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� The best algorithms for many classical problems, such as the
Traveling Salesman Problem or the Maxmum Satisfiability Problem,
are metaheuristics that make extensive use of the knowledge about
the nature of these problems

� However, the vast majority of industry applications in optimization do
not use metaheuristics.

� They use Linear Programming tools such as as CPLEX and GAMS.
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Definition (Linear Programming)

Linear programming (LP) is a method to find the optimal solution of a
problem whose (potentially multiple) constraints and (single) objective are
linear relationships.

� The objective function f is a simple linear function of n real-valued
decision variables x1, x2, . . . , xn ∈ R, i.e., we can write
f(~x) : Rn 7→ R.

� There are any number m of inequality constraints gi and any number
of equality constraints hj (see Lesson 16: Constraint Handling), each
of which are linear.
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� Let us define a simple linear programming
problem with two decision variables and an
objective function.
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� Let us define a simple linear programming
problem with two decision variables and an
objective function.

� Assume we want to maximize the objective
function f(x1, x2) = 10− 0.6x1 − 0.4x2
with the two decision variables x1 and x2.
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somewhere at x1 → ∞, x2 → ∞, because
it is unconstraint. There are no limits on
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� Let us define a simple linear programming
problem with two decision variables and an
objective function.

� Assume we want to maximize the objective
function f(x1, x2) = 10− 0.6x1 − 0.4x2
with the two decision variables x1 and x2.

� This function would have its optimum
somewhere at x1 → ∞, x2 → ∞, because
it is unconstraint. There are no limits on
x1 and x2, they can become arbitrarily big.

� Usually, the values of variables are limited
in some way. Let’s say that both x1 and
x2 must be positive.

� Furthermore, let’s say that
1.25x1 + 2x2 ≤ 10 should hold.
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� Let us define a simple linear programming
problem with two decision variables and an
objective function.

� Assume we want to maximize the objective
function f(x1, x2) = 10− 0.6x1 − 0.4x2
with the two decision variables x1 and x2.

� This function would have its optimum
somewhere at x1 → ∞, x2 → ∞, because
it is unconstraint. There are no limits on
x1 and x2, they can become arbitrarily big.

� Usually, the values of variables are limited
in some way. Let’s say that both x1 and
x2 must be positive.

� Furthermore, let’s say that
1.25x1 + 2x2 ≤ 10 should hold.

� The search space is now limited by linear
constraints and within these constraints,
the objective function has an optimum
with value 5.2 at x1 = 8 and x2 = 0.
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Example Discussion

� The n decision variables span a n-dimensional space

� The objective function f assigns a value to each point in this space

� The m constraints define limits on which values of the decision
variables are permitted / feasible

� They can also define interactions among the decision varibles

� There are many, many problems in the real-world which fit to this
schema

� There are several highly efficient tools for solving such problems to
optimality

� If we can bring a problem into this schema, we can apply these tools
and get the best possible solution quickly
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Formal Definition

� But what is this “schema”?

� Formally, we have:

minimize f(~x) = ~cT ~x (1)

subject to A~x ≥ ~b (2)

� where ~c is a n-dimensional cost vector, ·

T means transposition, ~x the
n-dimensional vector of decision variables, A a m× n matrix and ~b
another vector used to specify the constraints, and the “≥” is to be
understood as element-wise comparison
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be reduced to F (~x) = −0.6x1 +−0.4x2 since the constant offset
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� It can also be written as (−0.6− 0.4)

(
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vector product

� so we get ~c =

(
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−0.4

)

, i.e.,

F (~x) = ~cT ~x =

(

−0.6
−0.4

)T (

x1
x2

)

(3)

(if we solve the problem using F and get the optimal values for the decision
variables x1 and x2, we can later compute the value of f)
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� Now we need to translate the m = 3 constraints g1 : x2 ≥ 0,
g2 : x1 ≥ 0, and g3 : 1.25x1 + 2x2 ≤ 10 into the form A~x ≥ ~b
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General Algebraic Modeling System (GAMS)

� Such problems can be solved using programs such as CPLEX

� For doing so, we can conveniently express them as models, using, for
instance the General Algebraic Modeling System (GAMS), which you
can download from http://www.gams.com
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GAMS Example: Definition

� The previous example looks like this in GAMS notation:

Listing: example1.gams

Variables f, x1 , x2;

