LR B

HEFEI UNIVERSITY

Metaheuristics for Smart Manufacturing
3. Random Sampling

Thomas Weise - [T %1
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &8 CLILFE#AKR /1D 1
Faculty of Computer Science and Technology [T T T 5T 1T 1T 11
Institute of Applied Optimization AL LT T
230601 Shushan District, Hefei, Anhui, China [IECE 472 [T 1T P30601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 CET I AT BICAT90T 1

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline %\

@ Introduction

@ Algorithm Concept

@® Experiment and Analysis

course book

@ mproved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

The slides are available at http://iao.hfuu.edu.cn/155, the
book at http://thomasweise.github.io/aitoa, and the source

course material

code at http://www.github.com/thomasWeise/aitoa-code

Metaheuristics for Smart Manufacturing Thomas Weise 2/20

http://iao.hfuu.edu.cn/155
http://thomasweise.github.io/aitoa
http://www.github.com/thomasWeise/aitoa-code

An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to
Optimization Algorithms” M at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

Metaheuristics for Smart Manufacturing

Thomas Weise

3/20

http://thomasweise.github.io/aitoa
http://thomasweise.github.io/aitoa/aitoa.pdf
http://thomasweise.github.io/aitoa/aitoa.html
http://thomasweise.github.io/aitoa/aitoa.azw3
http://thomasweise.github.io/aitoa/aitoa.epub
https://www.linkedin.com/feed/update/urn:li:activity:6540439180223307776

@ Introduction

@ Algorithm Concept

@ Experiment and Analysis

@ Improved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® \We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m xn

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!

® \We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z(€ X)

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!
® We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z¢ € X), then
® randomly shuffle the values like a deck of cards

® OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

® Well, we can first try the trivial thing: create a random solution!
® We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z¢ € X), then

@ randomly shuffle the values like a deck of cards (so we get a random
valid point z € X)

Introduction %()

OK, so we can now represent a Gantt chart for m machines and n
jobs as an integer string of length m x n.

® How does this help us to search?

Well, we can first try the trivial thing: create a random solution!
We can therefore

@ put each of the numbers from 0 to n — 1 exactly m times in an integer
array of length m x n (so we have a valid point z¢ € X), then

@ randomly shuffle the values like a deck of cards (so we get a random
valid point z € X), and

® apply the representation mapping « to get a Gantt chart y = y(x),
y €Y.

Metaheuristics for Smart Manufacturing Thomas Weise 5/20

@ Introduction

@ Algorithm Concept

@ Experiment and Analysis

@ Improved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

Listing: General interface for a function to sample 1 point from X.

public interface INullarySearchOperator <X> {

public abstract void apply(X dest, Random random) ;

Create a Single Random Point = for the JSSP

D

1AQ

Listing: Create a Single Random Point X for the JSSP

public final class JSSPNullaryOperator

implements INullarySearchOperator<int[]> {

public void apply(int[] dest, Random random) {

for (int i = this.n; (--i) >= 0;) {
dest[i] = i;

+

for (int i = dest.length; (i -= this.n) > 0;) {
System.arraycopy(dest, 0, dest, i, this.n);

¥

RandomUtils.shuffle (random, dest, O, dest.length);

Metaheuristics for Smart Manufacturing Thomas Weise

8/20

@ Introduction

@ Algorithm Concept

@® Experiment and Analysis

@ Improved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 1131 | 1334 | 1326 | 106 Os 1
la24 1487 | 1842 | 1814 | 165 0Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1

[I n
o 327/1326-I

T | |
600 800 1000

400

200

1200

1 IR
1500

|
1000

az4/18

T
500

0

9 I

7 |

I THT 0 N7 DA
I FIT NErrminr
minT TEra
I If WE N FEne
| N A e

TEVP/U Looal

2000

3000 4000 5000 6000

_li _*_ 1T

m9876543210

2000

1500

1000

500

So what do we get? %\

1AQ2

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted

time.
makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
la24 | 1487 | 1842 | 1814 | 165 Os 1
swv1l5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1

Metaheuristics for Smart Manufacturing Thomas Weise 10/20

So what do we get? %\

1AQ2

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted
time. That was expected.

