
Metaheuristics for Smart Manufacturing
2. The Structure of Optimization

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

The slides are available at http://iao.hfuu.edu.cn/155, the

book at http://thomasweise.github.io/aitoa, and the source

code at http://www.github.com/thomasWeise/aitoa-code

Metaheuristics for Smart Manufacturing Thomas Weise 2/43

c
o
u
rs
e
b
o
o
k

c
o
u
rs
e
m
a
t
e
ri
a
l

http://iao.hfuu.edu.cn/155
http://thomasweise.github.io/aitoa
http://www.github.com/thomasWeise/aitoa-code

An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to

Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26

Metaheuristics for Smart Manufacturing Thomas Weise 3/43

http://thomasweise.github.io/aitoa
http://thomasweise.github.io/aitoa/aitoa.pdf
http://thomasweise.github.io/aitoa/aitoa.html
http://thomasweise.github.io/aitoa/aitoa.azw3
http://thomasweise.github.io/aitoa/aitoa.epub
https://www.linkedin.com/feed/update/urn:li:activity:6540439180223307776

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 4/43

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

The Structure of Optimization

• So we know roughly what an optimization problem is and that
metaheuristics [1–4] are algorithms to solve them.

• But we do not really know yet how that works.

• We will approach this topic based on an example from the field of
Smart Manufacturing.

• We will first learn about the basic ingredients that make up an
optimization task.

• Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.

Metaheuristics for Smart Manufacturing Thomas Weise 5/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved –
we develop software for solving a class of problems, but this software is
applied to specific problem instances, the actual scenarios

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R, which rates “how good” a candidate

solution y ∈ Y is.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y, which translates “points” x ∈ X

to candidate solutions y ∈ Y

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, which allow for the iterative

exploration of the search space X

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion, which tells the optimization process when to

stop.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion.

• Looks complicated..

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion.

• Looks complicated, but don’t worry..

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Components of an Optimization Problem

• From the perspective of a programmer, we can say that an
optimization problem has the following components:

1 the input data which specifies the problem instance I to be solved
2 a data type Y for the candidate solutions y ∈ Y, and
3 an objective function f : Y 7→ R.

• Usually, in order to practically implement an optimization approach,
there also will be

4 a search space X,
5 a representation mapping γ : X 7→ Y,
6 search operators searchOp : Xn 7→ X, and
7 a termination criterion.

• Looks complicated, but don’t worry. We will do this one-by-one.

• We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.

Metaheuristics for Smart Manufacturing Thomas Weise 6/43

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 7/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Problem

Metaheuristics for Smart Manufacturing Thomas Weise 8/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

Job Shop Scheduling Problem

• The Job Shop Scheduling Problem (JSSP) [5–9] is a classical
optimization problem.

• We have a factory with m machines.

• We need to fulfill n production requests, the jobs.

• Each job will need to be processed by some or all of the machines in a
job-specific order.

• Also, each job will require a job-specific time at a given machine.

• The goal is to fulfill all tasks as quickly as possible.

• This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

• This problem is NP -hard. [10, 11]

Metaheuristics for Smart Manufacturing Thomas Weise 9/43

The Input: Problem Instances

• The JSSP is a type of problem.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley [12] manages the OR Library of benchmark datasets from
different fields of operations research (OR)

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley [12] manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley [12] manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

• More information about these instances has been collected by van
Hoorn [13, 14] at http://jobshop.jjvh.nl.

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

The Input: Problem Instances

• The JSSP is a type of problem.

• A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

• It is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

• Beasley [12] manages the OR Library of benchmark datasets from
different fields of operations research (OR)

• He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

• More information about these instances has been collected by van
Hoorn [13, 14] at http://jobshop.jjvh.nl.

• What do such JSSP instances look like?

Metaheuristics for Smart Manufacturing Thomas Weise 10/43

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

job 0

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

job 1

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

job 2

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

job 3

Demo Instance

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

number of jobs
number of machines

job 0

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 0

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 0

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 0

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 0

Demo Instance

Job 0 first needs to be processed by machine 0 for 10 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 2 for 20 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 4 for 10 time units.

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 0

Demo Instance

Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it
goes to machine 4 for 30 time units.

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

1 20 0 10 3 30 2 50 4 30

number of jobs
number of machines

job 1

Demo Instance

Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

4 50 3 30 2 15 0 20 1 15

2 30 1 20 4 12 3 40 0 10

number of jobs
number of machines

job 2

Demo Instance

And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine 0 for 20 time units, and finally it goes
to machine 1 for 15 time units.

Metaheuristics for Smart Manufacturing Thomas Weise 11/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

number of jobs
number of machines

job 3

Instance abz7

Instance abz7 by Adams et al. [15].

Metaheuristics for Smart Manufacturing Thomas Weise 12/43

+++++++++++++++++++++++++++++
Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)
20 15
2 24 3 12 9 17 4 27 0 21 6 25 8 27 7 26 1 30 5 31 11 18 14 16 13 39 10 19 12 26
6 30 3 15 12 20 11 19 1 24 13 15 10 28 2 36 5 26 7 15 0 11 8 23 14 20 9 26 4 28
6 35 0 22 13 23 7 32 2 20 3 12 12 19 10 23 9 17 1 14 5 16 11 29 8 16 4 22 14 22
9 20 6 29 1 19 7 14 12 33 4 30 0 32 5 21 11 29 10 24 14 25 2 29 3 13 8 20 13 18

11 23 13 20 1 28 6 32 7 16 5 18 8 24 9 23 3 24 10 34 2 24 0 24 14 28 12 15 4 18
8 24 11 19 14 21 1 33 7 34 6 35 5 40 10 36 3 23 2 26 4 15 9 28 13 38 12 13 0 25

13 27 3 30 6 21 8 19 12 12 4 27 2 39 9 13 14 12 5 36 10 21 11 17 1 29 0 17 7 33
5 27 4 19 6 29 9 20 3 21 10 40 8 14 14 39 13 39 2 27 1 36 12 12 11 37 7 22 0 13

13 32 11 29 8 24 3 27 5 40 4 21 9 26 0 27 14 27 6 16 2 21 10 13 7 28 12 28 1 32
12 35 1 11 5 39 14 18 7 23 0 34 3 24 13 11 8 30 11 31 4 15 10 15 2 28 9 26 6 33
10 28 5 37 12 29 1 31 7 25 8 13 14 14 4 20 3 27 9 25 13 31 11 14 6 25 2 39 0 36
0 22 11 25 5 28 13 35 4 31 8 21 9 20 14 19 2 29 7 32 10 18 1 18 3 11 12 17 6 15