Equations obj , g1 , g2 , g3;

obj .. f =e= 10 - 0.6* x1 - 0.4* x2;

g1 .. x2 =g= 0;

g2 .. x1 =g= 0;

g3 .. 1.25*x1 + 2*x2 =l= 10;

Model example1 / obj , g1 , g2 , g3 /;

solve example1 using LP minimizing f;

� where =e= means “=”, =l= means “≤”, and =g= means “≥”
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GAMS Example: Execution

� We now apply GAMS:

Listing: Shell command to start GAMS

gams example1 .gams -o example1 .lst -logOption 2

� where -o example1.lst tells the system to store the output in file

example1.lst

� and -logOption 2 stores the console/log output in file example1.log

� non-printable characters in example1.lst can be removed via

tr -d '000-011013014016-037' < example1.lst > example1.lst2 in
Linux
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GAMS Example: Log Output (1)

� The log output to the console stored in example1.log is:

Listing: example1.gams, lines 1–14

--- Job example1 .gams Start 11/28/17 10:10:55 24.9.2 r64480 LEX -LEG x86 64 bit/Linux

GAMS 24.9.2 Copyright (C) 1987 -2017 GAMS Development . All rights reserved

Licensee : GAMS Development Corporation , USA G871201 /0000CA -ANY

Free Demo , +1 202 -342 -0180 , support@gams .com , www.gams .com DC0000

--- Starting compilation

--- example1 .gams (12) 2 Mb

--- Starting execution : elapsed 0:00:00.001

--- Generating LP model example1

--- example1 .gams (12) 3 Mb

--- 4 rows 3 columns 7 non -zeroes

--- Executing CPLEX: elapsed 0:00:00.002

IBM ILOG CPLEX 24.9.2 r64480 Released Nov 14, 2017 LEG x86 64 bit/Linux

Cplex 12.7.1.0

Metaheuristic Optimization Thomas Weise 15/36



GAMS Example: Log Output (2)

� The log output to the console stored in example1.log is:

Listing: example1.gams, lines 16–32

Reading data ...

Starting Cplex ...

Space for names approximately 0.00 Mb

Use option 'names no ' to turn use of names off

CPXPARAM_Advance 0

CPXPARAM_Simplex_Display 2

CPXPARAM_Simplex_Limits_Iterations 2000000000

CPXPARAM_TimeLimit 1000

CPXPARAM_Threads 1

CPXPARAM_Parallel 1

CPXPARAM_Tune_TimeLimit 200

Tried aggregator 1 time .

LP Presolve eliminated 4 rows and 3 columns.

All rows and columns eliminated .

Presolve time = 0.00 sec. (0.00 ticks)

LP status (1): optimal

Cplex Time : 0.00 sec (det. 0.00 ticks)

Metaheuristic Optimization Thomas Weise 16/36



GAMS Example: Log Output (3)

� The log output to the console stored in example1.log is:

Listing: example1.gams, lines 34–41

Optimal solution found.

Objective : 5.200000

--- Restarting execution

--- example1 .gams (12) 2 Mb

--- Reading solution for model example1

*** Status: Normal completion

--- Job example1 .gams Stop 11/28/17 10:10:56 elapsed 0:00:00.020

Metaheuristic Optimization Thomas Weise 17/36



GAMS Example: Solution Output (1)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 1–20

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 1

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

C o m p i l a t i o n

1 Variables f, x1 , x2;

2

3 Equations obj , g1 , g2 , g3;

4

5 obj.. f =e= 10 - 0.6* x1 - 0.4* x2;

6 g1.. x2 =g= 0;

7 g2.. x1 =g= 0;

8 g3.. 1.25*x1 + 2*x2 =l= 10;

9

10 Model example1 / obj , g1 , g2 , g3 /;

11

12 solve example1 using LP minimizing f;

COMPILATION TIME = 0.000 SECONDS 2 MB 24.9.2 r64480 LEX -LEG
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GAMS Example: Solution Output (2)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 21–43

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 2

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Equation Listing SOLVE example1 Using LP From line 12

---- obj =E=

obj .. f + 0.6* x1 + 0.4* x2 =E= 10 ; (LHS = 0, INFES = 10 ****)

---- g1 =G=

g1 .. x2 =G= 0 ; (LHS = 0)