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
1a24 | 1487 | 1842 | 1814 | 165 Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1

Metaheuristics for Smart Manufacturing Thomas Weise 10/20

?
So what do we get” %‘).

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted
time. That was expected.

e Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
1a24 | 1487 | 1842 | 1814 | 165 Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1

Metaheuristics for Smart Manufacturing Thomas Weise 10/20

?
So what do we get” %‘).

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

® So the results are not good, there is lots of white space = wasted
time. That was expected.

® Notice 1. We can create and test the schedules very very fast (much
faster than 3min).

® Notice 2. There is a high variance in the results due to randomness.

makespan last improvement
T best | mean | med | sd | med(t) | med(FEs)
abz7 | 1131 | 1334 | 1326 | 106 Os 1
1a24 | 1487 | 1842 | 1814 | 165 Os 1
swvl5 | 5935 | 6600 | 6563 | 346 Os 1
yn4 1754 | 2036 | 2039 | 125 Os 1

Metaheuristics for Smart Manufacturing Thomas Weise 10/20

@ Introduction

@ Algorithm Concept

@ Experiment and Analysis

@ mproved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® _..then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® _..then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea

@ create new random candidate solution y (via random sampling from
the search space)

e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® _..then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea

@ create new random candidate solution y (via random sampling from
the search space)
@® remember best solution ever encountered

e If we can generate solutions fast (med(t) ~ 0) and sometimes are
lucky, sometimes not (sd > 0)...

® _..then why don't we keep generating schedules until the 3 minutes
are up and keep the best one?

® New idea

@ create new random candidate solution y (via random sampling from
the search space)

@® remember best solution ever encountered

@ repeat until 3min are exhausted

@ Introduction

@ Algorithm Concept

@ Experiment and Analysis

@ Improved Algorithm Concept

@ Experiment and Analysis 2

@ Summary

® | execute the program 101 times for each of the datasets abz7, 1a24,
swv15, and yn4

So what do we get?

® | execute the program 101 times for each of the datasets abz7, 1a24,

swv15, and yn4

makespan last improvement

A algo | best ‘ mean ‘ med ‘ sd | med(t) ‘ med(FEs)
abz7 | 1rs | 1131 | 1334 | 1326 | 106 Os 1
rs 77s | 8'246'019

la24 | 1rs | 1487 | 1842 | 1814 | 165 Os 1
rs 81s | 17'287'329

swvl5 | 1rs | 5935 | 6600 | 6563 | 346 Os 1
rs 8bs | 5'525'082

yn4 1rs | 1754 | 2036 | 2039 | 125 Os 1
rs 83s | 6'549'694

Metaheuristics for Smart Manufacturing

Thomas Weise

14/20

1rs: single random sample

14 | [) | B B | |

13 1 m H 'Hu Em N i

12 N N I H N [|

11 H I 0D EE’' ©En

10 [| m E- Il I |

9 [I [| m

8 im 1N [[[|

7 [] | I m [|

6 | | m

5 | |

4 o | I = [| [|

3 | 1 & | [|

2 1w [| [| 1 N -

1 S apz7/1326 ®

0 T | | T .___
400 600 800 1000 1200

rs: 3min of random samples

I B
BE EEEE i
[l T -L abIZﬂjﬂ.i—- T T
600 800

o = N W A OO N © ©

1000 1200

1500

1000

1rs: single random sample

500

rs: 3min of random samples

/N W il ER
P ITIRIE'm |
. 1IWm 1mm
; _ m

. I-I- .Ia24’i20!

0 500 10I00 15I00

1rs: single random sample

9 [T TIT W T IO
8 1 I BT NEErminr
7 C miEn IeNa e
s1 1 I If Wi N Finei
5 I N A e

I] T 1
va 6563

| | T T
0 1000 2000 3000 4000 5000 6000

rs: 3min of random samples

9 [T T T W ET T
8 1 BRI | DR T
7 G0 (N TR
6 WEAFANTIWD s 1w
5 0 HENAE W 1w

T n
W v!v15/5174

| | T T
0 1000 2000 3000 4000 5000 6000

OFRP NWAMOU O N WO

1rs: single random sample

:L B | s |

m mn] n m] m o

- m 1 T - [

4 mrm mEm] T 1

. m I m e m -

. CTHE RN T B

-1 = mm 1l T

=] Em -] 1 m

. ™ m "N N me .

