• Our (original) hill climber will stop improving if it can no longer finder
better solutions.

• This happens when it reaches a local optimum.

• A local optimum is a point x× in X where no 1swap-move can yield
any improvement.

• It does not matter which two job ids I exchange in the current best
string x×, the result is not better than x×.

• Notice: Which a local optimum is, is determined by the unary search
operator!

• If we had a different operator with a bigger neighborhood, then
maybe x× would no longer be a local optimum and we could still
improve the results after reaching it. . .
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Making the neighborhood bigger

• Two solutions x1 and x2 are “neighbors” if I can reach x2 by applying
the search operator one time to x1.
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Making the neighborhood bigger

• Two solutions x1 and x2 are “neighbors” if I can reach x2 by applying
the search operator one time to x1.

• The search operator determines which solutions are “neighbors”.

• The neighborhood determines what a local optimum is.

• Let’s make it bigger.

• We could swap more than 2 job ids!

• But we should respect the causality: small changes to the solution
cause small changes in the objective value – big changes will lead to
unpredictable results.

• If we just change everything always, we basically have random
sampling again. . .
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Making the neighborhood bigger

• Idea: Let’s most often swap 2 jobs
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1 flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
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from time to time 5, rarely 6, hardly ever 7, . . .

• nswap operator idea:

1 flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
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5 otherwise (it was tail), we again flip a coin. if it is heads (50%
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Making the neighborhood bigger

• Idea: Let’s most often swap 2 jobs, but sometimes 3, less often 4,
from time to time 5, rarely 6, hardly ever 7, . . .

• nswap operator idea:

1 flip a coin: if it is heads (50% probability), we swap 2 job ids and quit.
2 otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 25% in total), we swap 3 job ids and quit.
3 otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 12.5% in total), we swap 4 job ids and quit.
4 otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 6.25% in total), we swap 5 job ids and quit.
5 otherwise (it was tail), we again flip a coin. if it is heads (50%

probability, now 3.125% in total), we swap 6 job ids and quit.
6 and so on.

• We most often make small moves, but sometimes bigger ones.

• Thereotically, we could always escape from local any optima, but the
probability may sometimes be very very small.
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Create Modified Copy of Existing Solution 2

Listing: Swap a random number of sub-jobs.

public class JSSPUnaryOperatorNSwap

implements IUnarySearchOperator <int[]> {

public void apply(int[] x, int[] dest , Random random) {

System.arraycopy(x, 0, dest , 0, x.length);

int i = random.nextInt(dest.length);

int first = dest[i];

int last = first;

boolean hasNext;

do {

hasNext = random.nextBoolean ();

inner: for (;;) {

final int j = random.nextInt(dest.length);

final int job_j = dest[j];

if ((last != job_j) &&

(hasNext || (first != job_j))) {

dest[i] = job_j;

i = j;

last = job_j;

break inner;

}

}

} while (hasNext);Metaheuristics for Smart Manufacturing Thomas Weise 25/35



So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 hc 1swap 717 800 798 28 0s 16’978
hc nswap 724 757 757 17 30s 8’145’596

la24 hc 1swap 999 1095 1086 56 0s 6612
hc nswap 945 1017 1015 29 21s 11’123’744

swv15 hc 1swap 3837 4108 4108 137 1s 104’598
hc nswap 3599 3867 3859 113 70s 11’559’667

yn4 hc 1swap 1109 1222 1220 48 0s 31’789
hc nswap 1087 1160 1156 33 63s 13’111’115
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So what do we get?

hc 1swap: hill climber with 1swap
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Progress over Time

What progress does the algorithm make over time?
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Combining the two ideas

• We had two entirely different ideas how to improve the hill climber.
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Combining the two ideas

• We had two entirely different ideas how to improve the hill climber.

• Let’s see how they work together!
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

makespan last improvement

I algo best mean med sd med(t) med(FEs)

abz7 hc 1swap 717 800 798 28 0s 16978
hcr 256+5% 1swap 723 742 743 7 21s 5681591
hc nswap 724 757 757 17 30s 8145596
hcr 256+5% nswap 707 733 734 7 64s 17293038

la24 hc 1swap 999 1095 1086 56 0s 6612
hcr 256+5% 1swap 970 997 998 9 6s 3470368
hc nswap 945 1017 1015 29 21s 11123744
hcr 256+5% nswap 945 981 984 9 57s 29246097

swv15 hc 1swap 3837 4108 4108 137 1s 104598
hcr 256+5% 1swap 3701 3850 3857 40 60s 9874102
hc nswap 3599 3867 3859 113 70s 11559667
hcr 256+5% nswap 3645 3804 3811 44 91s 14907737

yn4 hc 1swap 1109 1222 1220 48 0s 31789
hcr 256+5% 1swap 1095 1129 1130 14 22s 4676669
hc nswap 1087 1160 1156 33 63s 13111115
hcr 256+5% nswap 1081 1117 1119 14 55s 11299461
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So what do we get?

hc nswap: hill climber with nswap
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So what do we get?

hcr 256+5% nswap: restarting hill climber with nswap
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Progress over Time

What progress does the algorithm make over time?
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Summary

• By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results.
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Summary

• By making use of the best point in the search space we have seen so
far and iteratively trying to improve it, we can dramatically improve
the results.

• We can further improve the results restarting the same algorithm
from time to time if it has converged to a local optimum.

• We can also improve them by searching a nicer neighborhood.

• And we can combine both concepts to get even better results.

• But we still sometimes get bad results.

• Because it is still the same algorithm.

• A hill climber can always get trapped in a local optimum, even with
restarts. . . . . . if the basins of attraction of the local optima are larger
than those of the global optimum.

Metaheuristics for Smart Manufacturing Thomas Weise 32/35



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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