---- g2 =G=

g2 .. x1 =G= 0 ; (LHS = 0)

---- g3 =L=

g3 .. 1.25*x1 + 2*x2 =L= 10 ; (LHS = 0)
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GAMS Example: Solution Output (3)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 45–72

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 3

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Column Listing SOLVE example1 Using LP From line 12

---- f

f

(.LO , .L, .UP , .M = -INF , 0, +INF , 0)

1 obj

---- x1

x1

(.LO , .L, .UP , .M = -INF , 0, +INF , 0)

0.6 obj

1 g2

1.25 g3

---- x2

x2

(.LO , .L, .UP , .M = -INF , 0, +INF , 0)

0.4 obj

1 g1

2 g3

Metaheuristic Optimization Thomas Weise 20/36



GAMS Example: Solution Output (4)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 74–89

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 4

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Model Statistics SOLVE example1 Using LP From line 12

MODEL STATISTICS

BLOCKS OF EQUATIONS 4 SINGLE EQUATIONS 4

BLOCKS OF VARIABLES 3 SINGLE VARIABLES 3

NON ZERO ELEMENTS 7

GENERATION TIME = 0.001 SECONDS 3 MB 24.9.2 r64480 LEX -LEG

EXECUTION TIME = 0.001 SECONDS 3 MB 24.9.2 r64480 LEX -LEG
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GAMS Example: Solution Output (5)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 90–116

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 5

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Solution Report SOLVE example1 Using LP From line 12

S O L V E S U M M A R Y

MODEL example1 OBJECTIVE f

TYPE LP DIRECTION MINIMIZE

SOLVER CPLEX FROM LINE 12

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 1 Optimal

**** OBJECTIVE VALUE 5.2000

RESOURCE USAGE , LIMIT 0.003 1000.000

ITERATION COUNT , LIMIT 0 2000000000

IBM ILOG CPLEX 24.9.2 r64480 Released Nov 14, 2017 LEG x86 64 bit/Linux

Cplex 12.7.1.0

Space for names approximately 0.00 Mb

Use option 'names no ' to turn use of names off

LP status (1): optimal

Cplex Time : 0.00 sec (det. 0.00 ticks)

Optimal solution found.

Objective : 5.200000
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GAMS Example: Solution Output (6)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 116–138

LOWER LEVEL UPPER MARGINAL

---- EQU obj 10.0000 10.0000 10.0000 1.0000

---- EQU g1 . . +INF 0.5600

---- EQU g2 . 8.0000 +INF .

---- EQU g3 -INF 10.0000 10.0000 -0.4800

LOWER LEVEL UPPER MARGINAL

---- VAR f -INF 5.2000 +INF .

---- VAR x1 -INF 8.0000 +INF .

---- VAR x2 -INF . +INF .

**** REPORT SUMMARY : 0 NONOPT

0 INFEASIBLE

0 UNBOUNDED

EXECUTION TIME = 0.001 SECONDS 2 MB 24.9.2 r64480 LEX -LEG
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GAMS Example: Solution Output (7)

� The output of the result stored in example1.lst2 is:

Listing: example1.gams, lines 141–53

USER : GAMS Development Corporation , USA G871201 /0000CA -ANY

Free Demo , +1 202 -342 -0180 , support@gams .com , www.gams .com DC0000

**** FILE SUMMARY

Input example1 .gams

GAMS 24.9.2 r64480 Released Nov 14, 2017 LEX -LEG x86 64 bit/Linux

11/28/17 10:10:55 Page 6

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Solution Report SOLVE example1 Using LP From line 12

Output example1 .lst
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A Second Example

� We now discuss a second example, directly taken from the GAMS
tutorial by Rosenthal [1], which in turn based on a transportation
problem defined by Dantzig [2]
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A Second Example

� We now discuss a second example, directly taken from the GAMS
tutorial by Rosenthal [1], which in turn based on a transportation
problem defined by Dantzig [2]

� We know
� there are several factories i that all produce the same product and we

know
� the supplies ai of that product produced at the factory i,
� there are several markets j and we know
� the demands bj for the product at each market j, and
� the costs ci,j of shipping one unit the commodity from each factory i

to each market j.

