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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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The Structure of Optimization

• So we know roughly what an optimization problem is and that
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Metaheuristics for Smart Manufacturing Thomas Weise 5/43



The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43



The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43



The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43



The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

• Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.
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optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved –
we develop software for solving a class of problems, but this software is
applied to specific problem instances, the actual scenarios
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• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R, which rates “how good” a candidate

solution y ∈ Y is.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43



Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

Metaheuristics for Smart Manufacturing Thomas Weise 6/43



Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y
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• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
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• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, which allow for the iterative

exploration of the search space X
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1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion, which tells the optimization process when to
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Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

• We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.
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optimization problem.
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Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

• This problem is NP -hard. [10, 11]
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The Input: Problem Instances

• The JSSP is a type of problem.
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• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley [12] manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

• More information about these instances has been collected by van
Hoorn [13, 14] at http://jobshop.jjvh.nl.

• What do such JSSP instances look like?
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Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it
goes to machine 4 for 30 time units.
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Demo Instance

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.
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Demo Instance

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.
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Instance abz7

Instance abz7 by Adams et al. [15].
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Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)
20 15
2 24  3 12  9 17  4 27  0 21  6 25  8 27  7 26  1 30  5 31 11 18 14 16 13 39 10 19 12 26
6 30  3 15 12 20 11 19  1 24 13 15 10 28  2 36  5 26  7 15  0 11  8 23 14 20  9 26  4 28
6 35  0 22 13 23  7 32  2 20  3 12 12 19 10 23  9 17  1 14  5 16 11 29  8 16  4 22 14 22
9 20  6 29  1 19  7 14 12 33  4 30  0 32  5 21 11 29 10 24 14 25  2 29  3 13  8 20 13 18

11 23 13 20  1 28  6 32  7 16  5 18  8 24  9 23  3 24 10 34  2 24  0 24 14 28 12 15  4 18
8 24 11 19 14 21  1 33  7 34  6 35  5 40 10 36  3 23  2 26  4 15  9 28 13 38 12 13  0 25

13 27  3 30  6 21  8 19 12 12  4 27  2 39  9 13 14 12  5 36 10 21 11 17  1 29  0 17  7 33
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9 21 14 34  3 30 12 38  0 11 11 16  2 14  5 14  1 34  8 33  4 23 13 40 10 12  6 23  7 27
9 13 14 40  7 36  4 17  0 13  5 33  8 25 13 24 10 23  3 36  2 29  1 18 11 13  6 33 12 13
3 25  5 15  2 28 12 40  7 39  1 31  8 35  6 31 11 36  4 12 10 33 14 19  9 16 13 27  0 21

12 22 10 14  0 12  2 20  5 12  1 18 11 17  8 39 14 31  3 31  7 32  9 20 13 29  4 13  6 26
5 18 10 30  7 38 14 22 13 15 11 20  9 16  3 17  1 12  2 13 12 40  6 17  8 30  4 38  0 13
9 31  8 39 12 27  1 14  5 33  3 31 11 22 13 36  0 16  7 11 14 14  4 29  6 28  2 22 10 17

+++++++++++++++++++ EOF ++++++++++++++++++++++++++++++++++++

20 jobs
15 machines



Instance la24

Instance la24 by Lawrence [16].
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+++++++++++++++++++++++++++++
Lawrence 15x10 instance (Table 7, instance 4)
15 10
7  8 9 75 0 72 6 74 4 30 8 43 2 38 5 98 1 26 3 19
6 19 8 73 3 43 0 23 1 85 4 39 5 13 9 26 2 67 7  9
1 50 3 93 5 80 4  7 0 55 2 61 6 57 8 72 9 42 7 46
1 68 7 43 4 99 6 60 5 68 0 91 8 11 3 96 9 11 2 72
7 84 2 34 8 40 5  7 1 70 6 74 3 12 0 43 9 69 4 30
8 60 0 49 4 59 5 72 9 63 1 69 7 99 6 45 3 27 2  9
6 71 2 91 8 65 1 90 9 98 4  8 7 50 0 75 5 37 3 17
8 62 7 90 5 98 3 31 2 91 4 38 9 72 1  9 0 72 6 49
4 35 0 39 9 74 5 25 7 47 3 52 2 63 8 21 6 35 1 80
9 58 0  5 3 50 8 52 1 88 6 20 2 68 5 24 4 53 7 57
7 99 3 91 4 33 5 19 2 18 6 38 0 24 9 35 1 49 8  9
0 68 3 60 2 77 7 10 8 60 5 15 9 72 1 18 6 90 4 18
9 79 1 60 3 56 6 91 2 40 8 86 7 72 0 80 5 89 4 51
4 10 2 92 5 23 6 46 8 40 7 72 3  6 1 23 0 95 9 34
2 24 5 29 9 49 8 55 0 47 6 77 3 77 7  8 1 28 4 48
+++++++++++++++++++++++++++++

15 jobs
10 machines



Instance swv15

Instance swv15 by Storer et al. [17].

