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� Estimation of Distribution Algorithms (EDAs) are similar, but also
different:

� EAs try to evolve a solution
� EDAs build a model of what a perfect solution should look like
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� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n
� M [i] = estimated proability that the bit at locus i of a globally optimal

genotype g
⋆⋆ should be 0

� Initialization: M [i] = 0.5∀i ∈ 1 . . . n

� Truncation selection: select mps = 1 individuals and build temporary
model MT according to UMDA

� Learning rate λ determines influence of the old model M ′ and
temporary model MT on new model: M = (1− λ)M ′ + λMT
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� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps

M ←− buildModelCompGA(g1, g2,M
′, ps)

In: M ’ – the old model; Out: M – the new model

begin

M ←−M ′

if g2 is better than g1 then

exchange g1 and g2 // g1 is now always better than g2

for i←− 1 up to n do

if g1[i] 6= g2[i] then

if g1[i] = 0 then M [i]←−M ′[i]+ 1
ps

else M [i]←−M ′[i]− 1
ps
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� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps
� In other words:

� Each set of genotypes has an influence of 1/ps on the model M
� Model is modified “into the direction of” the better genotype g1
� If a bit in g1 is 1, the zero-probability of that gene in the model is

reduced, otherwise it is increased

� Convergence: Achieved when M [i] ∈ {0, 1}∀i ∈ 1 . . . n
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truncation selection
5 Compute the mean mean(g) of the selected mps genotype vectors
6 M.~µ = (1 − λ)M ′.~µ+ λmean(g) (where M ′ is the old model)
7 M.~σ = σred ∗M

′.~σ (where σred ∈ [0, 1) reduces the standard
deviation step by step)
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� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

� Multi-variate EDAs: represent gene interaction/epistasis information
in model

� Real-valued EDA: use covariance matrix

� Bit-String EDAs: Model = Bayesian Networks

� Multi-variate EDAs are more complicated but can deal with epistasis
while univariate ones will produce bad results in these cases
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� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

� Model: M =Probabilistic Prototype Tree (PPT)

� Each node has maximum arity1 and holds a vector with the
probability for each possible child type

� The PPT is samples top-down according to the node probabilities

� Probabilities updated in a rather complex way towards the best tree
found

1number of children
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� Model is sampled in each iteration

� After selection, model is updated

� Easy to implement for both bit strings and real vectors

� Univariate EDAs: simple

� Multivariate EDAs: more complicated, but can work better if epistasis
is present

� Anything which can be evolved with an EA can be evolved with an
EDA (and vice versa)
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