� For each factory i and market j, we want to find the exact amount
xi,j of the product to ship from i to j such that the overall
transportation cost f is minimized (obviously xi,j ≥ 0 ∀i, j).
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Metaheuristic Optimization Thomas Weise 27/36



A Second Example: Constraints

� The goal is to minimize the overall transportation costs f , which is
the unit transportation cost from each factory i to each market j
times the amount xi,j of the product transported from i to j

minimize f(x) =
∑

∀i,j

ci,j ∗ xi,j

(7)
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A Second Example: Constraints

� The goal is to minimize the overall transportation costs f

� Clearly, if we transport nothing to nowhere, we get cost 0. . . . . . but
there are two constraints limiting our choices

minimize f(x) =
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A Second Example: Constraints

� The goal is to minimize the overall transportation costs f

� There are two constraints limiting our choices:

� We cannot take more supplies from a factory i than the supply ai
available in i, i.e., the sum of all amounts xi,j taken from factory i to
all the markets j cannot exceed ai

minimize f(x) =
∑

∀i,j

ci,j ∗ xi,j (5)

subject to ∀i

(∑
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)
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A Second Example: Constraints

� The goal is to minimize the overall transportation costs f
� There are two constraints limiting our choices:
� We cannot take more supplies from a factory i than the supply ai
available in i

� We must satisfy the demand bj of each market, i.e., the sum of all
amounts xi,j transported from all factories i to j must be at least bj

minimize f(x) =
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A Second Example: Constraints

� The goal is to minimize the overall transportation costs f
� There are two constraints limiting our choices:
� We cannot take more supplies from a factory i than the supply ai
available in i

� We must satisfy the demand bj of each market, i.e., the sum of all
amounts xi,j transported from all factories i to j must be at least bj
(actually, no sane solution would exceed bj , since that would cause
unnecessary cost)

minimize f(x) =
∑

∀i,j

ci,j ∗ xi,j (5)

subject to ∀i

(∑

∀j
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)
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Problem Instance

� The above definition is a general problem, but for each planning task
there will be a concrete scenario.
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Problem Instance

� The above definition is a general problem, but for each planning task
there will be a concrete scenario.

� Let us assume that we have the two plants nanjingPlant and

suzhouPlant with supplies of 350 and 600 units of the product,
respectively.

� There also be three markets, hefeiSuguo , beijingSuning , and

shanghaiTaobao with demands of 325, 300, and 275, respectively.

� The distances in KM between the plants and markets be as follows:

hefeiSuguo beijingSuning shanghaiTaobao

nanjingPlant 169.7 1042.3 303.1

suzhouPlant 384.4 1150.9 95.6

� Transporting one unit of the product for one kilometer costs 2 RMB.
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GAMS Model

Listing: transport.gams

Sets i factories / nanjingPlant , suzhouPlant /

j markets / hefeiSuguo , beijingSuning , shanghaiTaobao / ;

Parameters a(i) supply units available at factory i / nanjingPlant 350

suzhouPlant 600 /

b(j) demand at market j in units / hefeiSuguo 325

beijingSuning 300

shanghaiTaobao 275 / ;

Table d(i,j) distance in kilometers

hefeiSuguo beijingSuning shanghaiTaobao

nanjingPlant 169.7 1042.3 303.1

suzhouPlant 384.4 1150.9 95.6 ;

Scalar tc transport costs in RMB per unit per kilometer /2/ ;

Parameter c(i,j) transport cost in RMB per unit ; c(i,j) = tc * d(i,j);

Variables x(i,j) shipment quantities in units

f total transportation costs ;

Positive Variable x ;

Equations cost , supply(i), demand(j) ;

cost .. f =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing f ;

Display x.l, x.m ;
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Solution

� We can execute and solve the model via
gams transport.gams -o transport.lst -logOption 2
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Solution

� We can execute and solve the model via
gams transport.gams -o transport.lst -logOption 2

� In transport.lst , we find the following solution:

Listing: transport.lst, lines 179–183, 196–199

LOWER LEVEL UPPER MARGINAL

---- VAR f -INF 847995.0000 +INF .

f total transportation costs

hefeiSuguo beijingSu ~ shanghaiT ~

nanjingPlant 325.000 25.000

suzhouPlant 275.000 275.000

� The complete demand of 325 of hefeiSuguo is covered by the nanjingPlant

� The remaining 25 units from the nanjingPlant go to the beijingSuning

� The remaining 275 units required by beijingSuning need to be provided by the suzhouPlant