12 39 5 32 2 36 8 14 3 28 13 37 0 38 6 20 7 19 11 12 14 22 1 36 4 15 9 32 10 16
8 28 1 29 14 40 12 23 4 34 5 33 6 27 10 17 0 20 7 28 11 21 2 21 13 20 9 33 3 27
9 21 14 34 3 30 12 38 0 11 11 16 2 14 5 14 1 34 8 33 4 23 13 40 10 12 6 23 7 27
9 13 14 40 7 36 4 17 0 13 5 33 8 25 13 24 10 23 3 36 2 29 1 18 11 13 6 33 12 13
3 25 5 15 2 28 12 40 7 39 1 31 8 35 6 31 11 36 4 12 10 33 14 19 9 16 13 27 0 21

12 22 10 14 0 12 2 20 5 12 1 18 11 17 8 39 14 31 3 31 7 32 9 20 13 29 4 13 6 26
5 18 10 30 7 38 14 22 13 15 11 20 9 16 3 17 1 12 2 13 12 40 6 17 8 30 4 38 0 13
9 31 8 39 12 27 1 14 5 33 3 31 11 22 13 36 0 16 7 11 14 14 4 29 6 28 2 22 10 17

+++++++++++++++++++ EOF ++++++++++++++++++++++++++++++++++++

20 jobs
15 machines

Instance la24

Instance la24 by Lawrence [16].

Metaheuristics for Smart Manufacturing Thomas Weise 13/43

+++++++++++++++++++++++++++++
Lawrence 15x10 instance (Table 7, instance 4)
15 10
7 8 9 75 0 72 6 74 4 30 8 43 2 38 5 98 1 26 3 19
6 19 8 73 3 43 0 23 1 85 4 39 5 13 9 26 2 67 7 9
1 50 3 93 5 80 4 7 0 55 2 61 6 57 8 72 9 42 7 46
1 68 7 43 4 99 6 60 5 68 0 91 8 11 3 96 9 11 2 72
7 84 2 34 8 40 5 7 1 70 6 74 3 12 0 43 9 69 4 30
8 60 0 49 4 59 5 72 9 63 1 69 7 99 6 45 3 27 2 9
6 71 2 91 8 65 1 90 9 98 4 8 7 50 0 75 5 37 3 17
8 62 7 90 5 98 3 31 2 91 4 38 9 72 1 9 0 72 6 49
4 35 0 39 9 74 5 25 7 47 3 52 2 63 8 21 6 35 1 80
9 58 0 5 3 50 8 52 1 88 6 20 2 68 5 24 4 53 7 57
7 99 3 91 4 33 5 19 2 18 6 38 0 24 9 35 1 49 8 9
0 68 3 60 2 77 7 10 8 60 5 15 9 72 1 18 6 90 4 18
9 79 1 60 3 56 6 91 2 40 8 86 7 72 0 80 5 89 4 51
4 10 2 92 5 23 6 46 8 40 7 72 3 6 1 23 0 95 9 34
2 24 5 29 9 49 8 55 0 47 6 77 3 77 7 8 1 28 4 48
+++++++++++++++++++++++++++++

15 jobs
10 machines

Instance swv15

Instance swv15 by Storer et al. [17].

Metaheuristics for Smart Manufacturing Thomas Weise 14/43

+++++++++++++++++++++++++++++
Storer, Wu, and Vaccari hard 50x10 instance (Table 2, instance 15)
50 10
2 93 4 40 0 1 3 77 1 77 5 16 9 74 8 11 6 51 7 92
0 92 4 80 1 76 3 59 2 70 5 86 9 17 6 78 7 30 8 93
1 44 2 92 3 96 4 77 0 53 9 10 7 49 5 84 8 59 6 14
1 60 2 19 3 76 0 73 4 85 7 13 8 93 5 68 9 50 6 78
2 20 0 24 3 41 1 2 4 4 9 44 7 79 8 81 5 16 6 39
3 41 2 35 1 32 4 18 0 15 8 98 6 29 5 19 7 14 9 26
1 59 0 45 4 53 3 44 2 98 5 84 6 23 7 45 8 39 9 89
1 30 4 51 3 25 0 51 2 84 6 60 5 45 7 89 8 25 9 97
0 47 3 18 2 40 4 62 1 58 5 36 7 93 8 77 9 90 6 15
3 33 1 68 0 41 4 72 2 20 6 69 7 47 5 22 9 47 8 22
2 28 1 100 4 20 0 35 3 26 5 24 9 41 6 42 7 100 8 32
0 65 2 12 4 53 3 93 1 40 8 18 7 23 5 60 6 89 9 53
0 58 1 60 4 97 3 31 2 50 9 85 5 64 7 38 6 85 8 35
3 64 0 58 1 49 2 45 4 9 8 49 6 22 5 99 9 15 7 7
0 10 4 85 3 72 2 37 1 77 5 70 7 45 9 8 6 83 8 57
4 93 0 87 1 87 2 18 3 4 8 78 5 67 9 20 6 17 7 35
4 72 0 56 3 57 2 15 1 45 6 41 5 40 9 85 8 32 7 81
0 36 3 63 4 79 2 32 1 5 6 25 7 86 9 91 5 21 8 35
2 83 4 29 0 9 1 38 3 73 7 50 9 99 5 18 8 29 6 41
0 100 3 29 2 60 4 63 1 64 8 71 6 35 5 26 9 9 7 22
1 81 0 60 3 62 4 48 2 68 7 28 5 69 8 92 6 79 9 10
0 40 4 80 1 41 2 10 3 68 8 28 9 51 7 33 6 82 5 25
4 30 2 12 0 35 3 17 1 70 9 29 7 18 8 93 6 94 5 37
1 36 2 41 3 27 4 36 0 78 7 64 6 88 5 25 9 92 8 66
2 65 3 27 4 74 0 32 1 40 5 88 8 73 6 92 7 83 9 42
0 48 1 85 2 92 4 95 3 61 8 72 9 76 5 58 7 11 6 89
3 84 2 50 0 70 4 24 1 42 9 55 5 100 6 70 7 4 8 68
0 95 4 41 2 11 3 98 1 85 5 64 6 8 7 26 8 6 9 6
0 84 2 49 1 17 3 69 4 55 8 75 6 45 9 38 7 59 5 28
2 48 0 29 4 1 1 64 3 41 5 23 7 64 9 31 6 56 8 12
2 81 4 25 3 33 0 22 1 50 5 74 9 56 8 33 7 85 6 83
1 62 4 25 0 21 2 20 3 8 6 36 9 9 5 91 8 90 7 49
1 43 0 16 2 91 3 96 4 24 5 11 9 91 7 41 8 35 6 66
1 91 2 20 4 44 0 42 3 87 9 57 6 15 5 38 8 42 7 89
0 33 3 95 4 68 2 22 1 80 7 53 8 13 9 70 5 22 6 69
0 15 3 47 1 24 2 31 4 41 8 14 9 28 7 59 5 52 6 39
2 95 0 42 4 5 1 57 3 67 6 30 9 21 8 70 5 9 7 20
2 54 0 15 1 20 3 64 4 83 9 40 7 6 5 89 6 91 8 48
0 22 4 27 1 77 3 25 2 16 8 72 9 61 6 75 7 4 5 19
3 68 1 82 2 16 0 83 4 2 7 10 8 88 5 41 9 21 6 66
1 64 0 76 2 85 3 71 4 97 5 97 7 8 6 40 8 70 9 35
0 94 1 45 2 94 4 84 3 44 8 41 5 30 7 47 6 19 9 22
2 23 1 10 0 82 3 93 4 90 8 67 7 9 9 18 5 22 6 87
0 75 2 27 4 97 3 9 1 57 9 14 5 50 7 31 8 62 6 23
1 42 3 41 2 35 0 75 4 18 9 65 7 38 6 38 8 51 5 56
4 72 1 63 0 33 2 27 3 41 5 52 7 42 9 10 6 14 8 71
2 91 1 89 0 44 4 91 3 26 6 49 5 22 8 31 9 69 7 5
3 42 1 34 0 4 4 34 2 16 6 86 7 25 8 99 5 67 9 25
4 34 1 93 0 26 3 81 2 9 7 96 8 79 9 68 5 76 6 10
3 19 1 47 4 13 2 98 0 32 7 12 9 45 6 52 8 49 5 34

