LR B

HEFEI UNIVERSITY

Metaheuristics for Smart Manufacturing
2. The Structure of Optimization

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE
http://iao.hfuu.edu.cn

& fe AR R /E2R
T E A 2

ZH5H AR A

k2 R A BT

b E 2k ST H LR 230601
ZFBEAFAR % KEIS

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline %\

@ Introduction

@ Smart Manufacturing Example Problem

@ Solution Space and Objective Function

course book

@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

The slides are available at http://iao.hfuu.edu.cn/155, the
book at http://thomasweise.github.io/aitoa, and the source

course material

code at http://www.github.com/thomasWeise/aitoa-code

Metaheuristics for Smart Manufacturing Thomas Weise 2/43

http://iao.hfuu.edu.cn/155
http://thomasweise.github.io/aitoa
http://www.github.com/thomasWeise/aitoa-code

An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to
Optimization Algorithms” M at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

Metaheuristics for Smart Manufacturing Thomas Weise 3/43

http://thomasweise.github.io/aitoa
http://thomasweise.github.io/aitoa/aitoa.pdf
http://thomasweise.github.io/aitoa/aitoa.html
http://thomasweise.github.io/aitoa/aitoa.azw3
http://thomasweise.github.io/aitoa/aitoa.epub
https://www.linkedin.com/feed/update/urn:li:activity:6540439180223307776

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

® So we know roughly what an optimization problem is and that
metaheuristics ** are algorithms to solve them.

® So we know roughly what an optimization problem is and that
metaheuristics ** are algorithms to solve them.

® But we do not really know yet how that works.

® So we know roughly what an optimization problem is and that
metaheuristics ** are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® So we know roughly what an optimization problem is and that
metaheuristics ** are algorithms to solve them.

® But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

The Structure of Optimization %}

® So we know roughly what an optimization problem is and that
metaheuristics " are algorithms to solve them.

e But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

® Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

® From the perspective of a programmer, we can say that an
optimization problem has the following components

® From the perspective of a programmer, we can say that an
optimization problem has the following components:

@ the input data which specifies the problem instance Z to be solved

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved —
we develop software for solving a class of problems, but this software is
applied to specific problem instances, the actual scenarios

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
® a data type Y for the candidate solutions y € Y, and

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
® a data type Y for the candidate solutions y € Y, and
® an objective function f : Y +— R, which rates "how good” a candidate
solution y € Y is.

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y +— R.

® Usually, in order to practically implement an optimization approach,
there also will be

Components of an Optimization Problem %\’

1AQ

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\,

1AQ

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v : X — Y, which translates “points” x € X
to candidate solutions y € Y

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\’

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, which allow for the iterative
exploration of the search space X

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\’

1AQ

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion, which tells the optimization process when to
stop.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\’

1AQ

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion.

® | ooks complicated..

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\’

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion.

® |ooks complicated, but don't worry..

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\’

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion.

® |ooks complicated, but don't worry. We will do this one-by-one.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem %\

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be

@ a search space X,

@ a representation mapping v: X — Y,

@ search operators searchOp : X" — X, and
@ a termination criterion.

® |ooks complicated, but don't worry. We will do this one-by-one.

® We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

PP T

’lj
s
S

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® We have a factory with m machines.

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® We have a factory with m machines.

® We need to fulfill n production requests, the jobs.

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® We have a factory with m machines.

® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

We have a factory with m machines.

® We need to fulfill n production requests, the jobs.

Each job will need to be processed by some or all of the machines in a
job-specific order.

Also, each job will require a job-specific time at a given machine.

® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.

® The goal is to fulfill all tasks as quickly as possible.

Job Shop Scheduling Problem %}

® The Job Shop Scheduling Problem (JSSP) P is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Each job will need to be processed by some or all of the machines in a
job-specific order.

e Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem %}

® The Job Shop Scheduling Problem (JSSP) P is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Each job will need to be processed by some or all of the machines in a
job-specific order.

e Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

® This problem is A/ P-hard. ' 1

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

® The JSSP is a type of problem.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their

performance (of course, you can only compare results if they are for
the same scenario).

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances %\

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances %()

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances %()

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by van
Hoorn 1** at http://jobshop.jjvh.nl.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances %()

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by van
Hoorn 1** at http://jobshop.jjvh.nl.

e \What do such JSSP instances look like?

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

A B o
A simple demo

45

010 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30

2 301204 12 3 40 0 10
450330215020 115

e o S

number of jobs

R

A simple demo

5
010 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30
2 301204 12 3 40 0 10
450330215020 115
B s

number of jobs

A B o
A simple demo

\E number of machines
0101 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10
4 50 330215020115
e o S

R

number of jobs A simple demo
\

ZE— number of machines

job0Ofo 10 1 20 2 20 3 40 4 10]

120 0 10 3 30 2 50 4 30
2 301204 12 3 40 0 10

4 50 330215020115
e o S

R

number of jobs A simple demo .
\E number of machines
010 1 20 2 20 3 40 4 10

job 111 20 0 10 3 30 2 50 4 30|
2301204 12 340 0 10
450330215020 1 15
++++++ b

R

number of jobs A simple demo .
\E number of machines
010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
job2[230 1 20 4 12 3 40 0 10]

4 50 330215020115
e o S

R

number of jobs A simple demo .
\E number of machines
010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2 30120 4 12 3 40 0 10

job 3[4 50 330 2 15 0 20 1 15]

e o S

R

number of jobs A simple demo
\

ZE— number of machines

job0Ofo 10 1 20 2 20 3 40 4 10]

120 0 10 3 30 2 50 4 30
2 301204 12 3 40 0 10

4 50 330215020115
e o S

R

number of jobs A simple demo
\

s +— number of machines
job0Ofo 10 1 20 2 20 3 40 4 10]

120 0 10 3 30 2 50 4 30
2 30120 4 12 3 40 0 10

4 50 330215020115
L o S

Job 0 first needs to be processed by machine 0 for 10 time units

R

number of jobs A simple demo
\

s +— number of machines
job O,O 10 1 20 2 20 3 40 4 10|

120 0 10 3 30 2 50 4 30
2 301204 12 3 40 0 10

4 50 330215020115
L o S

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units

R

number of jobs A simple demo
\

s +— number of machines
job O,O 10 1 20 2 20 3 40 4 10|

120 0 10 3 30 2 50 4 30
230120 4 12 3 40 0 10

4 50 330215020115
L o S

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time

units

number of jobs

job 0

A B o
A simple demo

\Z“5_|/ number of machines

0 10 1 20 2 20 3 40 4 10|

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10
4 50 330215020115
L o S

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units

R

number of jObs\i"S—ilﬁ gﬁn&?ber of machines
4|5

job 00 10 1 20 2 20 3 40 4 10]
1200 10 3 30 2 50 4 30
2301204 12 3 40 0 10
450330215020 1 15
B o o o o o S

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 4 for 10 time units.