� The suzhouPlant also supplies shanghaiTaobao with its required 275 units

� All in all, this incurs a transportation cost of 847’995 RMB

Metaheuristic Optimization Thomas Weise 30/36



Section Outline

1 Introduction

2 A First Example using GAMS

3 A Second Example using GAMS

4 Summary

Metaheuristic Optimization Thomas Weise 31/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

� Formulating a problem as Linear Programming task can often be easy,
but in other situations it may also be hard and lead to many
constraints

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

� Formulating a problem as Linear Programming task can often be easy,
but in other situations it may also be hard and lead to many
constraints

� While GAMS provides a nice modeling environment, metaheuristics
are often implemented by hand

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

� Formulating a problem as Linear Programming task can often be easy,
but in other situations it may also be hard and lead to many
constraints

� While GAMS provides a nice modeling environment, metaheuristics
are often implemented by hand

� Metaheuristics can easily be developed to address a much wider range
of problems, although tools like GAMS also support quadratic and
nonlinear-programming methods

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

� Formulating a problem as Linear Programming task can often be easy,
but in other situations it may also be hard and lead to many
constraints

� While GAMS provides a nice modeling environment, metaheuristics
are often implemented by hand

� Metaheuristics can easily be developed to address a much wider range
of problems, although tools like GAMS also support quadratic and
nonlinear-programming methods

� Sometimes, constraints or objectives which are not linear are
represented as linear functions so that Linear Programming can be
used.

Metaheuristic Optimization Thomas Weise 32/36



Summary

� Linear Programming technologies are highly advanced and there is
rich software and modelling support

� As a result, they are often used in many industrial scenarios

� Formulating a problem as Linear Programming task can often be easy,
but in other situations it may also be hard and lead to many
constraints

� While GAMS provides a nice modeling environment, metaheuristics
are often implemented by hand

� Metaheuristics can easily be developed to address a much wider range
of problems, although tools like GAMS also support quadratic and
nonlinear-programming methods

� Sometimes, constraints or objectives which are not linear are
represented as linear functions so that Linear Programming can be
used. The optimal solutions for such mis-represented problems are not
necessarily optimal solutions of the actual optimization problem. . .

� It is important to choose the right tool for the right task.
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as CPLEX
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GAMS
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� optimal only if problem is really a linear programming
problem: sometimes, problems need to be simplified to
be linear programming tasks, but the optimal solution of
a simplified problem may not be the optimal solution of
the real problem

� translation of problem definition to LP not always trivial
� not ideal for problems where objective and constraints
are not linear

� constraints in Linear Programming can be part of the
representation in metaheuristics

Metaheuristics

� applicable to virtually arbitrary problem definitions
� prototypes can be developed quickly from problem defi-
nition

� best approach for many classical problems (Max-SAT,
TSP, . . . )

� can deal with multiple objectives
� can deal with uncertainties and dynamic problems
� can deal continuous/numerical problem with real-valued
decision variables over convex objective functions

� can solve problems efficiently where Linear Programming
does not work well

� we can quickly built prototypes which deliver acceptable
solution quality

� constraints are often natural part of the problem repre-
sentation (e.g., for TSPs)
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be linear programming tasks, but the optimal solution of
a simplified problem may not be the optimal solution of
the real problem

� translation of problem definition to LP not always trivial
� not ideal for problems where objective and constraints
are not linear

� constraints in Linear Programming can be part of the
representation in metaheuristics

Metaheuristics

� applicable to virtually arbitrary problem definitions
� prototypes can be developed quickly from problem defi-
nition

� best approach for many classical problems (Max-SAT,
TSP, . . . )

� can deal with multiple objectives
� can deal with uncertainties and dynamic problems
� can deal continuous/numerical problem with real-valued
decision variables over convex objective functions

� can solve problems efficiently where Linear Programming
does not work well

� we can quickly built prototypes which deliver acceptable
solution quality

� constraints are often natural part of the problem repre-
sentation (e.g., for TSPs)

� less well-known in the OR community, less respected
� usually no guarantee for optimal results
� vast majority of available approaches: sometimes hard to
decide which one to apply (suggestion: use local search
first, then develop Memetic Algorithm, this will usually
be the right choice)

� much research work rather dodgy
� for problems where objective and constraint are linear,
we should use Linear Programming

� few good implementations, more “do it yourself”
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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