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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to
Optimization Algorithms” M at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise
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The Structure of Optimization %}

® So we know roughly what an optimization problem is and that
metaheuristics " are algorithms to solve them.

e But we do not really know yet how that works.

® We will approach this topic based on an example from the field of
Smart Manufacturing.

® We will first learn about the basic ingredients that make up an
optimization task.

® Then we will step-by-step work our way from stupid to good
metaheuristics for solving it.
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optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
® a data type Y for the candidate solutions y € Y, and
® an objective function f : Y +— R, which rates "how good” a candidate
solution y € Y is.
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Components of an Optimization Problem %\’
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® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X, i.e., a simpler data structure for internal use, which
can more efficiently be processed by an optimization algorithm than Y
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Components of an Optimization Problem %\,
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® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v : X — Y, which translates “points” x € X
to candidate solutions y € Y
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Components of an Optimization Problem %\’

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, which allow for the iterative
exploration of the search space X

Metaheuristics for Smart Manufacturing Thomas Weise 6/43



Components of an Optimization Problem %\’
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® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.

® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion, which tells the optimization process when to
stop.
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® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be
@ a search space X,
@ a representation mapping v: X — Y,
@ search operators searchOp : X" — X, and
@ a termination criterion.
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Components of an Optimization Problem %\

® From the perspective of a programmer, we can say that an
optimization problem has the following components:
@ the input data which specifies the problem instance Z to be solved
@® a data type Y for the candidate solutions y € Y, and
® an objective function f: Y — R.
® Usually, in order to practically implement an optimization approach,
there also will be

@ a search space X,

@ a representation mapping v: X — Y,

@ search operators searchOp : X" — X, and
@ a termination criterion.

® |ooks complicated, but don't worry. We will do this one-by-one.

® We want to get an understanding of the structure of optimization
problems from the metaheuristic perspective by looking at one
concrete problem from production planning.
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® Solution Space and Objective Function
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® The Job Shop Scheduling Problem (JSSP) * is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Fach job will need to be processed by some or all of the machines in a
job-specific order.

® Also, each job will require a job-specific time at a given machine.

® The goal is to fulfill all tasks as quickly as possible.




Job Shop Scheduling Problem %}

® The Job Shop Scheduling Problem (JSSP) P is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Each job will need to be processed by some or all of the machines in a
job-specific order.

e Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”
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® The Job Shop Scheduling Problem (JSSP) P is a classical
optimization problem.

® We have a factory with m machines.
® We need to fulfill n production requests, the jobs.

® Each job will need to be processed by some or all of the machines in a
job-specific order.

e Also, each job will require a job-specific time at a given machine.
® The goal is to fulfill all tasks as quickly as possible.

® This scenario also encompasses simpler problems, e.g., where all jobs
“are the same.”

® This problem is A/ P-hard. ' 1
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® The JSSP is a type of problem.
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specific jobs, is called an instance.



http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
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The Input: Problem Instances %\

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley ) manages the OR Library of benchmark datasets from
different fields of operations research (OR)
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® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley ) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.
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The Input: Problem Instances %()

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley ) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by van
Hoorn 1** at http://jobshop.jjvh.nl.
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The Input: Problem Instances %()

® The JSSP is a type of problem.

® A concrete scenario, with a specific number of machines and with
specific jobs, is called an instance.

® |t is common in research that there collections of instances for a given
problem, so that we can test algorithms and compare their
performance (of course, you can only compare results if they are for
the same scenario).

e Beasley ) manages the OR Library of benchmark datasets from
different fields of operations research (OR)

® He also provides several example instances of the JSSP at
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/jobshopinfo.html.

® More information about these instances has been collected by van
Hoorn 1** at http://jobshop.jjvh.nl.

e \What do such JSSP instances look like?
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Similarly, Job 1 first needs to be processed by machine 1 for 20 time units,
it then goes to machine 0 for 10 time units, it then goes to machine 3 for
30 time units, it then goes to machine 2 for 50 time units, and finally it

goes to machine 4 for 30 time units.
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Job 2 first needs to be processed by machine 2 for 30 time units, it then
goes to machine 1 for 20 time units, it then goes to machine 4 for 12 time
units, it then goes to machine 3 for 40 time units, and finally it goes to
machine 0 for 10 time units.
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And Job 3 first needs to be processed by machine 4 for 50 time units, it
then goes to machine 3 for 30 time units, it then goes to machine 2 for 15
time units, it then goes to machine O for 20 time units, and finally it goes
to machine 1 for 15 time units.