+++++++++++++++++++++++++++++

50 jobs
10 machines

Instance yn4

Instance yn4 by Yamada and Nakano [18].

Metaheuristics for Smart Manufacturing Thomas Weise 15/43

+++++++++++++++++++++++++++++
Yamada and Nakano 20x20 instance (Table 4, instance 4)
20 20
16 34 17 38 0 21 6 15 15 42 8 17 7 41 18 10 10 26 11 24 1 31 19 25 14 31 13 33 4 35 9 30 3 16 12 16 5 30 2 13
5 41 11 33 6 15 16 38 0 40 14 38 3 37 1 20 13 22 4 34 7 16 17 39 9 15 2 19 10 36 12 39 18 26 8 19 15 39 19 34

17 34 1 12 16 10 7 47 13 28 15 27 0 19 6 34 19 33 12 40 9 37 14 24 8 15 10 34 2 44 3 37 18 22 11 31 4 39 5 26
5 48 7 46 16 47 10 45 14 15 8 25 0 34 3 24 12 35 18 15 2 48 13 19 11 10 1 48 17 16 15 28 4 18 6 17 9 44 19 41

12 47 3 23 9 48 16 45 14 39 6 42 8 32 15 11 13 16 5 14 11 19 1 46 19 10 10 17 7 41 2 47 17 32 4 17 0 21 18 17
18 14 16 20 1 18 12 14 13 10 6 16 5 24 4 18 0 24 11 18 15 42 19 13 3 23 14 40 9 48 8 12 2 24 10 23 7 45 17 30
0 27 12 15 4 26 13 19 17 14 5 49 7 16 18 28 16 16 8 20 9 36 2 21 14 30 3 36 1 17 15 22 6 43 11 32 10 23 19 17
0 32 16 15 17 12 7 46 3 37 18 43 11 40 13 43 9 48 4 36 15 24 8 25 1 33 14 32 5 26 6 37 12 24 10 24 2 15 19 22

10 34 6 33 15 25 8 46 0 20 18 33 4 19 13 45 2 47 1 32 3 12 11 29 16 29 5 46 12 17 7 48 14 39 17 40 19 41 9 37
13 26 3 47 5 44 6 49 1 22 17 12 10 28 19 36 9 27 4 25 14 48 7 11 16 49 12 24 11 48 2 19 0 47 18 49 8 46 15 36
13 23 18 48 14 15 0 42 3 36 8 15 6 32 10 18 1 45 15 23 11 45 2 13 17 21 12 32 7 44 5 25 19 34 16 22 9 11 4 43
17 37 7 49 15 45 2 28 9 15 8 35 12 29 13 44 1 26 4 25 5 30 3 39 0 15 14 28 18 23 6 42 11 33 16 45 10 10 19 20
0 10 6 37 3 15 13 13 10 11 2 49 1 28 14 28 15 13 8 29 12 21 16 32 11 21 4 48 5 11 17 26 9 33 18 22 7 21 19 49

18 38 0 41 4 30 13 43 6 11 2 43 14 27 3 26 9 30 15 19 16 36 1 31 17 47 5 41 10 34 8 40 12 32 7 13 11 18 19 27
6 24 5 30 7 10 10 35 8 28 16 43 19 12 9 44 15 15 3 15 2 35 18 43 0 38 4 16 1 29 17 40 14 49 13 38 12 16 11 30
3 48 6 35 13 43 2 37 17 18 5 27 9 27 7 41 1 22 15 28 16 18 10 37 18 48 4 10 8 14 11 18 14 43 0 48 12 12 19 49
0 13 13 38 7 34 6 42 1 36 5 45 18 24 8 35 14 26 19 30 12 47 16 24 11 47 4 40 10 43 3 16 15 10 2 12 9 39 17 22

16 30 13 47 19 49 8 20 4 40 3 46 17 21 14 33 6 44 7 23 9 24 0 48 10 43 15 41 2 32 5 29 11 36 1 38 12 47 18 12
13 10 5 36 12 18 16 48 0 27 14 43 10 46 6 27 7 46 19 35 11 31 2 18 8 24 3 23 17 29 18 14 9 19 1 40 15 38 4 13
9 45 16 44 0 43 17 31 14 35 13 17 12 42 3 14 18 37 10 39 6 48 7 38 15 26 4 49 2 28 11 35 1 42 5 24 8 44 19 38

+++++++++++++++++++ EOF ++++++++++++++++++++++++++++++++++++

20 jobs
20 machines

Problem Instance Data in Java

• How can we represent such data in Java program code?

Metaheuristics for Smart Manufacturing Thomas Weise 16/43

Problem Instance Data in Java

• How can we represent such data in Java program code?

Listing: A class JSSPInstance capable representing a problem instance.

public class JSSPInstance {

public final int m; // number of machines

public final int n; // number of jobs

public final int [][] jobs; // one row per job

}

Metaheuristics for Smart Manufacturing Thomas Weise 16/43

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 17/43

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• Basically, a Gantt Chart [19, 20].

