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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to
Optimization Algorithms” M at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise
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Introduction %()

OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

Well, we can first try the trivial thing: create a random solution!
We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z¢ € X), then

@ randomly shuffle the values like a deck of cards (so we get a random
valid point z € X), and

® apply the representation mapping « to get a Gantt chart y = y(x),
y €Y.
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Listing: General interface for a function to sample 1 point from X.

public interface INullarySearchOperator <X> {

public abstract void apply(X dest, Random random) ;




Create a Single Random Point = for the JSSP

D

1AQ

Listing: Create a Single Random Point X for the JSSP

public final class JSSPNullaryOperator

implements INullarySearchOperator<int[]> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

+

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, 0, dest, i, this.n);

¥

RandomUtils.shuffle (random, dest, O, dest.length);
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® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 1131 | 1334 | 1326 | 106 Os 1
la24 1487 | 1842 | 1814 | 165 0Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1
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So what do we get? %\

1AQ2

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted

time.
makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
la24 | 1487 | 1842 | 1814 | 165 Os 1
swv1l5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1
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® | execute the program 101 times for each of the datasets abz7, 1a24,
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® So the results are not good, there is lots of white space = wasted
time. That was expected.
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e Notice 1. We can create and test the schedules very very fast (much
faster than 3min).
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?
So what do we get” %‘).

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted
time. That was expected.

® Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

® Notice 2. There is a high variance in the results due to randomness.

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
1a24 | 1487 | 1842 | 1814 | 165 Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1
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e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® _..then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea

@ create new random candidate solution y (via random sampling from
the search space)

@® remember best solution ever encountered

@ repeat until 3min are exhausted
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® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4




So what do we get?

® | execute the program 101 times for each of the datasets abz7, 1a24,

swv15, and yn4

makespan last improvement

A algo | best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | 1rs | 1131 | 1334 | 1326 | 106 Os 1
rs 77s | 8'246'019

la24 | 1rs | 1487 | 1842 | 1814 | 165 Os 1
rs 81s | 17'287'329

swvl5 | 1rs | 5935 | 6600 | 6563 | 346 Os 1
rs 8bs | 5'525'082

yn4 1rs | 1754 | 2036 | 2039 | 125 Os 1
rs 83s | 6'549'694
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1rs: single random sample
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rs: 3min of random samples
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What progress does the algorithm make over time?
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¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.
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Progress over Time =

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.
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[

Progress over Time =

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

e This holds for runtime, but also for improvements of algorithms.
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We have now a basic algorithm that provides some solutions.

But it is ...well... quite stupid.

It just makes random guesses.

It does not make any use of the information it has seen during the
search.




il
Thank you

Thomas Weise [ C L]

tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China
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