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make large improvements

� This is a fundamental issue inside an optimization process

� But from the No Free Lunch Theorem [1], we can deduce another
fundamental dichotomy:

� specialized algorithms are very good for a specific problem, but useless
for other problems

� general algorithms are good for a general class of problems, but not as
good as specialized ones for their specific area
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� Local search algorithms like hill climbers are good at refining an
existing solution and quickly tracing down to the bottom of a local
optimum

� It is relatively easy to adapt them to a special, very narrow problem,
by incorporating complex data structures and operators [2]

� How good are general global optimization algorithms compared to
specialized local search?
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Example: Traveling Salesman Problem

� Let’s look on a specific problem class: the TSP [3–6]

� A salesman wants to visit n cities in the shortest possible time. No
city should be visited twice and that he wants arrive back at the
origin by the end of the tour.

Definition (Traveling Salesman Problem)

The goal of the Traveling Salesman Problem (TSP) is to find a cyclic path
of minimum total weight which visits all vertices of a weighted graph. [3–6]
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Example: Traveling Salesman Problem

� Problem Space: X = Π{Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

� Objective Function: Minimize f(x) =
∑

n

i=1
dist(x[i], x[(i + 1)%n])
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� How good are general global optimization algorithms compared to
specialized local search?

� We apply several algorithms 30 times to each of the 110 symmetric
problems from TSPLib [7–10]
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Global vs. Local Opt. on the TSP

� We can design specialized local search methods for this problem that
can significantly beat global optimization algorithms!

� This follows from the No Free Lunch Theorem [1]

� Of course, we need to understand the problem well, so this is not
always possible.

� Does this mean global search is not good for such problems?
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Is global optimization useful?

� Does this mean global search is not good for such problems?

� No.

� Global optimization methods will find the optima, but they are (too)
slow

� Local search methods are fast, but may get trapped in local optima

� Let’s combine the global search ability of EAs, ACO, and EDAs with
the speed of local search!

� Idea: Always after creating a solution inside the global optimization
method, refine it with local search.

� This concept is called hybridization

� Hybridized EAs are called Memetic Algorithm (MA) [24–30]
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� Then we locate the points where new solutions are created (e.g.,
mutation, crossover)

� We take these new solutions and use them as starting point for a local
search, e.g., after each crossover in an EA, we perform a local search

� The local search has its own termination criteria, e.g., no
improvement for at least 100 steps, or it just scanes one
neighborhood completely

� The result of the local search then enters the global search, e.g.,
crossover =⇒ local search =⇒ offspring population

� The rest of global search algorithm stays exactly the same, e.g., an
EA would then perform selection and apply crossover to the offsprings
(and then a local search to each offspring)
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Summary

� EAs, EDAs, ACO, PSO, etc. are general algorithms that can be
applied without much understanding of the problem

� They have a good chance to find the global optimum, but they are
often slow

� Local search methods are specialized and require a good
understanding of the problem

� Local search methods are fast, but may get trapped in a local
optimum

� We can hybridize the algorithms: After creating solutions in the main
loop of a global search method, we refine them with local searches

� We obtain Memetic Algorithms, which are fast and good in finding
the global optima
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