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❼ Choice of representation has major impact on quality of results [2–6]
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❼ Holistic Approach

❼ Sensor Nodes

❼ Middleware
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❼ in.west: real-world vehicle routing
problems of logistics company

❼ Orders/Containers/Trucks/
Trains/Routes for. . .

❼ Multiple depots and pickup and
delivery locations

❼ Vehicles (trucks and trains) have
(different) capacity limits

❼ Time windows for pickup and
delivery

❼ Constraints, laws, time limit: 1 day
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VRP: Representation

❼ What is a solution/plan x for such a scenario?

❼ Use solution space X also as search space G
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VRP: Representation (Operators)

❼ Mutation 1: Add new tour for undelivered freight to plan
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VRP: Representation (Operators)
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VRP: Representation (Operators)
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VRP: Representation (Operators)

❼ Crossover 1: Join compatible tours
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VRP: Solving with EA

❼ Optimization method: Evolutionary Algorithm [13]
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VRP: Solving with EA

❼ Initialization: random but valid plans that fulfill one randomly chosen
task each
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VRP: Solving with EA

❼ Transportation Plan = phenotype x = genotype g ⇒ no
genotype-phenotype mapping necessary
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❼ Pareto Ranking as fitness assignment (see Lesson 15: Multi-Objective
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VRP: Solving with EA

❼ 16 mutation + 3 crossover constellation-specific operators

❼ Each operator preserves validity; operators randomly chosen for
application
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VRP: Solving with EA

❼ Cycle starts again
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❼ 4th quarter 2007

❼ ≈ 800 swap bodies

❼ ≈ 10 depots

❼ ≈ 800 pickup and
delivery locations

❼ ≈ 160 – 3000 orders
per day

❼ ≈ 75% fill rate, lean
flow of goods
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❼ Sat, 2007-11-03

❼ 1016 orders

❼ original: 82 013km

❼ A: assign all orders

❼ B: improve solutions

❼ 100%: 79 463km

❼ 99%: 74 435km
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