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

0 50 100 150

demo

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

0 1 3 2

1 0 2 3

2 0 1 3

1 3 0 2

3 2 1 0

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

0 200 400 600 800 1000

la24

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

11 8 5 2 9 0 14 1 3 12 4 6 7 10 13

2 3 12 4 6 1 9 11 5 7 13 8 14 0 10

14 4 6 11 12 13 7 2 10 8 9 0 1 3 5

2 11 12 10 9 1 7 8 4 14 13 3 0 5 6

8 213 3 5 10 6 0 7 1 12 9 4 14 11

14 2 4 8 7 11 3 13 5 10 1 12 9 0 6

1 6 12 3 0 4 14 13 9 2 8 10 11 5 7

0 4 10 3 7 11 8 12 6 14 13 5 9 2 1

5 7 4 1 14 6 11 12 9 0 13 3 8 2 10

9 12 14 8 0 6 11 5 7 1 4 2 3 10 13

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

0 200 400 600 800 1000

yn4

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

M
1
1

M
1
2

M
1
3

M
1
4

M
1
5

M
1
6

M
1
7

M
1
8

M
1
9

12 7 16 13 0 10 6 19 3 18 8 5 2 1 14 17 15 11 9 4

2 5 16 12 9 0 10 15 13 8 3 11 14 1 6 4 7 19 18 17

12 13 15 11 14 3 8 10 6 18 19 17 2 9 1 5 4 16 7 0

15 12 9 4 10 7 3 13 14 17 19 5 8 1 6 18 16 11 0 2

13 6 5 17 8 7 16 14 9 0 15 11 3 19 12 1 10 4 2 18

3 14 1 18 9 16 5 6 15 13 4 8 11 10 12 19 7 17 0 2

14 12 8 0 16 5 13 15 9 1 10 2 4 18 17 19 3 6 11 7

3 16 14 7 0 11 2 6 15 18 17 19 9 10 8 1 4 13 12 5

8 0 14 3 16 17 10 11 6 4 12 15 18 7 5 2 13 19 9 1

19 4 14 13 11 15 7 6 9 17 5 2 0 3 10 12 1 18 8 16

8 12 14 3 0 10 18 9 19 15 16 17 2 13 4 6 1 5 7 11

1 0 7 5 16 3 10 8 18 15 4 12 19 9 6 17 11 13 2 14

4 5 18 6 3 16 19 11 2 12 10 8 9 15 13 0 7 1 14 17

9 10 18 16 12 13 5 17 6 15 2 19 7 8 3 11 0 4 1 14

10 3 13 19 16 12 18 4 17 1 0 5 6 9 15 2 8 11 7 14

8 0 11 14 2 5 13 10 12 15 7 4 3 19 6 17 16 18 9 1

0 17 5 19 7 3 2 14 18 4 1 16 6 13 15 12 8 9 10 11

2 0 7 11 19 6 15 9 17 13 3 10 14 18 12 8 1 4 5 16

5 13 10 0 16 7 6 8 3 14 19 15 11 18 12 2 9 1 4 17

14 17 16 0 2 5 9 18 4 10 15 3 8 19 12 6 13 11 7 1

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

0 1000 2000 3000

swv15

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

144 17 43 21 13 19 48323734 9 15 11 41 16 24025 5 23 3545 7 3129 40 39 1 8 38 44 33 2 10 28 6 30 4712 36 42 3 27 1846 26 22 20 49

23 7 32 2 33 48 4 39 9 45 3713 5 44 40 3 31 15 24 25 2117 34 14 43 0 11 10 19 6 29 38 41 4742 1 12 30 46 3516 18 20 4928 36 26 8 22 27

4 0 2310 24 43 37 36 32 5 2 29 30 48391119 3414 1333 18 17154533121 25 9 40 44 7 46 8 2642 38 41 471628 1 352212 6 49 20 27

39 13 5 4723 4 9 24 14 719 48 17 34 32 2 37434449 0 30154531 11 21 3 40 25 8 26 10 33 3835 16 29 1 42 4112 6 18 46 20 22 36 28 27

45 7 48 14 2322 15 21 4 0 24 43 16 34 532 11 19 17 13313018 9 29 37 25 33 2 381039 40 44 1 47 41 6 12 42 35 46 49 3 36272620 8 28

32 24 23 45 14 13 0 15 4 11 43 40 10 7 37 295 39 30 1 34 31 48 6 9 16 25 12 46 8 20 3 27 41 3542 47 33171918 26 2 44 493628213822

23 135 24 3117 9 32 7 4 14 11 45 0 1944 10 40 47 37 38 3343 1 16 30 46 29 34 366 25 12 21 1528 492739 20 35 3 22 26 4148 42 1882

48 23 4 34 32 14 45 24 393711 43 4044 17 10 7 21 9 29 30 1384218 34749 25 2012 6 3513 8 16 22 28 27 2 0 41 15 33 46195263136

48 5 13 24 4 15 3221 1134 23 25 19 0 14 39 38 43 44 40 45 7 3041 42 31 1 3510 47 16 3 28 2912 6 20 36 49 9 22 46332717 8 2 18 37 26

32 4 48 43 23 14314537 0 25 44 33 10 34 11 38 21 30 1 17 12 2924 9 16 351326 4915 7 393640242 3 2228 18 6 472019 46 8 41275

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible Gantt charts for
one problem.

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

• We now know how a problem instance of the JSSP looks like.

• What is a solution for the JSSP, for such an instance?

• A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

• The solution space Y is the set of all possible feasible Gantt charts for
one problem.

• Each of the m int[] lists in schedule holds n sub-jobs for each
machine as three values jobID, start time, end time, i.e., has length
3n.

Listing: A class JSSPCandidateSolution capable representing a Gantt
chart.

public class JSSPCandidateSolution {

public int [][] schedule; // one row per machine

}

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Output: Solution Space Y

Metaheuristics for Smart Manufacturing Thomas Weise 18/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 50 100 150

