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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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Introduction

• OK, so we can now represent a Gantt chart for m machines and n

jobs as an integer string of length m× n.
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• OK, so we can now represent a Gantt chart for m machines and n

jobs as an integer string of length m× n.

• How does this help us to search?

• Well, we can first try the trivial thing: create a random solution!

• We can therefore

1 put each of the numbers from 0 to n− 1 exactly m times in an integer
array of length m ∗ n (so we have a valid point x0 ∈ X), then

2 randomly shuffle the values like a deck of cards (so we get a random

valid point x ∈ X), and
3 apply the representation mapping γ to get a Gantt chart y = γ(x),

y ∈ Y.
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General interface for a function to sample 1 point from X

Listing: General interface for a function to sample 1 point from X.

public interface INullarySearchOperator <X> {

public abstract void apply(X dest , Random random);

}
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Create a Single Random Point x for the JSSP

Listing: Create a Single Random Point x for the JSSP

public final class JSSPNullaryOperator

implements INullarySearchOperator <int[]> {

public void apply(int[] dest , Random random) {

for (int i = this.n; (--i) >= 0;) {

dest[i] = i;

}

for (int i = dest.length; (i -= this.n) > 0;) {

System.arraycopy(dest , 0, dest , i, this.n);

}

RandomUtils.shuffle(random , dest , 0, dest.length);

}

}

Metaheuristics for Smart Manufacturing Thomas Weise 8/20



Section Outline

1 Introduction

2 Algorithm Concept

3 Experiment and Analysis

4 Improved Algorithm Concept

5 Experiment and Analysis 2

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 9/20



So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4
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• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

• So the results are not good, there is lots of white space ≡ wasted
time. That was expected.

• Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

• Notice 2. There is a high variance in the results due to randomness.

makespan last improvement
I best mean med sd med(t) med(FEs)
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Exploit Randomness: Random Sampling
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Exploit Randomness: Random Sampling

• If we can generate solutions fast (med(t) ≈ 0) and sometimes are
lucky, sometimes not (sd ≫ 0). . .

• . . . then why don’t we keep generating schedules until the 3 minutes
are up and keep the best one?

• New idea

1 create new random candidate solution y (via random sampling from
the search space)

2 remember best solution ever encountered
3 repeat until 3min are exhausted

Metaheuristics for Smart Manufacturing Thomas Weise 12/20



Section Outline

1 Introduction

2 Algorithm Concept

3 Experiment and Analysis

4 Improved Algorithm Concept

5 Experiment and Analysis 2

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 13/20



So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

Metaheuristics for Smart Manufacturing Thomas Weise 14/20



So what do we get?

• I execute the program 101 times for each of the datasets abz7, la24,
swv15, and yn4

makespan last improvement
I algo best mean med sd med(t) med(FEs)

abz7 1rs 1131 1334 1326 106 0s 1
rs 895 945 948 12 77s 8’246’019

la24 1rs 1487 1842 1814 165 0s 1
rs 1154 1206 1207 15 81s 17’287’329

swv15 1rs 5935 6600 6563 346 0s 1
rs 4988 5165 5174 49 85s 5’525’082

yn4 1rs 1754 2036 2039 125 0s 1
rs 1459 1496 1498 15 83s 6’549’694
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So what do we get?

1rs: single random sample
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Progress over Time

What progress does the algorithm make over time?
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• Law of Diminishing Returns [2]: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.
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• Law of Diminishing Returns [2]: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
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Progress over Time

• Law of Diminishing Returns [2]: Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

• This holds for runtime, but also for improvements of algorithms.
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Summary
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Summary

• We have now a basic algorithm that provides some solutions.

• But it is . . . well. . . quite stupid.

• It just makes random guesses.

• It does not make any use of the information it has seen during the
search.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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