R

number of jObs\‘S.iﬁ gﬁn&?ber of machines
010 1 20 2 20 3 40 4 10

job1[1 20 0 10 3 30 2 50 4 30]
230120 4 12 3 40 0 10

4 50 330215020115
L o S

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it

goes to machine 4 for 30 time units.

R
number of jobs A simple demo

number of machines
010 1 20 2 20 3 40 4 10
120 0 10 3 30 2 50 4 30

job 2[230 1 20 4 12 3 40 0 10]
4 50 330215020115
B S

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.

R

number of jobs A simple demo .
number of machines
010 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30
2301204 12 3 40 0 10
job 3[4 50 3 30 2 15 0 20 1 15]
B o o o o o S

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine O for 20 time units, and finally it goes
to machine 1 for 15 time units.

Instance abz7 by Adams et al. .

20 jobs Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)
15 machines
2 12 9 17

24 3 427 021 625 827 726 130 53111 18 14 16 13 39 10 19 12 26
630 3151220 11 19 124 13 1561028 236 526 7 15 0 11 823 14 20 9 26 4 28
635 0221323 732 220 31212191023 917 114 516 11 29 8 16 4 22 14 22
920 629 119 7141233 430 032 521 11 29 1024 1425 229 3 13 8 20 13 18
1123 1320 128 632 716 518 824 923 3241034 224 0241428 12 156 4 18
82411191421 133 734 635 5401036 323 226 415 928 13 38 12 13 0 25
1327 330 621 8191212 427 239 9 13 14 12 536 10 21 11 17 129 0 17 7 33
527 419 629 920 3211040 8 14 14 39 13 39 227 136 12 12 11 37 7 22 0 13
13321129 824 327 540 421 926 027 1427 616 221 1013 7 28 1228 1 32
1235 111 5391418 723 034 3241311 8301131 4151015 228 9 26 6 33
1028 5371229 131 725 8131414 420 327 92513311114 625 239 0 36
0221125 5281335 431 821 9201419 229 7321018 118 311 1217 6 15
1239 532 236 814 3281337 038 620 7 19 11 12 1422 1 36 4 15 9 32 10 16
828 129 14 40 12 23 434 533 627 1017 020 7 28 11 21 221 1320 9 33 3 27
9211434 3301238 011 1116 214 514 134 833 423 13 40 10 12 623 7 27
913 14 40 736 417 013 533 82513241023 336 229 118 11 13 6 33 12 13
325 515 2281240 739 131 835 6311136 412 1033 14 19 9 16 13 27 0 21
12221014 012 220 512 118 11 17 839 1431 331 7 32 920 13 29 4 13 6 26
518 10 30 7 38 14 22 13 16 11 20 916 3 17 1 12 2 13 1240 6 17 8 30 4 38 0 13
931 8391227 114 533 33111221336 016 7 11 1414 429 6 28 2 22 10 17

Bl 01 Sl o o

Instance 1a24

Instance 1a24 by Lawrence 1.

T

(Table 7, instance 4)

A

10 machines

awrence 15x10 instance

obs L

A

J

15

DO ONOIOIMIDIONO 00
~ <N~ ~— < 00 LW — 0 M

OMMAYTANMOANOHHOH

ONMNANATDONNEANDMO OO0
NOFAHONMNMMMLO<FODN0AN

TFANOODODOMUOOOWE OO

NVONOMWOLOO L0 OMOW
OAMNO I < M~ ANANM— 00N

LLOOMOWOHOLO O~

ONOM—TNDODONMO I ANNOIN
MN—=HOO A1 DNLONOONNDN M~

ANADOOMNM~MNMNIOIANNOONMNMM

MDA AIFT DWW NOWLOOANN+
MO ONMNO MWOANM— 00NN+

OFNOOALSIFIMOOLONMNO +

30
85
55
68
70
63
98
91
a7
88
18
60
40
40
a7
+++++

OO AHDDO AN~ N0 N0

MOMOMNOHANO O —H ©
N © MOOMOANWAAHAO

OF OO~ MLO LN

NONODMLOFOMMNWOM
FOAFOOONMLOMMNLON

NWOFOFOODMNFANMLO

NMNMOFAHODOHOON
MO OFOOOM DO O

OMNMANOANNMNOOMM— AN

DOV FHO AN OO O
—HLDOOOMNOMWODON

O—H—ANMN0OOFIOINOO I

7T 8975072674
224529 949 8550
S

13/43

Thomas Weise

Metaheuristics for Smart Manufacturing

SRTRRRBELNNBE™E 852982228 [EE]
o) ©oro
§ TRBETARsYERERENANRTRRIER T “BBERRNNN 5 HORNITIBEES
2 on
2 =

e FNYE®me
o
N N EETTI
5 TN23RRRERSIRINELSERBERBRLE 8IR FR08I TS [
- oo
L 383 28R 28k
i
2 woro
% RRBBYARIBIRSEORTQ 832358 ¥ B
K
P o +
i H
IT rgreoeszanss zag898Es i
1§ marees i
4ol 1
g - 1
I8z R T R e T L T T wgnl
FEITERRIRBASYRBEINEER =% |k IV8ST
18
HEs N i
igd H
18 ggaoununn nBgneaR asost
i82 83 2% H
Ig7 - I
iz o i
ig H

s@on

H ER REREE]
H g REEREEE
i B I
b ke

Instance swv15 by Storer et al. 7.

[18]

7
3
0
0
8
18 14 16 20 1 18 12 14 13 10 6 16 524 4 18 0 24 11 18 15 42 19 13 3 23 14 40 9 48
7
1
4
0
6

Instance yn4 by Yamada and Nakano

20 jobs Yamada and Nakano 20x20 instance (Table 4, instance 4)
20 machines
16 34 17 38 021 6 1 41 18 10 10 26 11 24 1 31 19 25 14 31 13 33 4 35
5 41 1 9

11 33 6 15 16 38 0 40 14 38

,_
o
N
-
©
-

vo
w
=3
.