demo, makespan: 180

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

0 1 3 2

1 0 2 3

2 0 1 3

1 3 0 2

3 2 1 0

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 200 400 600 800 1000

la24, makespan: 1019

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

11 8 5 2 9 0 14 1 3 12 4 6 7 10 13

2 3 12 4 6 1 9 11 5 7 13 8 14 0 10

14 4 6 11 12 13 7 2 10 8 9 0 1 3 5

2 11 12 10 9 1 7 8 4 14 13 3 0 5 6

8 213 3 5 10 6 0 7 1 12 9 4 14 11

14 2 4 8 7 11 3 13 5 10 1 12 9 0 6

1 6 12 3 0 4 14 13 9 2 8 10 11 5 7

0 4 10 3 7 11 8 12 6 14 13 5 9 2 1

5 7 4 1 14 6 11 12 9 0 13 3 8 2 10

9 12 14 8 0 6 11 5 7 1 4 2 3 10 13

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 200 400 600 800 1000

yn4, makespan: 1127

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
1
0

M
1
1

M
1
2

M
1
3

M
1
4

M
1
5

M
1
6

M
1
7

M
1
8

M
1
9

12 7 16 13 0 10 6 19 3 18 8 5 2 1 14 17 15 11 9 4

2 5 16 12 9 0 10 15 13 8 3 11 14 1 6 4 7 19 18 17

12 13 15 11 14 3 8 10 6 18 19 17 2 9 1 5 4 16 7 0

15 12 9 4 10 7 3 13 14 17 19 5 8 1 6 18 16 11 0 2

13 6 5 17 8 7 16 14 9 0 15 11 3 19 12 1 10 4 2 18

3 14 1 18 9 16 5 6 15 13 4 8 11 10 12 19 7 17 0 2

14 12 8 0 16 5 13 15 9 1 10 2 4 18 17 19 3 6 11 7

3 16 14 7 0 11 2 6 15 18 17 19 9 10 8 1 4 13 12 5

8 0 14 3 16 17 10 11 6 4 12 15 18 7 5 2 13 19 9 1

19 4 14 13 11 15 7 6 9 17 5 2 0 3 10 12 1 18 8 16

8 12 14 3 0 10 18 9 19 15 16 17 2 13 4 6 1 5 7 11

1 0 7 5 16 3 10 8 18 15 4 12 19 9 6 17 11 13 2 14

4 5 18 6 3 16 19 11 2 12 10 8 9 15 13 0 7 1 14 17

9 10 18 16 12 13 5 17 6 15 2 19 7 8 3 11 0 4 1 14

10 3 13 19 16 12 18 4 17 1 0 5 6 9 15 2 8 11 7 14

8 0 11 14 2 5 13 10 12 15 7 4 3 19 6 17 16 18 9 1

0 17 5 19 7 3 2 14 18 4 1 16 6 13 15 12 8 9 10 11

2 0 7 11 19 6 15 9 17 13 3 10 14 18 12 8 1 4 5 16

5 13 10 0 16 7 6 8 3 14 19 15 11 18 12 2 9 1 4 17

14 17 16 0 2 5 9 18 4 10 15 3 8 19 12 6 13 11 7 1

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 1000 2000 3000

swv15, makespan: 3717

Time

M
a
c
h
in

e

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

144 17 43 21 13 19 48323734 9 15 11 41 16 24025 5 23 3545 7 3129 40 39 1 8 38 44 33 2 10 28 6 30 4712 36 42 3 27 1846 26 22 20 49

23 7 32 2 33 48 4 39 9 45 3713 5 44 40 3 31 15 24 25 2117 34 14 43 0 11 10 19 6 29 38 41 4742 1 12 30 46 3516 18 20 4928 36 26 8 22 27

4 0 2310 24 43 37 36 32 5 2 29 30 48391119 3414 1333 18 17154533121 25 9 40 44 7 46 8 2642 38 41 471628 1 352212 6 49 20 27

39 13 5 4723 4 9 24 14 719 48 17 34 32 2 37434449 0 30154531 11 21 3 40 25 8 26 10 33 3835 16 29 1 42 4112 6 18 46 20 22 36 28 27

45 7 48 14 2322 15 21 4 0 24 43 16 34 532 11 19 17 13313018 9 29 37 25 33 2 381039 40 44 1 47 41 6 12 42 35 46 49 3 36272620 8 28

32 24 23 45 14 13 0 15 4 11 43 40 10 7 37 295 39 30 1 34 31 48 6 9 16 25 12 46 8 20 3 27 41 3542 47 33171918 26 2 44 493628213822

23 135 24 3117 9 32 7 4 14 11 45 0 1944 10 40 47 37 38 3343 1 16 30 46 29 34 366 25 12 21 1528 492739 20 35 3 22 26 4148 42 1882

48 23 4 34 32 14 45 24 393711 43 4044 17 10 7 21 9 29 30 1384218 34749 25 2012 6 3513 8 16 22 28 27 2 0 41 15 33 46195263136

48 5 13 24 4 15 3221 1134 23 25 19 0 14 39 38 43 44 40 45 7 3041 42 31 1 3510 47 16 3 28 2912 6 20 36 49 9 22 46332717 8 2 18 37 26

32 4 48 43 23 14314537 0 25 44 33 10 34 11 38 21 30 1 17 12 2924 9 16 351326 4915 7 393640242 3 2228 18 6 472019 46 8 41275

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 500 1000 1500

0

1

2

3

4

5

6

7

8

9

Solution Quality

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

0 500 1000 1500

0

1

2

3

4

5

6

7

8

9

Solution Quality

• So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

• How do we rate the quality of a solution?

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if it allows us to complete our work faster.

• The objective function f : Y 7→ R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

• This objective function is subject to minimization: smaller values are
better.

• A Gantt chart y1 ∈ Y is a better solution to our problem than another
chart y2 ∈ Y if f(y1) < f(y2).

Metaheuristics for Smart Manufacturing Thomas Weise 19/43

An Interface for Objective Functions in Java

Listing: An interface for objective functions.

public interface IObjectiveFunction <Y> {

public abstract double evaluate(Y y);

}

Metaheuristics for Smart Manufacturing Thomas Weise 20/43

The JSSP Objective Function in Java

Listing: The JSSP objective function.

public final class JSSPMakespanObjectiveFunction

implements IObjectiveFunction <JSSPCandidateSolution > {

private final JSSPInstance m_instance;

public final double evaluate(JSSPCandidateSolution y) {

int makespan = 0;

// look at the schedule for each machine

for (final int[] machine : y.schedule) {

// the end time of the last job on the machine is the last number

// in the array , as array machine consists of "flattened" tuples

// of the form ((job , start , end), (job , start , end), ...)

final int end = machine[machine.length - 1];

if (end > makespan) {

makespan = end; // remember biggest end time

}

}

return makespan;

}

}

Metaheuristics for Smart Manufacturing Thomas Weise 21/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

f(x)=x

f(x)=x2

f(x)=x4

f(x)=x8

1
10

100
1000

1 million

1 billion

1 trillion

10
15

10
20

10
30

10
25

10
40

10
35

4 81 2 64 12816 32 256 512 1024 2048

f(x)=x10

f(x)=1.1
x

ms per day

picoseconds
since big bang

f(x)=xx f(x)=x! f(x)=ex f(x)=2
x

f(x)

x

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

• All what we can do is search somehow in Y and hope to get as close
to y⋆ within reasonable time as possible.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

The Global Optimum y
⋆ in Y

• There must be at least one globally optimal solution y⋆ for which
f(y⋆) ≤ f(y)∀y ∈ Y holds.

• How do we find such a solution?

• We know the problem is NP -hard [10], so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

• So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

• All what we can do is search somehow in Y and hope to get as close
to y⋆ within reasonable time as possible.

• If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice.