Instance abz7 by Adams et al. .

20 jobs  Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)
15 machines
2 12 9 17

24 3 427 021 625 827 726 130 53111 18 14 16 13 39 10 19 12 26
630 3151220 11 19 124 13 1561028 236 526 7 15 0 11 823 14 20 9 26 4 28
635 0221323 732 220 31212191023 917 114 516 11 29 8 16 4 22 14 22
920 629 119 7141233 430 032 521 11 29 1024 1425 229 3 13 8 20 13 18
1123 1320 128 632 716 518 824 923 3241034 224 0241428 12 156 4 18
82411191421 133 734 635 5401036 323 226 415 928 13 38 12 13 0 25
1327 330 621 8191212 427 239 9 13 14 12 536 10 21 11 17 129 0 17 7 33
527 419 629 920 3211040 8 14 14 39 13 39 227 136 12 12 11 37 7 22 0 13
13321129 824 327 540 421 926 027 1427 616 221 1013 7 28 1228 1 32
1235 111 5391418 723 034 3241311 8301131 4151015 228 9 26 6 33
1028 5371229 131 725 8131414 420 327 92513311114 625 239 0 36
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913 14 40 736 417 013 533 82513241023 336 229 118 11 13 6 33 12 13
325 515 2281240 739 131 835 6311136 412 1033 14 19 9 16 13 27 0 21
12221014 012 220 512 118 11 17 839 1431 331 7 32 920 13 29 4 13 6 26
518 10 30 7 38 14 22 13 16 11 20 916 3 17 1 12 2 13 1240 6 17 8 30 4 38 0 13
931 8391227 114 533 33111221336 016 7 11 1414 429 6 28 2 22 10 17

Bl 01 Sl o o



Instance 1a24

Instance 1a24 by Lawrence 1.

T

(Table 7, instance 4)

A

10 machines

awrence 15x10 instance

obs L

A

J

15

DO ONOIOIMIDIONO 00
~ <N~ ~— < 00 LW — 0 M

OMMAYTANMOANOHHOH

ONMNANATDONNEANDMO OO0
NOFAHONMNMMMLO<FODN0AN

TFANOODODOMUOOOWE OO

NVONOMWOLOO L0 OMOW
OAMNO I < M~ ANANM— 00N

LLOOMOWOHOLO O~

ONOM—TNDODONMO I ANNOIN
MN—=HOO A1 DNLONOONNDN M~

ANADOOMNM~MNMNIOIANNOONMNMM

MDA AIFT DWW NOWLOOANN+
MO ONMNO MWOANM— 00NN+

OFNOOALSIFIMOOLONMNO +

30
85
55
68
70
63
98
91
a7
88
18
60
40
40
a7
+++++

OO AHDDO AN~ N0 N0

MOMOMNOHANO O —H ©
N © MOOMOANWAAHAO

OF OO~ MLO LN

NONODMLOFOMMNWOM
FOAFOOONMLOMMNLON

NWOFOFOODMNFANMLO

NMNMOFAHODOHOON
MO OFOOOM DO O

OMNMANOANNMNOOMM— AN

DOV FHO AN OO O
—HLDOOOMNOMWODON

O—H—ANMN0OOFIOINOO I

7T 8975072674
224529 949 8550
S

13/43

Thomas Weise

Metaheuristics for Smart Manufacturing



SRTRRRBELNNBE™E 852982228 [EE]
o) ©oro
§ TRBETARsYERERENANRTRRIER T “BBERRNNN 5 HORNITIBEES
2 on
2 =

e FNYE®me
o
N N EETTI
5 TN23RRRERSIRINELSERBERBRLE 8IR FR08I TS [
- oo
L 383 28R 28k
i
2 woro
% RRBBYARIBIRSEORTQ 832358 ¥ B
K
P o +
i H
IT rgreoeszanss zag898Es i
1§ marees i
4ol 1
g - 1
I8z R T R e T L T T wgnl
FEITERRIRBASYRBEINEER =% |k IV8ST
18
HEs N i
igd H
18 ggaoununn nBgneaR asost
i82 83 2% H
Ig7 - I
iz o i
ig H

s@on

H ER REREE]
H g REEREEE
i B I
b ke

Instance swv15 by Storer et al. 7.