34 32412 35 18 15 2 48 13 19 11 10 1 48 17 16
32 156 11 13 16 5 14 11 19 1 46 19 10 10 17 7 41

16 18 28 16 16 8 20 9 36 2 21 14 30 3 36 1 17

-

w
Q
-
o
'S
[
-
N

4

47 132 312 11 29 16 29 5 46 12 17
4

45 15 23 11 45 2 13 17 21 12 32 7 44

N
N
-
=)
-
)
.

w
Q2
w
N
o
-
w
-
w
-
)
@
N
~
)
@
-

9

2

9

1

1

5 29 12 21 16 32 11 21 4 48 5 11
26 930 15 19 16 36 1 31 17 47

5

1

4

6

7

8

=
kS
-
-
CWHENONOOINNOUIONUTWN©
IS
©o
I
N
w
8
-
5
N
o
.

[
o
.
w
~
@
)
[
]
-
-
o
©
-
~
e

5
4
22 15 28 16 18 10 37 18 48 4
26 19 30 12 47 16 24 11 47 4 40 10 43
44 723 924 0 48 10 43 15
3
4

p
®
W WU NN 0 00
N
N
T
N O NP N
IS}
RY
WP 00~N©OW
w
&
-

9 45 16 44 0 43 17 31 1. 37 10 39 6 48 7 38 15 26

49 228 11 35 1 42

® How can we represent such data in Java program code?

Problem Instance Data in Java

® How can we represent such data in Java program code?

Listing: A class JSSPInstance capable representing a problem instance.

public class JSSPInstance {
public final int m; // number of machines
public final int n; // number of jobs

public final int[][] jobs; // ome row per job

Metaheuristics for Smart Manufacturing Thomas Weise

16/43

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

® We now know how a problem instance of the JSSP looks like.

® We now know how a problem instance of the JSSP looks like.

® What is a solution for the JSSP, for such an instance?

® We now know how a problem instance of the JSSP looks like.

e \What is a solution for the JSSP, for such an instance?
® Basically, a Gantt Chart %%,

Output: Solution Space Y %\’

demo

Machine
M2
|

Mo
|
Ml -
H

50 100 150

Time

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

T
1000

Time

2
:
|
200

eunoep

H A

.
O |
i EN-E
:
1
.

e
.
.
-

z
v
g
pa

- - - I HE |10

¥
2
w00

1 - KN - B -

T~
-
- KN EE o e -
N |
)
-

BN BN LW SN SN PIN CIN ZK LN OGN BN LK 9N SN N BN 20 W oM

Machine

o

e

W

swvis,

.5-_37.'

_ ! n. l m

® We now know how a problem instance of the JSSP looks like.

® What is a solution for the JSSP, for such an instance?

® A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

We now know how a problem instance of the JSSP looks like.

What is a solution for the JSSP, for such an instance?

A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

The solution space Y is the set of all possible feasible Gantt charts for
one problem.

Output: Solution Space Y §\

® We now know how a problem instance of the JSSP looks like.

® What is a solution for the JSSP, for such an instance?

e A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible Gantt charts for
one problem.

® Each of the m int[l lists in schedule holds n sub-jobs for each

machine as three values joblD, start time, end time, i.e., has length
3n.

Listing: A class JSSPCandidateSolution capable representing a Gantt

chart.

public class JSSPCandidateSolution {
public int [J[] schedule;
}

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

10,
20,
30,
60,
50,

N WO NR

20,
30,
70,
60,
50,

30,
50,
90,
90,
62,

155,
50,
90,
90,

130,

175,

70,
140,
130,
140,

N W WN

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}

int[][] {

Mo{e, o, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
M14{1, o, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},
M2{2, o, 30,0, 70, 90, 1, 90, 140, 3, 140, 155},
M3{1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},
\M4a{3, o, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

Output: Solution Space Y

t
0,
1,
2,
1,
3

’

i
{
{
{
{
{
}

nt[1[] {

o,
o,
o,
30,
o,

10,
20,
30,
60,
50,

1, 20, 30,
2, 30, 50,
0, 70, 90,
3, 60, 90,
2, 50, 62,

3, 155, 175,
0, 50, 70,
1, 90, 140,
0, 90, 130,
0, 130, 140,

100 150

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}

Metaheuristics for Smart Manufacturing

Thomas Weise

18/43

Output: Solution Space Y %\’

int[]1[] {

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

185},
190},
155},
170},
170}

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

t
0,
1,
2,
1,
3

’

i
{
{
{
{
{
}

nt[1[] {

o,
o,
o,
30,
o,

10,
20,
30,
60,
50,

1, 20, 30,
2, 30, 50,
0, 70, 90,
3, 60, 90,
2, 50, 62,

3, 155, 175,
0, 50, 70,
1, 90, 140,
0, 90, 130,
0, 130, 140,

100 150

175,
175,
140,
130,
140,

185},
190},
155},
170},
170}

Metaheuristics for Smart Manufacturing

Thomas Weise

18/43

Output: Solution Space Y

t
0,
1,
2,
1,
3

’

i
{
{
{
{
{
}

nt[1[] {

o,
o,
o,
30,
o,

10,
20,
30,
60,
50,

1, 20, 30, 3, 155, 175, 2, 175,
2, 30, 50, 0, 50, 70, 3, 175,
0, 70, 90, 1, 90, 140, 3, 140,
3, 60, 90, 0, 90, 130, 2, 130,
2, 50, 62, 130, 140, 1, 140,

I
50 100 150

185},
190},
155},
170},
170}

Metaheuristics for Smart Manufacturing Thomas Weise

18/43

Output: Solution Space Y

nt[1[] {
0, 0, 10, 1,
1, 0, 20, 2,
2, 0, 30,
1 60, 3,
3

50,

155,

175, 2

70, 3
140, 3,

, 30, 2
0, 1

130,

i
{
{
{
{
{ ’

}

M4
M3
M2

M1
MO

I
100 150

175,
175,
140,
130,

185},
190},
155},
170},
170}

Metaheuristics for Smart Manufacturing

Thomas Weise

18/43

Output: Solution Space Y

int[111 {
{o, o, 10, 1, 20, 30, 3, 155, 175, 2,
{1, o, 20, 2, 30, 50, 0, 50, 70, 3,
{2, 0,30, 0 70, 90, 1, 90, 140, 3,
{1, 30, 60, 3, 60, 90, 2,
{3, 0,56, 1
}