Metaheuristics for Smart Manufacturing Thomas Weise 22/43

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 23/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

cannot omit
sub-job

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

cannot move
sub-job

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

5 can’t add

machines

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

5 can’t add

machines

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

cannot shorten jobs

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

sub-jobs must
not overlap!

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

5 the precedence constraints of the sub-jobs must be honored.

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

order of sub-jobs
must be preserved

Feasibility of Solutions

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Feasibility of Solutions

• So what do we need to consider when searching in Y?

• A candidate solution y ∈ Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

• Indeed, there are several constraints we need to impose on our Gantt
charts:

1 all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

2 only the jobs and machines specified by the problem instance must
occur in the chart,

3 a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

4 the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

5 the precedence constraints of the sub-jobs must be honored.

• Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.

Metaheuristics for Smart Manufacturing Thomas Weise 24/43

Searching in Y

• So how do we search in the space of Gantt charts?

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Machine 0 should begin by doing job 1.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Machine 0 should begin by doing job 1.
Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Job 1 can only start on machine 0 after
it has been finished on machine 1. At
machine 1, we should begin with job 0.
Before job 0 can be put on machine 1,
it must go through machine 0.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

So job 1 cannot go to machine 0 until
it has passed through machine 1, but
in order to be executed on machine 1,
job 0 needs to be finished there first.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Job 0 cannot begin on machine 1 until
it has been passed through machine 0,
but it cannot be executed there, be-
cause job 1 needs to be finished there
first.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

A cyclic blockage has appeared: no job
can be executed on any machine if we
follow this schedule. This is called a
deadlock.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

This is called a deadlock. The sched-
ule is infeasible, because it cannot
be executed or written down without
breaking the precedence constraint.

Searching in Y

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

Searching in Y

• So how do we search in the space of Gantt charts?

• We need to create Gantt charts that fulfill all the constraints.

• For different instances, different solutions are feasible!

• Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

• Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. . .

• We would like to have a handy representation for Gantt charts.

• The representation should allow us to easy create and modify the
candidate solutions.

• Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping γ : X 7→ Y.

Metaheuristics for Smart Manufacturing Thomas Weise 25/43

The Search Space X

• If the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• If the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

• Of course, we need a mapping γ from X to Y.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• If the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

• Of course, we need a mapping γ from X to Y.

• So how could a simple search space X for the JSSP look like?

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• If the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

• Of course, we need a mapping γ from X to Y.

• So how could a simple search space X for the JSSP look like?

• Let us revisit the demo problem instance.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

0 10

1 20

2 30

4 50

1 20

0 10

1 20

3 30

2 20

3 30

4 12

2 15

3 40

2 50

3 40

0 20

4 10

4 30

0 10

1 15

number of jobs
number of machines

job 0

job 1

job 2

job 3

This is information that we have, which does not need
to be stored in the elements x.

The Search Space X

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

0 50 100 150

demo, makespan: 180

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1 3 2

1 0 2 3

2 0 1 3

1 3 0 2

3 2 1 0

The instance data and the data from one point x should
encode such a Gantt chart.

The Search Space X

• Ideally, we want to encode this two-dimensional structure in
something very simple.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 sub-jobs one IDs, a number in
0 . . . 19.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 sub-jobs one IDs, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• We could give each of the m ∗ n = 20 sub-jobs one IDs, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

• We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.
• We could give each of the m ∗ n = 20 sub-jobs one IDs, a number in
0 . . . 19.

• Then, a linear string containing a permutation of these IDs could
denote the exact processing order of the sub-jobs.

• We could easily translate such strings to Gantt charts, but we could
end up with infeasible solutions and deadlocks.

• How can we use a linear encoding without deadlocks?

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the sub-jobs per job =⇒ we do not need to
encode it.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the sub-jobs per job =⇒ we do not need to
encode it.

• We just include each job’s id m times in the string. [21, 22]

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the sub-jobs per job =⇒ we do not need to
encode it.

• We just include each job’s id m times in the string. [21, 22]

• The first occurence of a job’s ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

The Search Space X

• Ideally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

• In the demo, we have m = 5 machines and n = 4 jobs.

• How can we use a linear encoding without deadlocks?

• Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

• We know the order of the sub-jobs per job =⇒ we do not need to
encode it.

• We just include each job’s id m times in the string. [21, 22]

• The first occurence of a job’s ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

• This way, we will always have the sub-jobs in the right order.

Metaheuristics for Smart Manufacturing Thomas Weise 26/43

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

0 10

4 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

2 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 20 2 20 3 40 4 10

0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

2 30

1 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

1

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

2 20 3 40 4 10

0 10 3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10

1 20

2 30

1 20job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0

1 0

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

2 20 3 40 4 10

3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20

1 20

2 30

0 10

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

3 30 2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20

1 20 0 10

2 30

2 20job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10

2 30

3 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

4 12 3 40 0 10

3 30 2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

4 12 3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

3 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

2 50 4 30

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20

3 30

4 12

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

2

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

4 30

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30

2 30 1 20 4 12

3 30

2 50

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

2

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

3 40 0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50

2 30 1 20 4 12

3 30

4 30

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

0 10

2 15 0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12

3 30

3 40

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

3 40 4 10

0 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

4 10

0 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

3 40job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

4 10

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40

3 30 2 15

0 10

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

0 20 1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15

4 10job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

1 15

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0

3

Demo Example for the Search Space

x =

(3, 0, 2, 1, 0,

1, 0, 1, 2, 3,

2, 1, 1, 2, 3,

0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

+++++++++++++++++++++++++++++

A simple demo

4 5

+++++++++++++++++++++++++++++

4 50

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

3 30 2 15 0 20 1 15

job 0

job 1

job 2

job 3

0 50 100 150

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1

1 0

2

3

0

1

2

3

1

12

2

3

0

2

0

3

3

Demo Example for the Search Space

x =
(3, 0, 2, 1, 0, 1, 0, 1, 2, 3,

2, 1, 1, 2, 3, 0, 2, 0, 3, 3)

Metaheuristics for Smart Manufacturing Thomas Weise 27/43

0 50 100 150

demo, makespan: 180

Time

M
a

c
h

in
e

M
0

M
1

M
2

M
3

M
4

0 1 2 3

1 0 2 3

2 0 1 3

1 3 2 0

3 2 1 0

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

Metaheuristics for Smart Manufacturing Thomas Weise 28/43

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our strings of length m ∗ n contain each value in 1 . . . n
exactly m times, we will always get feasible Gantt charts by applying
our mapping γ : X 7→ Y!

Metaheuristics for Smart Manufacturing Thomas Weise 28/43

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our strings of length m ∗ n contain each value in 1 . . . n
exactly m times, we will always get feasible Gantt charts by applying
our mapping γ : X 7→ Y!

• We call this the representation.

Metaheuristics for Smart Manufacturing Thomas Weise 28/43

The Search Space X

• We now have search space X with which we can easily represent all
reasonable Gantt charts.

