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o Genotype-phenotype mapping (gpm) translate from G to X
¢ Solution space X (genome, contains phenotypes=candiate solutions)
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e f: rates quality of candiate solutions
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e f: rates quality of candiate solutions

e Search Space G, genotype-phenotype mapping gpm, and X X
together are called the Representation
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e Search Space G, genotype-phenotype mapping gpm, and X X
together are called the Representation

e Genotype-phenotype mapping becomes identity mapping if G = X
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e Search Space G, genotype-phenotype mapping gpm, and X X
together are called the Representation

e Genotype-phenotype mapping becomes identity mapping if G = X
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¢ Incorporation of domain-specific knowledge (into EA) essential for
good performance
e But where to include it?

“intelligent” /domain-specific/memetic search operators?
domain-specific search space (+operators)? — Representation
simple search space + “intelligent” GPM? = Representation
domain-specific algorithm?

¢ Choice of representation has major impact on quality of results
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e What is a solution/plan x for such a scenario?
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e What is a solution/plan x for such a scenario?

e Solution space X: set of all such solutions
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VRP: Representation

e What is a solution/plan x for such a scenario?

e Search spaces such as integer or bit strings not convenient
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e What is a solution/plan x for such a scenario?

e Search spaces such as integer or bit strings not convenient: encoding,
decoding, meaningful modification too complex
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VRP: Representation x\,

e What is a solution/plan x for such a scenario?

e Use solution space X also as search space G
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e Mutation 1: Add new tour for undelivered freight to plan




e Mutation 2: Integrate delivery in existing tour




e Mutation 3: Freight exchange / Truck-meets-Truck




e Mutation 4: Utilize trains with fixed schedules




e Crossover 1: Join compatible tours




o Optimization method: Evolutionary Algorithm [**
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e Transportation Plan = phenotype x = genotype g = no
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e Pareto Ranking as fitness assignment (see Lesson 15: Multi-Objective
Optimization)
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e Pareto Ranking as fitness assignment (see Lesson 15: Multi-Objective
Optimization)

e Sharing in objective space: increase diversity [**

Evaluation

values

obtain the phenotypes EVOI utionary
Algorithm

Selection
select the fittest indi-
iduals for reproduction

from the matmg plnd] by

crossover and mutation




e Selection: tournament selection
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e 16 mutation + 3 crossover constellation-specific operators
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e 16 mutation + 3 crossover constellation-specific operators

e Each operator preserves validity; operators randomly chosen for
application
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e Cycle starts again
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e Domain-specific knowledge should be incorporated as much as possible
e Scalability is an important issue!
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