M4

M3

M2

M1

MO

I
100 150

175,
175,
140,
130,

185},
190},
155},
170},
170}

Metaheuristics for Smart Manufacturing

Thomas Weise

18/43

Output: Solution Space Y %\’

int[111 {
{o, 0,10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o, 20, 2, 30, 50, 6, 50, 70, 3, 175, 190},
{2, 0,30, 0 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 130, 170},
{3, 0,56, 170}
}

M4

M3

M2

M1

MO

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

int[111 {
{o, 0,10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o, 20, 2, 30, 50, 6, 50, 70, 3, 175, 190},
{2, 0,30, 0 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 170},
{3, 0,56, 170}
}

M4

M3

M2

M1

MO

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\’

int[111 {
{o, 0,10, 1, 20, 30, 3, 155, 175, 2, 175, 185},
{1, o, 20, 2, 30, 50, 6, 50, 70, 3, 175, 190},
{2, 0,30, 0 70, 90, 1, 90, 140, 3, 140, 155},
{1, 30, 60, 3, 60, 90, 170},
{3, 0,56, 170}
}

M4

M3

M2

M1

MO

I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y %\I

int[]I

{ 185},
{ 190},
{ 155},
{ 170},
{ 170}
}

I I I
0 50 100 150

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed

Solution Quality %()

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y +— R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality %\’

demo, makespan: 180

: | I

Machine
M2
|

= | I
El
|

T T T
50 100 150

Mo
|
Ml -

Time

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

la24, makespan: 1019

2
2 9

e " e an w ow

eunoep

1000

600

Time

400

200

2
s

] Bd |
.

D - - B .
e e b
oo
.

ynd, makespan: 1127
=] E&- B EE -
: I - |
(vH - H B

w00

- - - I HE =0
|
:
IR
.
[v] E <[

,
v
- LI

O HEE R
[- BN - B
[B - & BN
: B
G - DN - - K
; =

N -

OEmg- - - B
- O
E B

EE = =R

2
”

N
-
.
.
o

aunosn

Machine

o

‘swv1s, makespar

.l‘_37

mlil‘ -_
“-EI‘ I-“I

o 1000 200 a0

Solution Quality §\

So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

How do we rate the quality of a solution?

A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

This objective function is subject to minimization: smaller values are
better.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

w

B

I 1.
T

in 1
|
1000

|a24/18

T T .

L |

HE I
i EHiin
500

.

Im N
I EE. .|%2!/935

®» 0 N~ © v T ™o o

1500

1000

500

Solution Quality %()

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y +— R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.

e A Gantt chart y; € Y is a better solution to our problem than another
chart y2 € Y if f(y1) < f(y2).

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

An Interface for Objective Functions in Java %\’

Listing: An interface for objective functions.

public interface IObjectiveFunction<Y> {

public abstract double evaluate(Y y);

Metaheuristics for Smart Manufacturing Thomas Weise 20/43

The JSSP Objective Function in Java %\’

1AQ

Listing: The JSSP objective function.

public final class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

private final JSSPInstance m_instance;

public final double evaluate (JSSPCandidateSolution y) {
int makespan = 0;

for (final int[] machine : y.schedule) {

final int end = machine[machine.length - 1];
if (end > makespan) {
makespan = end;

}

}

return makespan;

}
}

Metaheuristics for Smart Manufacturing Thomas Weise 21/43

® There must be at least one globally optimal solution y*.

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.
® How do we find such a solution?

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.
® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

10*
10®
10%
10®
10%

1015
1 trillion
1 billion
1 million

0= fg= e (=2

f(x)=1.1%

f(x) / I

f(x)=x10
picoseconds

since big bang
- f(x)=x8

— f(x)=x4

ms per day

— f(x)=x2

— f(x)=x

1000
10100

X
X

256 512

1024 2048

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.

® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that

guarantees to find this solution may take time exponential in m or n
in the worst case.

® So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

The Global Optimum y* in Y %\’

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.
® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

® So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

e All what we can do is search somehow in Y and hope to get as close
to y* within reasonable time as possible.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y* in Y §\

There must be at least one globally optimal solution y* for which
Fy*) < f(y)¥y € Y holds.
How do we find such a solution?

We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

All what we can do is search somehow in Y and hope to get as close
to y* within reasonable time as possible.

If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

® So what do we need to consider when searching in Y?

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® So what do we need to consider when searching in Y?

® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts

® So what do we need to consider when searching in Y?
® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed

M4 0 1 N
M3
M2

M1
MO

0 50 100 150

0 I

M4
M3

M2
M1 m cannot omit
MO sub-job m

0 50 100 150

M4 0 1 N
M3
M2

M1
MO

0 50 100 150

cannot move

M1 sub-job

MO

0 50 100 150

® So what do we need to consider when searching in Y?
® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart

M4 0 1 |
M3

M2

M1 2 N
MO | | 3 1

0 50 100 150

can’t add
machines

M5
M4
M3
M2
M1
MO

M5 can’t add
machines

M4

M3

M2
M1
MO

Feasibility of Solutions %()

® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

M4 0 1 N
M3
M2

M1
MO

0 50 100 150

cannot shorten jobs
[[

0 50 100 150

Feasibility of Solutions

”

>
<

® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

M4 0 1 N
M3
M2

M1
MO

0 50 100 150

M1
MO

BN sub-jobs must

not overlap!
I I

0 50 100 150

Feasibility of Solutions

”

>
<

® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

@ the precedence constraints of the sub-jobs must be honored.

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

M4 0 1 N
M3
M2

M1
MO

0 50 100 150

B O
order of sub-jobs
must be preserved

MO

| | |
0 50 100 150

Feasibility of Solutions %\

1AQ

® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

@ the precedence constraints of the sub-jobs must be honored.

® Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

® So how do we search in the space of Gantt charts?

® So how do we search in the space of Gantt charts?

® \We need to create Gantt charts that fulfill all the constraints.

® So how do we search in the space of Gantt charts?

® \We need to create Gantt charts that fulfill all the constraints.

e For different instances, different solutions are feasible!