4 m m 1 m n m - Ea

.= ™ = | mn I Em m =

4 n I 1 = o -

41w moom mE 1 om m

am E m Em = I

4w oEm " 1 m = m

4r m o mm TN

;i "B R

- EF " ¢ T Im

. 1 mE i yn4/2039 wm T
LN _B 1

1000

T
1500

T
2000

T
1500

rs: 3min of random samples
1000

500

What progress does the algorithm make over time?

— rs
abz7

S | f
©
—

1400
1

1200
1

1000

T T T
50000 100000 150000

rs
la24

T
150000

T
100000

T
50000

T T T T T T
00v¢ 00¢c 000 008T 009T O0OYT 00CT

swv15

6000 6500 7000 7500
1 1 1

5500

5000

50000 100000 150000

yn4

2000 2200
1 1

1800
1

1600
|

T T T
50000 100000 150000

® Law of Diminishing Returns

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime).

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.

— s
abz7

1600
|

1400
1

normal plot

1200
1

1000

T T T
50000 100000 150000

— s
abz7

1600
|

1400
1

log-scale plot

1200
1

1000

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and

smaller.

1600

1200

1200 1400 1600 1800 2000 2200 2400
PO S S

50000 100000 150000 50000 100000 150000

[— s [—
swvis yn4

200 2200
L L

1800
L

5000 5500 6000 6500 7000 7500

- 50000 100000 150000 - 50000 100000 150000 -

W

[

Progress over Time =

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

a24

00 1800 2000 2200 2400
L

2200
L

2000

1800

1600

5000 5500 6000 6500 7000 7500

1 10 100 1000 10000 100000

Metaheuristics for Smart Manufacturing Thomas Weise 15/20

W

[

Progress over Time =

¢ Law of Diminishing Returns”): Most improvements (of the makespan)
are achieved with the initial, small investment (of runtime). Further
improvements will cost more and more (time) and will be smaller and
smaller.

e This holds for runtime, but also for improvements of algorithms.

a24

§
§
g -
§

2200
L

2000

1800

1600

5000 5500 6000 6500 7000 7500

1 10 100 1000 10000 100000

Metaheuristics for Smart Manufacturing Thomas Weise 15/20

@ Introduction

@ Algorithm Concept

@ Experiment and Analysis

@ Improved Algorithm Concept

@ Experiment and Analysis 2

@ summary

® We have now a basic algorithm that provides some solutions.

® We have now a basic algorithm that provides some solutions.
® Butitis

® We have now a basic algorithm that provides some solutions.
® Butitis...well

® We have now a basic algorithm that provides some solutions.

® Butitis...well... quite stupid.

® We have now a basic algorithm that provides some solutions.

® Butitis...well... quite stupid.

® |t just makes random guesses.

We have now a basic algorithm that provides some solutions.

But it is ...well... quite stupid.

It just makes random guesses.

It does not make any use of the information it has seen during the
search.

il
Thank you

Thomas Weise [C L]

tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Metaheuristics for Smart Manufacturing

Thomas Weise 18/20

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer
Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018-2019. URL
http://thomasweise.github.io/aitoa/. see also /.

2. Paul Anthony Samuelson and William Dawbney Nordhaus. Microeconomics. McGraw-Hill Education (ISE Editions), Boston,
MA, USA, 17 edition, 2001. ISBN 0071-180664.

3. Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009. URL
http://www.it-weise.de/projects/book.pdf.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf

	Outline
	An Introduction to Optimization Algorithms
	Introduction
	Section Outline
	Introduction

	Algorithm Concept
	Section Outline
	General interface for a function to sample 1 point from X
	Create a Single Random Point x for the JSSP

	Experiment and Analysis
	Section Outline
	So what do we get?

	Improved Algorithm Concept
	Section Outline
	Exploit Randomness: Random Sampling

	Experiment and Analysis 2
	Section Outline
	So what do we get?
	Progress over Time

	Summary
	Section Outline
	Summary

	Presentation End