[18]

7
3
0
0
8
18 14 16 20 1 18 12 14 13 10 6 16 524 4 18 0 24 11 18 15 42 19 13 3 23 14 40 9 48
7
1
4
0
6

Instance yn4 by Yamada and Nakano

20 jobs Yamada and Nakano 20x20 instance (Table 4, instance 4)
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® How can we represent such data in Java program code?




Problem Instance Data in Java

® How can we represent such data in Java program code?

Listing: A class JSSPInstance capable representing a problem instance.

public class JSSPInstance {
public final int m; // number of machines
public final int n; // number of jobs

public final int[][] jobs; // ome row per job
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® We now know how a problem instance of the JSSP looks like.

e \What is a solution for the JSSP, for such an instance?
® Basically, a Gantt Chart %%,
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A Gantt chart is a diagram which assigns each sub-job on each
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one problem.
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® We now know how a problem instance of the JSSP looks like.

® What is a solution for the JSSP, for such an instance?

e A Gantt chart is a diagram which assigns each sub-job on each
machine a start and end time.

® The solution space Y is the set of all possible feasible Gantt charts for
one problem.

® Each of the m int[l lists in schedule holds n sub-jobs for each

machine as three values joblD, start time, end time, i.e., has length
3n.

Listing: A class JSSPCandidateSolution capable representing a Gantt

chart.

public class JSSPCandidateSolution {
public int [J[] schedule;
}
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® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y — R is the makespan, the time when the
last sub-job is completed




Solution Quality %()

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y +— R is the makespan, the time when the

last sub-job is completed, the right-most edge of any bar in the Gantt
chart.
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Solution Quality §\

So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

How do we rate the quality of a solution?

A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

The objective function f : Y — R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

This objective function is subject to minimization: smaller values are
better.
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Solution Quality %()

® So we have identified what the possible solutions to our problems are
and know how to store them in a data structure.

® How do we rate the quality of a solution?

® A Gantt chart y; € Y is a better solution to our problem than another
chart yo € Y if it allows us to complete our work faster.

® The objective function f : Y +— R is the makespan, the time when the
last sub-job is completed, the right-most edge of any bar in the Gantt
chart.

® This objective function is subject to minimization: smaller values are
better.

e A Gantt chart y; € Y is a better solution to our problem than another
chart y2 € Y if f(y1) < f(y2).
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An Interface for Objective Functions in Java %\’

Listing: An interface for objective functions.

public interface IObjectiveFunction<Y> {

public abstract double evaluate(Y y);

Metaheuristics for Smart Manufacturing Thomas Weise 20/43



The JSSP Objective Function in Java %\’

1AQ

Listing: The JSSP objective function.

public final class JSSPMakespanObjectiveFunction
implements IObjectiveFunction<JSSPCandidateSolution> {

private final JSSPInstance m_instance;

public final double evaluate (JSSPCandidateSolution y) {
int makespan = 0;

for (final int[] machine : y.schedule) {

final int end = machine[machine.length - 1];
if (end > makespan) {
makespan = end;

}

}

return makespan;

}
}
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f(y*) < f(y)Vy € Y holds.
® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.
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® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.

® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that

guarantees to find this solution may take time exponential in m or n
in the worst case.

® So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.




The Global Optimum y* in Y %\’

® There must be at least one globally optimal solution y* for which
f(y*) < f(y)Vy € Y holds.
® How do we find such a solution?

® We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

® So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

e All what we can do is search somehow in Y and hope to get as close
to y* within reasonable time as possible.
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The Global Optimum y* in Y §\

There must be at least one globally optimal solution y* for which
Fy*) < f(y)¥y € Y holds.
How do we find such a solution?

We know the problem is N P-hard ', so any algorithm that
guarantees to find this solution may take time exponential in m or n
in the worst case.

So we cannot guarantee to find the best possible solution for a
normal-sized JSSP in reasonable time.

All what we can do is search somehow in Y and hope to get as close
to y* within reasonable time as possible.

If we can find a solution with a slightly larger makespan than the best
possible solution, but we can get it within a few minutes, that would
also be nice.
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® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed
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® So what do we need to consider when searching in Y?
® A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart
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® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine
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® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time
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® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

@ the precedence constraints of the sub-jobs must be honored.
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1AQ

® So what do we need to consider when searching in Y7

¢ A candidate solution y € Y is feasible, i.e., can actually be “used,” if
and only if it fulfills all constraints.