++++++++++++++
instance A with 2 jobs and 2 machines
2 2

s 1 1 o o o o T T S

++++++++++++++
instance A with 2 jobs and 2 machines

22

s 1 1 o o o o T T S

MO Job 0, Job 1; M1: Job 0, Job 1

M1+
MO+

W

t

0

10

20

30 40

50

60

++++++++++++++
instance A with 2 jobs and 2 machines
2 2

++++++++++++ R+

MO Job 0, Job 1; M1: Job 0, Job 1

M1+
MO

t

W

0 10 20 30 40 50 60
MO: Job 0, Job 1; M1: Job 1, Job O

M1+
MO+

t
0 10 20 30 40 50 60

Searching in Y

job 0
job 1

+++++++++
instance A with 2 jobs and 2 machines
2 2

+++++++++

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

?

0 10 Zb 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M1+

t
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

-

0 10 20 30 40 50 60

Metaheuristics for Smart Manufacturing

Thomas Weise

25/43

Searching in Y

job 0
job 1

+++++++++
instance A with 2 jobs and 2 machines
2 2

+++++++++

Job 0, Job 1; M1: Job 0, Job 1

M1+

t

ﬁ

0 10 Zb 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O

M1+

t
0 10 20 30 40 50 60

Job 1, Job 0; M1: Job O, Job 1

M1+

-

0 10 20 30 40 50 60
Job 1, Job 0; M1: Job 1, Job 0

M1+

= —

0 10 20 30 40 50 60

Metaheuristics for Smart Manufacturing

Thomas Weise

25/43

job 0
job 1

++++++++++++++
instance B with 2 jobs and 2 machines
2 2

[O 1 1 b o o o= T S SRS

job 0
job 1

++++++++++++++
instance B with 2 jobs and 2 machines

22

[O 1 1 b o o o= T S SRS

MO Job 0, Job 1; M1: Job 0, Job 1

M1+
MO

t

0

10

|

20

30 40

50

60

++++++++++++++
instance B with 2 jobs and 2 machines

job 0
job 1

+++++++++++

MO Job 0, Job 1; M1: Job 0, Job 1

M1+

MO t
T

0 10 20 30 40 50 60
MO: Job 0, Job 1; M1: Job 1, Job O

|

M1+
MO

t

=

0 10 20 30 40 50 60

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

[S)
=
o

0 10
+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

Machine 0 should begin by doing job 1.

Job 1, Job 0; M1:Job O, Job 1

M1 M1 \
-! ae2®
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

[S)
=
o

0 10
+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1.

Job 1, Job 0; M1:Job O, Job 1

M1 M1 \
-! ae2®
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

[S)
=
o

0 10
+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.

Job 1, Job 0; M1:Job O, Job 1

M1 M1 \
-! ae2®
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

[S)
=
o

0 10
+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.
Before job 0 can be put on machine 1,
it must go through machine 0.

Job 1, Job 0; M1:Job O, Job 1

M1 M1 \
-! ae2®
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

So job 1 cannot go to machine 0 until
it has passed through machine 1, but

J',OB? in order to be executed on machine 1,
(0] 0 10 . . .
J m+++++++++++++++ job 0 needs to be finished there first.
Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1-| M1 \
‘I gead
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N =-_
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

=
=
o

0 10

+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

M1 -_
| T T T T T T t
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
Ml_ ﬂ
T T T T T T T t
0 10 20 30 40 50 60

Job 0 cannot begin on machine 1 until
it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there

first.

M1

Job 1, Job 0; M1:Job O, Job 1

aea o.0)

t
0 10 20 30 40 50 60

Metaheuristics for Smart Manufacturing

Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

=
=
o

0 10
+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

A cyclic blockage has appeared: no job
can be executed on any machine if we

follow this schedule.

Job 1, Job 0; M1:Job O, Job 1

M1 M1 \
-! ae2®
t t
T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
T T T T T T T t
0 10 20 30 40 50 60
Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y §\’

Ftt+tittiittttri+444444 | Acyclic blockage has appeared: no job
instance B with 2 jobs and 2 machines can be executed on any machine if we
2 2
job 0 follow this schedule. This is called a
job 1
[O 1 1 b o o o= T S SRS deadlock.
Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1 M1 \
-! ae2®
t t
| T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
N ﬂ
t
T T

10 20 30 40 50 60

o

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

job 0
job 1

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

=
=
o

0 10

+++++++++++

Job 0, Job 1; M1: Job 0, Job 1

M1 -_
| T T T T T T t
0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O
Ml_ ﬂ
T T T T T T T t
0 10 20 30 40 50 60

This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.

M1

aea o.0)

Job 1, Job 0; M1:Job O, Job 1

0 10 20 30 40 50 60

Metaheuristics for Smart Manufacturing

Thomas Weise 25/43

1AQ

Searching in Y §\’

+++++++++ b+
instance B with 2 jobs and 2 machines
2 2

job 0
job 1 0 10
+++++++++++

o
=
o

Job 0, Job 1; M1: Job 0, Job 1 Job 1, Job 0; M1: Job 0, Job 1
M1- M1y aQ\ Q
-! ged
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Job 0, Job 1; M1: Job 1, Job O Job 1, Job 0; M1: Job 1, Job 0
. =-_ . q-
T T T T T T T t t
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

® So how do we search in the space of Gantt charts?
® We need to create Gantt charts that fulfill all the constraints.

e For different instances, different solutions are feasible!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® So how do we search in the space of Gantt charts?
® \We need to create Gantt charts that fulfill all the constraints.
® For different instances, different solutions are feasible!

® Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

® Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. ..

Searching in Y %()

® So how do we search in the space of Gantt charts?
® We need to create Gantt charts that fulfill all the constraints.
e For different instances, different solutions are feasiblel

e Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

e Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. ..

® We would like to have a handy representation for Gantt charts.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y %()

® So how do we search in the space of Gantt charts?
® We need to create Gantt charts that fulfill all the constraints.
e For different instances, different solutions are feasiblel

e Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

e Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. ..

® We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y %\

1AQ

® So how do we search in the space of Gantt charts?
® We need to create Gantt charts that fulfill all the constraints.
e For different instances, different solutions are feasiblel

e Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

e Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. ..

® We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

e Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping v : X — Y.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

® |f the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

® |f the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

® Of course, we need a mapping v from X to Y.

® |f the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

® Of course, we need a mapping v from X to Y.