Metaheuristics for Smart Manufacturing Thomas Weise 14/43

+++++++++++++++++++++++++++++
Storer, Wu, and Vaccari hard 50x10 instance (Table 2, instance 15)
50 10
2  93  4  40  0   1  3  77  1  77  5  16  9  74  8  11  6  51  7  92
0  92  4  80  1  76  3  59  2  70  5  86  9  17  6  78  7  30  8  93
1  44  2  92  3  96  4  77  0  53  9  10  7  49  5  84  8  59  6  14
1  60  2  19  3  76  0  73  4  85  7  13  8  93  5  68  9  50  6  78
2  20  0  24  3  41  1   2  4   4  9  44  7  79  8  81  5  16  6  39
3  41  2  35  1  32  4  18  0  15  8  98  6  29  5  19  7  14  9  26
1  59  0  45  4  53  3  44  2  98  5  84  6  23  7  45  8  39  9  89
1  30  4  51  3  25  0  51  2  84  6  60  5  45  7  89  8  25  9  97
0  47  3  18  2  40  4  62  1  58  5  36  7  93  8  77  9  90  6  15
3  33  1  68  0  41  4  72  2  20  6  69  7  47  5  22  9  47  8  22
2  28  1 100  4  20  0  35  3  26  5  24  9  41  6  42  7 100  8  32
0  65  2  12  4  53  3  93  1  40  8  18  7  23  5  60  6  89  9  53
0  58  1  60  4  97  3  31  2  50  9  85  5  64  7  38  6  85  8  35
3  64  0  58  1  49  2  45  4   9  8  49  6  22  5  99  9  15  7   7
0  10  4  85  3  72  2  37  1  77  5  70  7  45  9   8  6  83  8  57
4  93  0  87  1  87  2  18  3   4  8  78  5  67  9  20  6  17  7  35
4  72  0  56  3  57  2  15  1  45  6  41  5  40  9  85  8  32  7  81
0  36  3  63  4  79  2  32  1   5  6  25  7  86  9  91  5  21  8  35
2  83  4  29  0   9  1  38  3  73  7  50  9  99  5  18  8  29  6  41
0 100  3  29  2  60  4  63  1  64  8  71  6  35  5  26  9   9  7  22
1  81  0  60  3  62  4  48  2  68  7  28  5  69  8  92  6  79  9  10
0  40  4  80  1  41  2  10  3  68  8  28  9  51  7  33  6  82  5  25
4  30  2  12  0  35  3  17  1  70  9  29  7  18  8  93  6  94  5  37
1  36  2  41  3  27  4  36  0  78  7  64  6  88  5  25  9  92  8  66
2  65  3  27  4  74  0  32  1  40  5  88  8  73  6  92  7  83  9  42
0  48  1  85  2  92  4  95  3  61  8  72  9  76  5  58  7  11  6  89
3  84  2  50  0  70  4  24  1  42  9  55  5 100  6  70  7   4  8  68
0  95  4  41  2  11  3  98  1  85  5  64  6   8  7  26  8   6  9   6
0  84  2  49  1  17  3  69  4  55  8  75  6  45  9  38  7  59  5  28
2  48  0  29  4   1  1  64  3  41  5  23  7  64  9  31  6  56  8  12
2  81  4  25  3  33  0  22  1  50  5  74  9  56  8  33  7  85  6  83
1  62  4  25  0  21  2  20  3   8  6  36  9   9  5  91  8  90  7  49
1  43  0  16  2  91  3  96  4  24  5  11  9  91  7  41  8  35  6  66
1  91  2  20  4  44  0  42  3  87  9  57  6  15  5  38  8  42  7  89
0  33  3  95  4  68  2  22  1  80  7  53  8  13  9  70  5  22  6  69
0  15  3  47  1  24  2  31  4  41  8  14  9  28  7  59  5  52  6  39
2  95  0  42  4   5  1  57  3  67  6  30  9  21  8  70  5   9  7  20
2  54  0  15  1  20  3  64  4  83  9  40  7   6  5  89  6  91  8  48
0  22  4  27  1  77  3  25  2  16  8  72  9  61  6  75  7  4   5  19
3  68  1  82  2  16  0  83  4   2  7  10  8  88  5  41  9  21  6  66
1  64  0  76  2  85  3  71  4  97  5  97  7   8  6  40  8  70  9  35
0  94  1  45  2  94  4  84  3  44  8  41  5  30  7  47  6  19  9  22
2  23  1  10  0  82  3  93  4  90  8  67  7   9  9  18  5  22  6  87
0  75  2  27  4  97  3   9  1  57  9  14  5  50  7  31  8  62  6  23
1  42  3  41  2  35  0  75  4  18  9  65  7  38  6  38  8  51  5  56
4  72  1  63  0  33  2  27  3  41  5  52  7  42  9  10  6  14  8  71
2  91  1  89  0  44  4  91  3  26  6  49  5  22  8  31  9  69  7   5
3  42  1  34  0   4  4  34  2  16  6  86  7  25  8  99  5  67  9  25
4  34  1  93  0  26  3  81  2   9  7  96  8  79  9  68  5  76  6  10
3  19  1  47  4  13  2  98  0  32  7  12  9  45  6  52  8  49  5  34