® Indeed, there are several constraints we need to impose on our Gantt
charts:

@ all sub-jobs of all jobs must be assigned to their respective machines
and properly be completed,

@ only the jobs and machines specified by the problem instance must
occur in the chart,

® a sub-job will must be assigned a time window on its corresponding
machine which is exactly as long as the sub-job needs on that machine,

@ the sub-jobs cannot intersect or overlap, each machine can only carry
out one job at a time, and

@ the precedence constraints of the sub-jobs must be honored.

® Only a Gantt chart obeying all of these constraints is feasible, i.e.,
can be implemented in practice.
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® So how do we search in the space of Gantt charts?

® \We need to create Gantt charts that fulfill all the constraints.

e For different instances, different solutions are feasible!
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Job 0, Job 1; M1: Job 0, Job 1

Job 1 can only start on machine 0 after
it has been finished on machine 1. At
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it has been passed through machine 0,
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Ftt+tittiittttri+444444 | Acyclic blockage has appeared: no job
instance B with 2 jobs and 2 machines can be executed on any machine if we
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This is called a deadlock. The sched-
ule is infeasible, because it cannot
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® So how do we search in the space of Gantt charts?
® We need to create Gantt charts that fulfill all the constraints.
e For different instances, different solutions are feasiblel

e Writing Java code that works directly on the Gantt charts is
cumbersome and error-prone.

e Actually, the vast majority of possible Gantt charts will often be
infeasible and have deadlocks. ..

® We would like to have a handy representation for Gantt charts.

® The representation should allow us to easy create and modify the
candidate solutions.

e Solution: We develop a data structure X which we can handle easily
and which can always be translated to feasible Gantt charts by a
mapping v : X — Y.
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® |f the solution space Y is complicated and constrained, we try to
search in a simpler space X, the search space.

® Of course, we need a mapping v from X to Y.
® So how could a simple search space X for the JSSP look like?

® |et us revisit the demo problem instance.




R s o o S S S S SO

number of jobs A simple demo .
\EI number of machines
job0 0 10 1 20 2 20 3 40 4 10

jobl 1200 10 3 30 2 50 4 30

job2 230 1 204 12 3 40 0 10

job3 4 503302150 20 1 15
e m e o B o o S

This is information that we have, which does not need
to be stored in the elements x.



The Search Space X

demo, makespan: 180

M4
|
I
!

Machine
M1 M2
! !
o I
o
(5]
H

Mo
|

(2]
T

1 1 1
0 50 100 150

Time
The instance data and the data from one point z should
encode such a Gantt chart.
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® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
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¢ |deally, we want to encode this two-dimensional structure in a simple
one-dimensional string of integer numbers.

® In the demo, we have m = 5 machines and n = 4 jobs.
® How can we use a linear encoding without deadlocks?

® Each job has m = 5 sub-jobs that must be distributed to the
machines in the sequence prescribed in the problem instance data.

e We know the order of the sub-jobs per job = we do not need to
encode it.

® We just include each job's id m times in the string. '

® The first occurence of a job's ID stands for its first sub-job, the
second occurence for the second sub-job, and so on.

® This way, we will always have the sub-jobs in the right order.
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The Search Space X §\

We now have search space X with which we can easily represent all
reasonable Gantt charts.

As long as our strings of length m * n contain each valuein1...n
exactly m times, we will always get feasible Gantt charts by applying
our mapping v : X — Y!

We call this the representation.

If necessary, we could also easily add more constraints, such as
job-order specific machine setup times, or job/machine specific
transport times — they would all go into the mapping ~.
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Listing: An interface for representation mappings.

public interface IRepresentationMapping<X, Y> {

public abstract void map(X x, Y y);
+




The JSSP Representation Mapping in Java %\’

List The JSSP representation mappin

public final class JSSPRepresentationMapping implements
IRepresentationMapping<int [], JSSPCandidateSolution> {

public void map(int[] x, JSSPCandidateSolution y) {

int [] machineState = this.m_machineState; int[] machineTime = this.m_machineTime;
int [] jobState = this.m_jobState; int[] jobTime = this.m_jobTime;
Arrays.fill (machineState, 0); Arrays.fill(jobState, 0);
Arrays.fill(machineTime, 0); Arrays.fill(jobTime, 0);

for (final int nextJob : x) {
int [] jobSteps = this.m_jobs[nextJobl;

int jobStep = (jobState[nextJobl++) << 1;

int machine = jobSteps[jobStepl;

int start = Math.max (machineTime [machine], jobTime [nextJobl);
int end = start + jobSteps[jobStep + 1];

jobTime [nextJob] = machineTime [machine] = end;

int [] schedule = y.schedulel[machinel;

schedule [machineState [machine]++] = nextJob;
schedule [machineState [machine]++] = start;
schedule [machineState [machine]++] = end;
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Number of Solutions: Size of Y §\

OK, we want to solve a JSSP instance
How many possible candidate solutions are there?
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How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.