® So how could a simple search space X for the JSSP look like?

® |f the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

® Of course, we need a mapping v from X to Y.
® So how could a simple search space X for the JSSP look like?

® |et us revisit the demo problem instance.

R s o o S S S S SO

number of jobs A simple demo .
\EI number of machines
job0 0 10 1 20 2 20 3 40 4 10

jobl 1200 10 3 30 2 50 4 30

job2 230 1 204 12 3 40 0 10

job3 4 503302150 20 1 15
e m e o B o o S

This is information that we have, which does not need
to be stored in the elements x.

The Search Space X

demo, makespan: 180

M4
|
I
!

Machine
M1 M2
! !
o I
o
(5]
H

Mo
|

(2]
T

1 1 1
0 50 100 150

Time
The instance data and the data from one point z should
encode such a Gantt chart.

Metaheuristics for Smart Manufacturing Thomas Weise

26/43

® |deally, we want to encode this two-dimensional structure in
something very simple.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 sub-jobs one IDs, a number in
0...19.

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 sub-jobs one IDs, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

The Search Space X %()

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 sub-jobs one IDs, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

® \We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X %()

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® We could give each of the m x n = 20 sub-jobs one IDs, a number in
0...19.

® Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

® We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks.

® How can we use a linear encoding without deadlocks?

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® How can we use a linear encoding without deadlocks?

® |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.

® How can we use a linear encoding without deadlocks?

® Fach job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

The Search Space X %@

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

e We know the order of the sub-jobs per job = we do not need to
encode it.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X %()

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

e We know the order of the sub-jobs per job = we do not need to
encode it.

® We just include each job's id m times in the string. '

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X %()

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

e We know the order of the sub-jobs per job = we do not need to
encode it.

® We just include each job's id m times in the string. '

® The first occurence of a job's ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X %()

¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

e We know the order of the sub-jobs per job = we do not need to
encode it.

® We just include each job's id m times in the string. '

® The first occurence of a job's ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

® This way, we will always have the sub-jobs in the right order.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

-
-
-

-
-
-
-

-
-
-

0
0
1
2

O N -
O~ ~ N
W NN -

B
A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30

230 1204 12 3 40 0 10

4 50 330215020115

R B

Machine
M1 M2 M3 M4

MO

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30

230 1204 12 3 40 0 10

4 50 330215020115

R B

100

Time

150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

0 10 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30

230 1204 12 3 40 0 10

450 330215020115

R B

100

Time

150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 120 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B
A simple demo

45

010 120 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 1 20 2 20 3 40 4 10

120 010 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

0 10 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115

R B

100 150

Machine

M1 M2 M3 M4
I
I @
O I

MO

(3, 0, 2, 1, 0,
1, 0, 1, 2, 3,
2,1, 1, 2, 3,
0, 2, 0, 3, 3

job 0
job 1
job 2
job 3

B o o B

A simple demo

45

010 1 20 2 20 3 40 4 10
1200 10 3 30 2 50 4 30

230 1204 12 3 40 0 10

450 330215020115

R B

|

o -
a |
=}

100

Time

150

Machine

M1 M2 M3 M4

MO

(3’ 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2,1, 1, 2,3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 120010 3 30 2 50 4 30

job2 230 1 20 4 12 3 40 0 10
job3 450330215020 1 15
B B

0 50 100 150

Machine

M1 M2 M3 M4

MO

(3’ 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2,1, 1,2, 3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 120010 3 30 2 50 4 30

job2 230 120 4 12 3 40 0 10
job3 450330215020 1 15
B o

0 50 100 150

Machine

M1 M2 M3 M4

MO

(3’ 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2, 1,1, 2, 3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 1200 10 3 30 2 50 4 30

job2 230 1 20 4 12 3 40 0 10
job3 450330215020 1 15
B B

] 50 100 150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2, 1,1, 2, 3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 1200 10 3 30 2 50 4 30

job2 230 120 4 12 3 40 0 10
job3 4503302150201 15
+H++++

150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2, 1,1, 2, 3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 120 0 10 3 30 2 50 4 30

job2 230 1204 12 3 40 0 10
job3 4503302150201 15
+H++++

150

Machine

M1 M2 M3 M4

MO

(3, 0, 2, 1, 0, B o T o o
1’ O, 1, 2, 3’ A simple demo
45
2, 1,1, 2, 3, job 0 0 10 1 20 2 20 3 40 4 10
0, 2, 0, 3, 3) job1 120 0 10 3 30 2 50 4 30

job2 230 1204 12 3 40 0 10
job3 450330215020 1 15
+H+++++

150

Machine

-
-
-
-

-
-

w NN

w w w o

A

-

-
-
-

N = O O
O~ ~ N

-

3
1
2
0

-
-
-

job 0
job 1
job 2
job 3

B
A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115
B B

1 3
(0] 1 3

Machine

-
-
-
-

-
-
-
-

N = O O
o = =N
w fo N =
oo

3
1
2
0

-
-
-
-

job 0
job 1
job 2
job 3

B
A simple demo

45

0 10 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 3302150201 15
B o B

1 3
(0] 1 3

o]
- -]

150

Machine

-
-
-
-

-
-

w NN

-

-
-

-
-
-

N, O O

-

O~ N
w w w o
N -

-

3
1
2
0

-

job 0
job 1
job 2
job 3

B
A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115
B o o B

150

Machine

-
-
-
-

-
-

W NN

-

-
-

-
-
-

N, O O

-

O = = N
w w w o
~ .

-

3
1
2
0

-

job 0
job 1
job 2
job 3

B
A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115
B B

T

150

Machine

-
-
-
-

-
-

W NN -

-

-
-

-
-
-

N, O O

-

O = = N
w w w o
~ .

-

3
1
2
0

-

job 0
job 1
job 2
job 3

B
A simple demo

45

010 1 20 2 20 3 40 4 10

120 0 10 3 30 2 50 4 30
2301204 12 3 40 0 10

450 330215020115
B o

T

150

Demo Example for the Search Space %\’

~
w
= O
= N

-

M3
I

Machine
M1 M2
! !
o I
[
w
H

T T T 1
0 50 100 150

Metaheuristics for Smart Manufacturing Time Thomas Weise 27/43

® We now have search space X with which we can easily represent all
reasonable Gantt charts.