+++++++++++++++++++++++++++++

50 jobs
10 machines



Instance yn4

Instance yn4 by Yamada and Nakano [18].
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+++++++++++++++++++++++++++++
Yamada and Nakano 20x20 instance (Table 4, instance 4)
20 20
16 34 17 38  0 21  6 15 15 42  8 17  7 41 18 10 10 26 11 24  1 31 19 25 14 31 13 33  4 35  9 30  3 16 12 16  5 30  2 13
5 41 11 33  6 15 16 38  0 40 14 38  3 37  1 20 13 22  4 34  7 16 17 39  9 15  2 19 10 36 12 39 18 26  8 19 15 39 19 34

17 34  1 12 16 10  7 47 13 28 15 27  0 19  6 34 19 33 12 40  9 37 14 24  8 15 10 34  2 44  3 37 18 22 11 31  4 39  5 26
5 48  7 46 16 47 10 45 14 15  8 25  0 34  3 24 12 35 18 15  2 48 13 19 11 10  1 48 17 16 15 28  4 18  6 17  9 44 19 41

12 47  3 23  9 48 16 45 14 39  6 42  8 32 15 11 13 16  5 14 11 19  1 46 19 10 10 17  7 41  2 47 17 32  4 17  0 21 18 17
18 14 16 20  1 18 12 14 13 10  6 16  5 24  4 18  0 24 11 18 15 42 19 13  3 23 14 40  9 48  8 12  2 24 10 23  7 45 17 30
0 27 12 15  4 26 13 19 17 14  5 49  7 16 18 28 16 16  8 20  9 36  2 21 14 30  3 36  1 17 15 22  6 43 11 32 10 23 19 17
0 32 16 15 17 12  7 46  3 37 18 43 11 40 13 43  9 48  4 36 15 24  8 25  1 33 14 32  5 26  6 37 12 24 10 24  2 15 19 22

10 34  6 33 15 25  8 46  0 20 18 33  4 19 13 45  2 47  1 32  3 12 11 29 16 29  5 46 12 17  7 48 14 39 17 40 19 41  9 37
13 26  3 47  5 44  6 49  1 22 17 12 10 28 19 36  9 27  4 25 14 48  7 11 16 49 12 24 11 48  2 19  0 47 18 49  8 46 15 36
13 23 18 48 14 15  0 42  3 36  8 15  6 32 10 18  1 45 15 23 11 45  2 13 17 21 12 32  7 44  5 25 19 34 16 22  9 11  4 43
17 37  7 49 15 45  2 28  9 15  8 35 12 29 13 44  1 26  4 25  5 30  3 39  0 15 14 28 18 23  6 42 11 33 16 45 10 10 19 20
0 10  6 37  3 15 13 13 10 11  2 49  1 28 14 28 15 13  8 29 12 21 16 32 11 21  4 48  5 11 17 26  9 33 18 22  7 21 19 49