• As long as our strings of length m ∗ n contain each value in 1 . . . n
exactly m times, we will always get feasible Gantt charts by applying
our mapping γ : X 7→ Y!

• We call this the representation.

• If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times – they would all go into the mapping γ.

Metaheuristics for Smart Manufacturing Thomas Weise 28/43

An Interface for Representation Mappings in Java

Listing: An interface for representation mappings.

public interface IRepresentationMapping <X, Y> {

public abstract void map(X x, Y y);

}

Metaheuristics for Smart Manufacturing Thomas Weise 29/43

The JSSP Representation Mapping in Java

Listing: The JSSP representation mapping.

public final class JSSPRepresentationMapping implements

IRepresentationMapping <int[], JSSPCandidateSolution > {

public void map(int[] x, JSSPCandidateSolution y) {

int[] machineState = this.m_machineState; int[] machineTime = this.m_machineTime;

int[] jobState = this.m_jobState; int[] jobTime = this.m_jobTime;

Arrays.fill(machineState , 0); Arrays.fill(jobState , 0);

Arrays.fill(machineTime , 0); Arrays.fill(jobTime , 0);

for (final int nextJob : x) {

int[] jobSteps = this.m_jobs[nextJob];

int jobStep = (jobState[nextJob]++) << 1;

int machine = jobSteps[jobStep];

int start = Math.max(machineTime[machine], jobTime[nextJob]);

int end = start + jobSteps[jobStep + 1];

jobTime[nextJob] = machineTime[machine] = end;

int[] schedule = y.schedule[machine];

schedule[machineState[machine]++] = nextJob;

schedule[machineState[machine]++] = start;

schedule[machineState[machine]++] = end;

}

}

}

Metaheuristics for Smart Manufacturing Thomas Weise 30/43

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 31/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For three machines, we are at (n!)3.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

• OK, we want to solve a JSSP instance

• How many possible candidate solutions are there?

• If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

• Let us assume that no time is wasted by waiting unnecessarily –
which is what our search space representation does, too.

• If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

• If there are 2 machines, this gives us (n!) ∗ (n!) = (n!)2 choices.

• For m machines, we are at (n!)m possible solutions.

• But some may be wrong, i.e., contain deadlocks!

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1’296
3 5 317 7’776
4 2 244 576
4 3 1’630 13’824
4 4 7’451 331’776

Number of Solutions: Size of Y

Metaheuristics for Smart Manufacturing Thomas Weise 32/43

name n m min(#feasible) |Y|
2 2 3 4
2 3 4 8
2 4 5 16
2 5 6 32
3 2 22 36
3 3 63 216
3 4 147 1’296
3 5 317 7’776
4 2 244 576
4 3 1’630 13’824
4 4 7’451 331’776

demo 4 5 7’962’624
la24 15 10 ≈ 1.462*10121

abz7 20 15 ≈ 6.193*10275

yn4 20 20 ≈ 5.278*10367

swv15 50 10 ≈ 6.772*10644

Size of Search Space X

• Our search space X is not the same as the solution space Y.

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

Size of Search Space X

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

name n m |Y| |X|
3 2 36 90
3 3 216 1’680
3 4 1’296 34’650
3 5 7’776 756’756
4 2 576 2’520
4 3 13’824 369’600
4 4 331’776 63’063’000
5 2 14’400 113’400
5 3 1’728’000 168’168’000
5 4 207’360’000 305’540’235’000
5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024
la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806

Size of Search Space X

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

10200

10250

10150

10100

1050

1

5

10

15

m

5

10

15

n

|X|

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

Size of Search Space X

• Our search space X is not the same as the solution space Y.

• How many points are in our representations of the solution space?

• Both X and Y are very big for any relevant problem size.

• X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.

Metaheuristics for Smart Manufacturing Thomas Weise 33/43

Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.

Metaheuristics for Smart Manufacturing Thomas Weise 34/43

Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.

• How long should it run?

Metaheuristics for Smart Manufacturing Thomas Weise 34/43

Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.

• How long should it run?

• When can it stop?

Metaheuristics for Smart Manufacturing Thomas Weise 34/43

Searching and Stopping

• Eventually, we will have a program that finds good elements in these
huge sets X and Y.

• How long should it run?

• When can it stop?

• This is called the termination criterion.

Metaheuristics for Smart Manufacturing Thomas Weise 34/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! [24–26]

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! [24–26]

• So?

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! [24–26]

• So? . . . The operator drinks a coffee.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! [24–26]

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

When to stop?

• We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

• Can we solve such problems with such huge numbers of potential
solutions until she comes back?

• Probably not.

• Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n [6, 23].

• Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! [24–26]

• So? . . . The operator drinks a coffee. . . . We have a about three
minutes. . . . Let’s look for the algorithm implementation that can
give us the best solution quality within that time window.

Metaheuristics for Smart Manufacturing Thomas Weise 35/43

Section Outline

1 Introduction

2 Smart Manufacturing Example Problem

3 Solution Space and Objective Function

4 From Solution Space to Search Space

5 Number of Solutions and Termination

6 Summary

Metaheuristics for Smart Manufacturing Thomas Weise 36/43

Summary

• This was the most complicated lesson in this course!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm?

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm? If yes: cool.

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5 Understand when we need to stop the search!

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• This was the most complicated lesson in this course!

• Thank you for sticking with me during this.

• What we have learned is the most basic process when attacking any
optimization problem:

1 Understand how the scenario / input data is defined!
2 Make a data structure Y for the solutions, which can contain all the

information that the end user needs and considers as a full solution to
the problem!

3 Define the objective function f , which rates how good a solution is!
4 Is Y easy to understand and to process by an algorithm? If yes: cool. If

no: define a simple data structure X and a translation γ from X to Y!
5 Understand when we need to stop the search!

• If we have this, we can directly use any of the algorithms in the rest
of the lecture (almost) as-is.

Metaheuristics for Smart Manufacturing Thomas Weise 37/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y).

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Summary

• We now have the basic tools to search and find solutions for the JSSP.

• Many other problems are similar and can be represented in a similar
way.

• The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where I only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping γ : X 7→ Y.

• If I can do that, then from now on I do not need to worry about Y
and its rules any more – I only need to work with X, which is easier to
understand and to program.

• Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).

Metaheuristics for Smart Manufacturing Thomas Weise 38/43

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristics for Smart Manufacturing Thomas Weise 39/43

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristics for Smart Manufacturing Thomas Weise 40/43

Bibliography I

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO), Faculty of Computer
Science and Technology, Hefei University, Hefei, Anhui, China, 2019-06-25 edition, 2018–2019. URL
http://thomasweise.github.io/aitoa/. see also [2].