® We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our strings of length m * n contain each valuein 1...n
exactly m times, we will always get feasible Gantt charts by applying
our mapping v : X — Y!

® We now have search space X with which we can easily represent all
reasonable Gantt charts.

® As long as our strings of length m * n contain each valuein 1...n
exactly m times, we will always get feasible Gantt charts by applying
our mapping v : X — Y!

® We call this the representation.

The Search Space X §\

We now have search space X with which we can easily represent all
reasonable Gantt charts.

As long as our strings of length m * n contain each valuein1...n
exactly m times, we will always get feasible Gantt charts by applying
our mapping v : X — Y!

We call this the representation.

If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times — they would all go into the mapping ~.

Metaheuristics for Smart Manufacturing Thomas Weise 28/43

Listing: An interface for representation mappings.

public interface IRepresentationMapping<X, Y> {

public abstract void map(X x, Y y);
+

The JSSP Representation Mapping in Java %\’

List The JSSP representation mappin

public final class JSSPRepresentationMapping implements
IRepresentationMapping<int [], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = this.m_machineState; int[] machineTime = this.m_machineTime;
int [] jobState = this.m_jobState; int[] jobTime = this.m_jobTime;
Arrays.fill (machineState, 0); Arrays.fill(jobState, 0);
Arrays.fill(machineTime, 0); Arrays.fill(jobTime, 0);

for (final int nextJob : x) {
int [] jobSteps = this.m_jobs[nextJobl;

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max (machineTime [machine], jobTime [nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedulel[machinel;

schedule [machineState [machine]++] = nextJob;
schedule [machineState [machine]++] = start;
schedule [machineState [machine]++] = end;

Metaheuristics for Smart Manufacturing Thomas Weise 30/43

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ Summary

e OK, we want to solve a JSSP instance

e OK, we want to solve a JSSP instance

® How many possible candidate solutions are there?

e OK, we want to solve a JSSP instance

® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

e OK, we want to solve a JSSP instance
® How many possible candidate solutions are there?

® |f we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

® | et us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.

For three machines, we are at (n!)3.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.

For m machines, we are at (n!)™ possible solutions.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.
For m machines, we are at (n!)™ possible solutions.

But some may be wrong, i.e., contain deadlocks!

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) Y|

2 2 3 4

name n m min(#feasible) Y|

2 2 3 4
2 3 4 8

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1'296
3 5 317 7776
4 2 244 576
4 3 1'630 13'824
4 4 7'451 331'776

name n m min(#feasible) Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1'296
3 5 317 7776
4 2 244 576
4 3 1'630 13'824
4 4 7'451 331'776
demo 4 5 7'962'624
la24 15 10 ~ 1.462*%101%!
abz7 20 15 A~ 6.193%1027°
ynd 20 20 ~ 5.278*103%7
swvls 50 10 A 6.772%10044

® Qur search space X is not the same as the solution space Y.

® Qur search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

name n m Y| 1X|
3 2 36 90
3 3 216 1'680
3 4 1'296 34'650
3 5 7776 756’756
4 2 576 2'520
4 3 13'824 369'600
4 4 331'776 63'063'000
5 2 14'400 113'400
5 3 1'728'000 168'168'000
5 4 207'360°000 305'540'235'000
5 5 24'883'200°000 623'360'743'125'120
demo 4 5 7'962'624 11'732'745'024
la24 15 10 =~ 1.462*%10'%! ~ 2.293*10164
abz7 20 15 = 6.193*%1027° ~ 1.432%10372
yn4d 20 20 ~ 5.278*10%¢7 ~ 1.213*10501
swvls 50 10 ~ 6.772*%1004 ~ 1.254*10806

Size of Search Space X %\’

10250

10200
IXI' 19150

15

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

® Qur search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

® Both X and Y are very big for any relevant problem size.

Our search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?

Both X and Y are very big for any relevant problem size.

X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.

® Eventually, we will have a program that finds good elements in these
huge sets X and Y.

® Eventually, we will have a program that finds good elements in these
huge sets X and Y.

® How long should it run?

® Eventually, we will have a program that finds good elements in these
huge sets X and Y.

® How long should it run?

® When can it stop?

Eventually, we will have a program that finds good elements in these
huge sets X and Y.

How long should it run?
® When can it stop?

This is called the termination criterion.

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® We assume that a human operator receives the job information,

enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

® Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.

® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [* !,

When to stop? %\

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve such problems with such huge numbers of potential
solutions until she comes back?

Probably not.

Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop? %\

We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve such problems with such huge numbers of potential
solutions until she comes back?

Probably not.

Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

So?

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop? %\

1AQ

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

e Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.

® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

e Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

® So? ... The operator drinks a coffee.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop? %\

1AQ

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

e Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.

® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

e Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

® So? ... The operator drinks a coffee. ... We have a about three
minutes.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop? %\

1AQ

® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

e Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.
® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

e Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

® So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

@ Introduction

@ Smart Manufacturing Example Problem
® Solution Space and Objective Function
@ From Solution Space to Search Space

@ Number of Solutions and Termination

@ summary

® This was the most complicated lesson in this course!

® This was the most complicated lesson in this course!

® Thank you for sticking with me during this.

® This was the most complicated lesson in this course!

® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem!

® This was the most complicated lesson in this course!

® Thank you for sticking with me during this.

® What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

® This was the most complicated lesson in this course!

® Thank you for sticking with me during this.
® What we have learned is the most basic process when attacking any
optimization problem:
@ Understand how the scenario / input data is defined!
® Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Summary %ﬁ)

® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary %ﬁ)

® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

@ Is Y easy to understand and to process by an algorithm?

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary %ﬁ)

® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

@ Is Y easy to understand and to process by an algorithm? If yes: cool.

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

”

>
<

® This was the most complicated lesson in this course!
e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!
Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

”

>
<

® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

@ Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

® Understand when we need to stop the search!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary %\

1AQ

® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

@ Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

@ Understand when we need to stop the search!

e |f we have this, we can directly use any of the algorithms in the rest
of the lecture (almost) as-is.

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

® \We now have the basic tools to search and find solutions for the JSSP.

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

Summary %\

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary %\

1AQ

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.

® If | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary %\

1AQ

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.

® If | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y).

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary %\

1AQ

® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.

® If | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

il
Thank you

Thomas Weise [2 %]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Metaheuristics for Smart Manufacturing

Thomas Weise

Caspar David Fried Wanderer iber dem Neb
hitp:/fen.wikip /anderer_above_the

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography | %()

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer
Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018-2019. URL
http://thomasweise.github.io/aitoa/. see also .