18 38  0 41  4 30 13 43  6 11  2 43 14 27  3 26  9 30 15 19 16 36  1 31 17 47  5 41 10 34  8 40 12 32  7 13 11 18 19 27
6 24  5 30  7 10 10 35  8 28 16 43 19 12  9 44 15 15  3 15  2 35 18 43  0 38  4 16  1 29 17 40 14 49 13 38 12 16 11 30
3 48  6 35 13 43  2 37 17 18  5 27  9 27  7 41  1 22 15 28 16 18 10 37 18 48  4 10  8 14 11 18 14 43  0 48 12 12 19 49
0 13 13 38  7 34  6 42  1 36  5 45 18 24  8 35 14 26 19 30 12 47 16 24 11 47  4 40 10 43  3 16 15 10  2 12  9 39 17 22

16 30 13 47 19 49  8 20  4 40  3 46 17 21 14 33  6 44  7 23  9 24  0 48 10 43 15 41  2 32  5 29 11 36  1 38 12 47 18 12
13 10  5 36 12 18 16 48  0 27 14 43 10 46  6 27  7 46 19 35 11 31  2 18  8 24  3 23 17 29 18 14  9 19  1 40 15 38  4 13
9 45 16 44  0 43 17 31 14 35 13 17 12 42  3 14 18 37 10 39  6 48  7 38 15 26  4 49  2 28 11 35  1 42  5 24  8 44 19 38

+++++++++++++++++++ EOF ++++++++++++++++++++++++++++++++++++

20 jobs
20 machines
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Problem Instance Data in Java

• How can we represent such data in Java program code?

Listing: A class JSSPInstance capable representing a problem instance.

public class JSSPInstance {

public final int m; // number of machines

public final int n; // number of jobs

public final int [][] jobs; // one row per job

}
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• We now know how a problem instance of the JSSP looks like.
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Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• Basically, a Gantt Chart [19, 20].
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• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.
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Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible Gantt charts for
one problem.

• Each of the m int[] lists in schedule holds n sub-jobs for each
machine as three values jobID, start time, end time, i.e., has length
3n.

Listing: A class JSSPCandidateSolution capable representing a Gantt
chart.

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

}
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Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.
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Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed
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Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.
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Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).
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An Interface for Objective Functions in Java

Listing: An interface for objective functions.

public interface IObjectiveFunction <Y> {

public abstract double evaluate(Y y);

}
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The JSSP Objective Function in Java

Listing: The JSSP objective function.

public final class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

private final JSSPInstance m_instance;

public final double evaluate(JSSPCandidateSolution y) {

int makespan = 0;

// look at the schedule for each machine

for (final int[] machine : y.schedule) {

// the end time of the last job on the machine is the last number

// in the array , as array machine consists of "flattened" tuples

// of the form ((job , start , end), (job , start , end), ...)

final int end = machine[machine.length - 1];

if (end > makespan) {

makespan = end; // remember biggest end time

}

}

return makespan;

}

}
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• There must be at least one globally optimal solution y⋆.
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The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43



The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

• All what we can do is search somehow in Y and hope to get as close
to y⋆ within reasonable time as possible.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43



The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

• All what we can do is search somehow in Y and hope to get as close
to y⋆ within reasonable time as possible.

• If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice.
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and only if it fulfills all constraints.
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Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time
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• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

5 the precedence constraints of the sub-jobs must be honored.
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Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

5 the precedence constraints of the sub-jobs must be honored.

• Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.
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Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.
Before job 0 can be put on machine 1,
it must go through machine 0.



Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

So job 1 cannot go to machine 0 until
it has passed through machine 1, but
in order to be executed on machine 1,
job 0 needs to be finished there first.
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it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there
first.
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This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.
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Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.
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Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

• Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping γ : X 7→ Y.
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The Search Space X
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search in a simpler space X, the search space.
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The Search Space X

• If the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

• Of course, we need a mapping γ from X to Y.

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.
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This is information that we have, which does not need
to be stored in the elements x.
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The instance data and the data from one point x should
encode such a Gantt chart.
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• Ideally, we want to encode this two-dimensional structure in
something very simple.
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• Each job has m = 5 sub-jobs that must be distributed to the
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• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the sub-jobs per job =⇒ we do not need to
encode it.