2. Thomas Weise. Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

3. Fred Glover and Gary A. Kochenberger, editors. Handbook of Metaheuristics, volume 57 of International Series in
Operations Research & Management Science (ISOR). Springer Netherlands, Dordrecht, Netherlands, 2003. ISBN
0-306-48056-5. doi: 10.1007/b101874.

4. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Berlin/Heidelberg: Springer-Verlag, 2nd
edition, 2004. ISBN 3-540-22494-7, 978-3-540-22494-5, and 978-3-642-06134-9. URL
http://books.google.de/books?id=RJbV_-JlIUQC.

5. Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:
287–326, 1979. doi: 10.1016/S0167-5060(08)70356-X.

6. Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445–522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993. doi:
10.1016/S0927-0507(05)80189-6.

7. Eugene Leighton Lawler. Recent results in the theory of machine scheduling. In AAchim Bachem, Bernhard Korte, and
Martin Grötschel, editors, Math Programming: The State of the Art, chapter 8, pages 202–234. Springer-Verlag,
Bonn/New York, 1982. ISBN 978-3-642-68876-8. doi: 10.1007/978-3-642-68874-4 9.

8. Éric D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research (EJOR), 64:
278–285, January 1993. doi: 10.1016/0377-2217(93)90182-M.

9. Jacek B lażewicz, Wolfgang Domschke, and Erwin Pesch. The job shop scheduling problem: Conventional and new solution
techniques. European Journal of Operational Research (EJOR), 93:1–33, August 1996. doi:
10.1016/0377-2217(95)00362-2. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 41/43

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
http://books.google.de/books?id=RJbV_-JlIUQC
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.1650&type=pdf

Bibliography II

10. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors,
Complexity of Computer Computations. The IBM Research Symposia Series., pages 85–103. Springer, Boston, MA, USA,
1972. ISBN 978-1-4684-2003-6. doi: 10.1007/978-1-4684-2001-2 9.

11. Stephen Arthur Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing (STOC’71), May 3–5, 1971, Shaker Heights, OH, USA, pages 151–158, New York,
NY, USA, 1971. ACM. doi: 10.1145/800157.805047.

12. John Edward Beasley. Or-library: Distributing test problems by electronic mail. The Journal of the Operational Research
Society (JORS), 41:1069–1072, November 1990. doi: 10.1057/jors.1990.166.

13. Jelke Jeroen van Hoorn. Job shop instances and solutions, 2015. URL http://jobshop.jjvh.nl.
14. Jelke Jeroen van Hoorn. The current state of bounds on benchmark instances of the job-shop scheduling problem. Journal

of Scheduling, 21:127–128, feb 2018. doi: 10.1007/s10951-017-0547-8.
15. Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Management

Science, 34:391–401, 1988. doi: 10.1287/mnsc.34.3.391.
16. Stephen R. Lawrence. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling

Techniques (Supplement). PhD thesis, Graduate School of Industrial Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, Pennsylvania, USA, 1984.

17. Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job
shop scheduling. Management Science, 38:1495–1509, 1992. doi: 10.1287/mnsc.38.10.1495.

18. Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop instances. In Reinhard Männer
and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN II), September 28–30,
1992, Brussels, Belgium, pages 281–290, Amsterdam, The Netherlands, 1992. Elsevier.

19. James M. Wilson. Gantt charts: A centenary appreciation. European Journal of Operational Research (EJOR), 149:
430–437, September 2003. doi: 10.1016/S0377-2217(02)00769-5. URL
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf.

20. Robert Klein. Scheduling of Resource-Constrained Projects, volume 10 of Operations Research/Computer Science Interfaces
Series. Springer US, New York, NY, USA, 2000. ISBN 978-0-7923-8637-7. doi: 10.1007/978-1-4615-4629-0.

21. Christian Bierwirth. A generalized permutation approach to job shop scheduling with genetic algorithms.
Operations-Research-Spektrum (OR Spectrum), 17:87–92, June 1995. doi: 10.1007/BF01719250. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 42/43

http://jobshop.jjvh.nl
http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Wilson03.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf

Bibliography III

22. Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation representations for scheduling problems. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN IV), September 22–24, 1996, Berlin, Germany,
volume 1141/1996 of Lecture Notes in Computer Science (LNCS), pages 310–318, Berlin, Germany, 1996. Springer-Verlag
GmbH. ISBN 3-540-61723-X. doi: 10.1007/3-540-61723-X 995. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf.

23. Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and
approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1493–1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:
10.1007/978-1-4613-0303-9 25. also pages 21–169 in volume 3/3 by Kluwer Academic Publishers.

24. David Paul Williamson, Leslie A. Hall, J. A. Hoogeveen, Cor A. J. Hurkens, Jan Karel Lenstra, Sergey Vasil’evich
Sevast’janov, and David B. Shmoys. Short shop schedules. Operations Research, 45(2):288–294, March–April 1997. doi:
10.1287/opre.45.2.288.

25. Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba. Approximation schemes for job shop scheduling problems with
controllable processing times. European Journal of Operational Research (EJOR), 167(2):297–319, December 2005. doi:
10.1016/j.ejor.2004.03.025. URL http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf.

26. Monaldo Mastrolilli and Ola Svensson. Hardness of approximating flow and job shop scheduling problems. Journal of the
ACM (JACM), 58(5):20:1–20:32, October 2011. doi: 10.1145/2027216.2027218. URL
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf.

Metaheuristics for Smart Manufacturing Thomas Weise 43/43

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.8377&type=pdf
http://people.idsia.ch/~monaldo/papers/EJOR-varJsp-05.pdf
http://theory.epfl.ch/osven/Ola%20Svensson_publications/JACM11.pdf

	Outline
	An Introduction to Optimization Algorithms
	Introduction
	Section Outline
	The Structure of Optimization
	Components of an Optimization Problem

	Smart Manufacturing Example Problem
	Section Outline
	Job Shop Problem
	Job Shop Scheduling Problem
	The Input: Problem Instances
	Demo Instance
	Instance abz7
	Instance la24
	Instance swv15
	Instance yn4
	Problem Instance Data in

	Solution Space and Objective Function
	Section Outline
	Output: Solution Space Y
	Solution Quality
	An Interface for Objective Functions in
	The JSSP Objective Function in
	The Global Optimum y in Y

	From Solution Space to Search Space
	Section Outline
	Feasibility of Solutions
	Searching in Y
	The Search Space X
	Demo Example for the Search Space
	The Search Space X
	An Interface for Representation Mappings in
	The JSSP Representation Mapping in

	Number of Solutions and Termination
	Section Outline
	Number of Solutions: Size of Y
	Size of Search Space X
	Searching and Stopping
	When to stop?

	Summary
	Section Outline
	Summary
	Summary

	Presentation End
	Bibliography
	Bibliography
	References

