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An Introduction to Optimization Algorithms

The contents of this course are available as
free electronic book “An Introduction to
Optimization Algorithms” [1] at
http://thomasweise.github.io/aitoa in pdf,
html, azw3, and epub format, created with
our bookbuildeR tool chain.

An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26
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What is Smart Manufacturing?

Smart Manufacturing [2]. . .

• has the goal of optimizing development, production, and logistics.
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What is Smart Manufacturing?

Smart Manufacturing [2]. . .

• has the goal of optimizing development, production, and logistics.

• employs computer control and high levels of adaptability in the
multi-phase process of creating a product from raw material.

• utilizes advanced information and manufacturing technologies to
enable flexibility in production processes to address a dynamic market.

• requires increased workforce training for flexibility and use of the
technology instead of simple repetitive tasks as in traditional
manufacturing.
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Industry 4.0 [4]
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Involved Technologies

• Cyber-Physical Systems: deep connection between physical and
software systems, often networks of interacting elements. [5]
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Involved Technologies

• Cyber-Physical Systems: deep connection between physical and
software systems, often networks of interacting elements. [5]

• Internet of Things: network enabling physical things to exchange data
or being controlled, allowing a computer system to directly interact
with the physical world. [6]

• Cloud Computing: move data and computation into the cloud (not
just storage, but also computational resources, applications). [7]

• Big Data: Collection, processing, and evaluation of huge amounts of
data. [8]

• These are some of the ingredients. They do not make the production
intelligent yet. They are technological enablers.

• Computational Intelligence and Optimization [1, 9, 10]: automatic
intelligent decisions, automated planning, scheduling, design,
management, . . .
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What is optimization?

What is optimization? [1, 9, 11]
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What is optimization? [1, 9, 11]
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What is optimization?

What is optimization? [1, 9, 11]

Definition (Optimization Problem: Economical View)

An optimization problem is a situation which requires deciding for one
choice from a set of possible alternatives in order to reach a
predefined/required benefit at minimal costs.
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What is optimization?

What is optimization? [1, 9, 11]

Definition (Optimization Problem: Economical View)

An optimization problem is a situation which requires deciding for one
choice from a set of possible alternatives in order to reach a
predefined/required benefit at minimal costs.

Definition (Optimization Problem: Simplified Mathematical View)

Solving an optimization problem requires finding an input value y⋆ ∈ Y

from a set Y of allowed values for which a mathematical function
f : Y 7→ R takes on the smallest possible value.
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities in

China and return to Hefei!
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city but they are too

big to transport them all at once. How can I load them best into my
car so that I have to travel back and forth the least times?
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city
• How can I construct a truss which can hold a certain weight with at

most a certain amount of iron?
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city
• Construct a truss which can hold a certain weight
• I want to build a large factory with n workshops. I know the flow of

material between each two workshops and now need to choose the
locations of the workshops such that the overall running cost incurred
by material transportation is minimized.
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• I need to transport n items from here to another city
• Construct a truss which can hold a certain weight
• Assign workshops to locations
• Find the minima of complex, multi-dimensional mathematical formulas
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Transportation Planning

• Let us now look at a more complex example from the field of
transportation planning.
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Transportation Planning

• Let us now look at a more complex example from the field of
transportation planning.

• This was an actual project for a major German logistics company
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Logistic Planning: Task

• Build a system which tells a logistics company what it needs to do to
fulfill all transportation orders at minimum costs. [12–16]
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• Build a system which tells a logistics company what it needs to do to
fulfill all transportation orders at minimum costs. [12–16]

• What does this mean?
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while considering that
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limits and that there are
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Logistic Planning: Task

• Build a system which tells a logistics company what it needs to do to
fulfill all transportation orders at minimum costs. [12–16]

1 Find routes on the map and assignments of orders to containers and
containers to trucks/trains which minimize the undelivered orders and
the total distance for. . .

2 multiple depots and pickup and delivery locations,
while considering that

3 vehicles (trucks and trains) have capacity
limits and that there are

4 time windows for pickup and delivery
5 and constraints and laws.
6 Time limit for optimization: 1 day

Metaheuristics for Smart Manufacturing Thomas Weise 12/27



Logistic Planning: Problem

• Problem is complicated

Metaheuristics for Smart Manufacturing Thomas Weise 13/27



Logistic Planning: Problem

• Problem is complicated

• No algorithm or existing solution available

Metaheuristics for Smart Manufacturing Thomas Weise 13/27



Logistic Planning: Problem

• Problem is complicated

• No algorithm or existing solution available

• Solution: adapt optimization algorithm (in our case: an Evolutionary
Algorithm) to our problem [12, 13]

Metaheuristics for Smart Manufacturing Thomas Weise 13/27



Logistic Planning: Problem

• Problem is complicated

• No algorithm or existing solution available

• Solution: adapt optimization algorithm (in our case: an Evolutionary
Algorithm) to our problem [12, 13]

• Before the problem was solved by hand, by manual planning with
Excel sheets. . .

Metaheuristics for Smart Manufacturing Thomas Weise 13/27



Logistic Planning: Problem

• Problem is complicated

• No algorithm or existing solution available

• Solution: adapt optimization algorithm (in our case: an Evolutionary
Algorithm) to our problem [12, 13]

• Before the problem was solved by hand, by manual planning with
Excel sheets. . .

• With an optimization algorithm, we can get better solutions than
that.