For three machines, we are at (n!)3.
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OK, we want to solve a JSSP instance
How many possible candidate solutions are there?

If we allow arbitrary useless waiting times between jobs, then we could
create arbitrarily many different valid Gantt charts for any problem
instance.

Let us assume that no time is wasted by waiting unnecessarily —
which is what our search space representation does, too.

If there was only 1 machine, then we would have n! possible ways to
arrange the n jobs.

If there are 2 machines, this gives us (n!) * (n!) = (n!)? choices.
For m machines, we are at (n!)™ possible solutions.

But some may be wrong, i.e., contain deadlocks!
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® Qur search space X is not the same as the solution space Y.

® How many points are in our representations of the solution space?




name n m Y| 1X|
3 2 36 90
3 3 216 1'680
3 4 1'296 34'650
3 5 7776 756’756
4 2 576 2'520
4 3 13'824 369'600
4 4 331'776 63'063'000
5 2 14'400 113'400
5 3 1'728'000 168'168'000
5 4 207'360°000 305'540'235'000
5 5 24'883'200°000 623'360'743'125'120
demo 4 5 7'962'624 11'732'745'024
la24 15 10 =~ 1.462*%10'%! ~ 2.293*10164
abz7 20 15 = 6.193*%1027° ~ 1.432%10372
yn4d 20 20 ~ 5.278*10%¢7 ~ 1.213*10501
swvls 50 10 ~ 6.772*%1004 ~ 1.254*10806




Size of Search Space X %\’
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10200
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® How many points are in our representations of the solution space?

Both X and Y are very big for any relevant problem size.

X is bigger, we pay with size for the simplicity and the avoidance of
infeasible solutions.
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Eventually, we will have a program that finds good elements in these
huge sets X and Y.

How long should it run?
® When can it stop?

This is called the termination criterion.
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We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

Can we solve such problems with such huge numbers of potential
solutions until she comes back?

Probably not.

Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2
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® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

e Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.

® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

e Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

® So? ... The operator drinks a coffee.
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® We assume that a human operator receives the job information,
enters them into a computer (as JSSP instance), and then goes to
drink a coffee.

e Can we solve such problems with such huge numbers of potential
solutions until she comes back?

® Probably not.
® Best algorithm guaranteeing to find the optimal solution may need a
runtime growing exponential with m and n 1>,

e Even if just guaranteeing to be a constant factor worse than the
optimum (like, 1% longer, 10 times longer. . .) is not faster! 2

® So? ... The operator drinks a coffee. ... We have a about three
minutes. ... Let's look for the algorithm implementation that can
give us the best solution quality within that time window.
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@ Make a data structure Y for the solutions, which can contain all the
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® This was the most complicated lesson in this course!
e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

Define the objective function f, which rates how good a solution is!
Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!
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® This was the most complicated lesson in this course!

e Thank you for sticking with me during this.

® \What we have learned is the most basic process when attacking any
optimization problem:

@ Understand how the scenario / input data is defined!

@ Make a data structure Y for the solutions, which can contain all the
information that the end user needs and considers as a full solution to
the problem!

® Define the objective function f, which rates how good a solution is!

@ Is Y easy to understand and to process by an algorithm? If yes: cool. If
no: define a simple data structure X and a translation v from X to Y!

@ Understand when we need to stop the search!

e |f we have this, we can directly use any of the algorithms in the rest
of the lecture (almost) as-is.
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® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.
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simpler scenario where | only need to deal with a basic data
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and its rules any more — | only need to work with X, which is easier to
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® \We now have the basic tools to search and find solutions for the JSSP.

® Many other problems are similar and can be represented in a similar
way.

® The Key: Translate the complicated task to work with a complex
data structure Y (e.g., Gantt diagram with many constraints) to a
simpler scenario where | only need to deal with a basic data
structure X (like a list of integer numbers with few constraints) by
putting the “complicated” rules into a mapping v : X — Y.

® If | can do that, then from now on | do not need to worry about Y
and its rules any more — | only need to work with X, which is easier to
understand and to program.

® Let us now try to solve the JSSP using metaheuristics that search
inside X (and thus can find solutions in Y within 3 minutes).
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