• We just include each job’s id m times in the string. [21, 22]

• The first occurence of a job’s ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

• This way, we will always have the sub-jobs in the right order.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

0 10

4 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

2 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

2 30

1 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

1

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

2 20 3 40 4 10

0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

1 20

2 30

1 20job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

1 0

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

2 20 3 40 4 10

3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20

1 20

2 30

0 10

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20

1 20 0 10

2 30

2 20job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10

2 30

3 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

4 12 3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

3 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

3 30

4 12

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

2



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

4 30

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20 4 12

3 30

2 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

2



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50

2 30 1 20 4 12

3 30

4 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12

3 30

3 40

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

0 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

4 10

0 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

3 40job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

4 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

0 10

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15

4 10job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0

3



Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0

3

3



Demo Example for the Search Space
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The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.
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The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our strings of length m ∗ n contain each value in 1 . . . n
exactly m times, we will always get feasible Gantt charts by applying
our mapping γ : X 7→ Y!

• We call this the representation.

• If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times – they would all go into the mapping γ.
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An Interface for Representation Mappings in Java

Listing: An interface for representation mappings.

public interface IRepresentationMapping <X, Y> {

public abstract void map(X x, Y y);

}
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The JSSP Representation Mapping in Java

Listing: The JSSP representation mapping.

public final class JSSPRepresentationMapping implements

IRepresentationMapping <int[], JSSPCandidateSolution > {

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = this.m_machineState; int[] machineTime = this.m_machineTime;

int[] jobState = this.m_jobState; int[] jobTime = this.m_jobTime;

Arrays.fill(machineState , 0); Arrays.fill(jobState , 0);

Arrays.fill(machineTime , 0); Arrays.fill(jobTime , 0);

for (final int nextJob : x) {

int[] jobSteps = this.m_jobs[nextJob ];

int jobStep = (jobState[nextJob ]++) << 1;

int machine = jobSteps[jobStep ];

int start = Math.max(machineTime[machine], jobTime[nextJob ]);

int end = start + jobSteps[jobStep + 1];

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine ];

schedule[machineState[machine ]++] = nextJob;

schedule[machineState[machine ]++] = start;

schedule[machineState[machine ]++] = end;

}

}

}
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Section Outline

1 Introduction
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• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For three machines, we are at (n!)3.
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Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

• But some may be wrong, i.e., contain deadlocks!

Metaheuristics for Smart Manufacturing Thomas Weise 32/43
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Number of Solutions: Size of Y
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name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1’296
3 5 317 7’776
4 2 244 576
4 3 1’630 13’824
4 4 7’451 331’776

demo 4 5 7’962’624
la24 15 10 ≈ 1.462*10121

abz7 20 15 ≈ 6.193*10275

yn4 20 20 ≈ 5.278*10367

swv15 50 10 ≈ 6.772*10644



Size of Search Space X

• Our search space X is not the same as the solution space Y.
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name n m |Y| |X|
3 2 36 90
3 3 216 1’680
3 4 1’296 34’650
3 5 7’776 756’756
4 2 576 2’520
4 3 13’824 369’600
4 4 331’776 63’063’000
5 2 14’400 113’400
5 3 1’728’000 168’168’000
5 4 207’360’000 305’540’235’000
5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024
la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806
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Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

• X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.
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Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.
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Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.

• How long should it run?

• When can it stop?

• This is called the termination criterion.
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When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.
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When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . . ) is not faster! [24–26]

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.
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• This was the most complicated lesson in this course!
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Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5 Understand when we need to stop the search!

• If we have this, we can directly use any of the algorithms in the rest
of the lecture (almost) as-is.
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• The Key: Translate the complicated task to work with a complex
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structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.
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Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristics for Smart Manufacturing Thomas Weise 39/43

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristics for Smart Manufacturing Thomas Weise 40/43



Bibliography I

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer
Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018–2019. URL
http://thomasweise.github.io/aitoa/. see also [2].

2. Thomas Weise. Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

3. Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN
0-306-48056-5. doi: 10.1007/b101874.

4. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Berlin/Heidelberg: Springer-Verlag, 2nd
edition, 2004. ISBN 3-540-22494-7, 978-3-540-22494-5, and 978-3-642-06134-9. URL
http://books.google.de/books?id=RJbV_-JlIUQC.

5. Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:
287–326, 1979. doi: 10.1016/S0167-5060(08)70356-X.

6. Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445–522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993. doi:
10.1016/S0927-0507(05)80189-6.

7. Eugene Leighton Lawler. Recent results in the theory of machine scheduling. In AAchim Bachem, Bernhard Korte, and
Martin Grötschel, editors, Math Programming: The State of the Art, chapter 8, pages 202–234. Springer-Verlag,
Bonn/New York, 1982. ISBN 978-3-642-68876-8. doi: 10.1007/978-3-642-68874-4 9.
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