Metaheuristics for Smart Manufacturing Thomas Weise 13/27



Logistic Planning: Problem

• Problem is complicated

• No algorithm or existing solution available

• Solution: adapt optimization algorithm (in our case: an Evolutionary
Algorithm) to our problem [12, 13]

• Before the problem was solved by hand, by manual planning with
Excel sheets. . .

• With an optimization algorithm, we can get better solutions than
that.

• In this course, you will learn how we can do such a thing.
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• So how is all of this related to smart manufacturing?

• No enterprise can waste money or time or material or energy or any
other resource.

• An enterprise must try to make decisions which are optimial from the
perspective of cost and resource consumption.

• An enterprise must strive to improve its processes and products.

• An enterprise should want to have software that can automatically
make good suggestions, which can save costs and resources for the
daily operations, the long term planning, and/or even its
product/organizational development.

• All kinds of the previously mentioned problems can occur in
manufacturing.

• For example, logistics exist inside and outside a company, and even on
the factory floor!
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Examples from Smart Manufacturing

• Our factory receives a set of customer orders and we need to assign
them to workers/machines in order to complete them in time.
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Examples from Smart Manufacturing

• Our factory receives a set of customer orders and we need to assign
them to workers/machines in order to complete them in time.

• We need to plan which worker works on which machine or task based
on preferences, regulations, and efficiency.

• We need to plan the purchase of raw material based on expected
production orders.

• We need to store items in the warehouse efficiently for fast access.

• We need to cut a large piece of cloth into smaller pieces for clothing
production while minimizing waste.

• We need to route inter-workshop or inter-workstation material
transportation.

• We need to plan maintenance of machinery.

• . . .
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Examples from Smart Manufacturing
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optimization

operations research

computational intelligence

machine learning

data mining

management

production

delivery

sales

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

optimized logistics (business-to-customer)

planning and scheduling of maintenance visits

planning and scheduling of supply visits

production planning and scheduling

optimized assignment of jobs/orders to machines

optimization of production processes

optimization of stock-keeping

optimization of intra-enterprise logistics

optimization of supply chains

optimization of factory layouts and intra-factory logistics

scheduling of employee work

optimal assignment of employees to tasks or customers

optimized locations for new branch offices

(based current or predicted future customers)

optimization of product design

optimization of product feature configuration

optimization of service offers

improved tailoring of products/services to customers

optimization of pricing and offers

mining of customer data for targeted offers

products /
services



Examples from Smart Manufacturing

• When developing a real-world application of optimization, there are
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Examples from Smart Manufacturing

• When developing a real-world application of optimization, there are
two issues:

1 Developing and implementing a good algorithm that can solve the
problem at hand and

2 integrating this implementation into the existing software ecosystem.

• We focus only on the first of the two issues: optimization algorithms
and their implementation.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Theory proofs that the time to find this tour may grow exponentially

with the number of cities we want to visit in the worst case. [17–21]
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Finding the best tour (what exact algorithms do) may take too long.
• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower: the tour will be longer

than the best one.
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Finding the best tour (what exact algorithms do) may take too long.
• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
• (Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.
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Exact vs. Heuristic Algorithms

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Finding the best tour (what exact algorithms do) may take too long.
• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
• (Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.
• Optimization often means to make a trade-off between solution quality

and runtime.
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Finding the best tour (what exact algorithms do) may take too long.
• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
• (Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.
• Optimization often means to make a trade-off between solution quality

and runtime and development time (the time from the definition of the
problem until we have a software for producing solutions).
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approximate solution for a very specific, narrow class of problems, say
a TSP with cities in the Euclidean plane.

• However, there are many different optimization problems and often
we won’t see a “pure” TSP in practice, there usually will be
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A metaheuristic is a method for solving a general class of problems. It
combines objective functions or heuristics in an abstract and hopefully
efficient way, usually by treating them as black box-procedures. [1, 9, 22, 23]
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• Heuristics are often simple, specialized algorithms that create an
approximate solution for a very specific, narrow class of problems, say
a TSP with cities in the Euclidean plane.

• However, there are many different optimization problems.

• Should we develop a completely new method for each problem?

• No. We want general algorithms that can be adapted to different
problems. (also to reduce the development time . . . we often want a
prototype quickly and can add more complex logic later)

Definition (Metaheuristic)

A metaheuristic is a method for solving a general class of problems. It
combines objective functions or heuristics in an abstract and hopefully
efficient way, usually by treating them as black box-procedures. [1, 9, 22, 23]
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Summary and Outlook

• There is a wide variety of optimization problems in Smart
Manufacturing.

• There is a wide variety of optimization algorithms.

• There are many different applications and almost all have specific
requirements.

• There is no (and can never be a) single, perfect algorithm to solve all
of them [24–27]

• Experience is needed: How do I recognize an optimization problem?
How can I quickly make a software that can solve it?

• We will try to get a good perspective and understanding of the very
basics needed to navigate in the domain of optimization.

• The goal is to be able to recognize and identify optimization problems
as they occur in many fields, especially in Intelligent Manufacturing
scenarios, and to develop basic algorithms to solve them.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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5484/2009 of Lecture Notes in Computer Science (LNCS), pages 768–777, Berlin, Germany, 2009. Springer-Verlag GmbH.
doi: 10.1007/978-3-642-01129-0 87.

14. Thomas Weise, Alexander Podlich, Manfred Menze, and Christian Gorldt. Optimierte güterverkehrsplanung mit
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