2. Thomas Weise. Global Optimization Algorithms — Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

3. Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN
0-306-48056-5. doi: 10.1007/b101874.

4. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Berlin/Heidelberg: Springer-Verlag, 2nd
edition, 2004. ISBN 3-540-22494-7, 978-3-540-22494-5, and 978-3-642-06134-9. URL
http://books.google.de/books?id=RJbV_-J1IUQC.

5. Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:
287-326, 1979. doi: 10.1016/S0167-5060(08)70356-X.

6. Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445-522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993. doi:
10.1016/S0927-0507(05)80189-6.

7. Eugene Leighton Lawler. Recent results in the theory of machine scheduling. In AAchim Bachem, Bernhard Korte, and
Martin Grotschel, editors, Math Programming: The State of the Art, chapter 8, pages 202-234. Springer-Verlag,
Bonn/New York, 1982. ISBN 978-3-642-68876-8. doi: 10.1007/978-3-642-68874-4_9.

8. Eric D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research (EJOR), 64:
278-285, January 1993. doi: 10.1016/0377-2217(93)90182-M.

9. Jacek Btazewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling problem: Conventional and new solution
techniques. European Journal of Operational Research (EJOR), 93:1-33, August 1996. doi:
10.1016/0377-2217(95)00362-2. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 41/43

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
http://books.google.de/books?id=RJbV_-JlIUQC
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf

Bibliography Il

W

>
<

10. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors,
Complexity of Computer Computations. The IBM Research Symposia Series., pages 85-103. Springer, Boston, MA, USA,
1972. ISBN 978-1-4684-2003-6. doi: 10.1007/978-1-4684-2001-2_9.

11. Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC'71), May 3-5, 1971, Shaker Heights, OH, USA, pages 151-158, New York,
NY, USA, 1971. ACM. doi: 10.1145/800157.805047.

12. John Edward Beasley. Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research
Society (JORS), 41:1069-1072, November 1990. doi: 10.1057/jors.1990.166.

13. Jelke Jeroen van Hoorn. Job shop instances and solutions, 2015. URL http://jobshop.jjvh.nl.

14. Jelke Jeroen van Hoorn. The current state of bounds on benchmark instances of the job-shop scheduling problem. Journal
of Scheduling, 21:127-128, feb 2018. doi: 10.1007/s10951-017-0547-8.

15. Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Management
Science, 34:391-401, 1988. doi: 10.1287/mnsc.34.3.391.

16. Stephen R. Lawrence. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling
Techniques (Supplement). PhD thesis, Graduate School of Industrial Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, Pennsylvania, USA, 1984.

17. Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job
shop scheduling. Management Science, 38:1495-1509, 1992. doi: 10.1287/mnsc.38.10.1495.

18. Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop instances. In Reinhard Manner
and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN Il), September 28-30,
1992, Brussels, Belgium, pages 281-290, Amsterdam, The Netherlands, 1992. Elsevier.

19. James M. Wilson. Gantt charts: A centenary appreciation. European Journal of Operational Research (EJOR), 149:
430-437, September 2003. doi: 10.1016/S0377-2217(02)00769-5. URL
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf.

20. Robert Klein. Scheduling of Resource-Constrained Projects, volume 10 of Operations Research/Computer Science Interfaces
Series. Springer US, New York, NY, USA, 2000. ISBN 978-0-7923-8637-7. doi: 10.1007/978-1-4615-4629-0.

21. Christian Bierwirth. A generalized permutation approach to job shop scheduling with genetic algorithms.
Operations-Research-Spektrum (OR Spectrum), 17:87-92, June 1995. doi: 10.1007/BF01719250. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 42/43

http://jobshop.jjvh.nl
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf

Bibliography 111

W

1AQ

22.

23.

24.

25.

26.

Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation representations for scheduling problems. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN 1V), September 22-24, 1996, Berlin, Germany,
volume 1141/1996 of Lecture Notes in Computer Science (LNCS), pages 310-318, Berlin, Germany, 1996. Springer-Verlag
GmbH. ISBN 3-540-61723-X. doi: 10.1007/3-540-61723-X_995. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf.

Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and
approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1493-1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:
10.1007/978-1-4613-0303-9_25. also pages 21-169 in volume 3/3 by Kluwer Academic Publishers.

David Paul Williamson, Leslie A. Hall, J. A. Hoogeveen, Cor A. J. Hurkens, Jan Karel Lenstra, Sergey Vasil'evich
Sevast'janov, and David B. Shmoys. Short shop schedules. Operations Research, 45(2):288-294, March—April 1997. doi:
10.1287/opre.45.2.288.

Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba. Approximation schemes for job shop scheduling problems with
controllable processing times. European Journal of Operational Research (EJOR), 167(2):297-319, December 2005. doi:
10.1016/j.ejor.2004.03.025. URL http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf.

Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop scheduling problems. Journal of the
ACM (JACM), 58(5):20:1-20:32, October 2011. doi: 10.1145/2027216.2027218. URL
http://theory.epfl.ch/osven/01a%20Svensson_publications/JACM11.pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 43/43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf
http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf

	Outline
	An Introduction to Optimization Algorithms
	Introduction
	Section Outline
	The Structure of Optimization
	Components of an Optimization Problem

	Smart Manufacturing Example Problem
	Section Outline
	Job Shop Problem
	Job Shop Scheduling Problem
	The Input: Problem Instances
	Demo Instance
	Instance abz7
	Instance la24
	Instance swv15
	Instance yn4
	Problem Instance Data in

	Solution Space and Objective Function
	Section Outline
	Output: Solution Space Y
	Solution Quality
	An Interface for Objective Functions in
	The JSSP Objective Function in
	The Global Optimum y in Y

	From Solution Space to Search Space
	Section Outline
	Feasibility of Solutions
	Searching in Y
	The Search Space X
	Demo Example for the Search Space
	The Search Space X
	An Interface for Representation Mappings in
	The JSSP Representation Mapping in

	Number of Solutions and Termination
	Section Outline
	Number of Solutions: Size of Y
	Size of Search Space X
	Searching and Stopping
	When to stop?

	Summary
	Section Outline
	Summary
	Summary

	Presentation End
	Bibliography
	Bibliography
	References

