
Metaheuristic Optimization
19. Estimation of Distribution Algorithms

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 2/22

w
e
b
s
it
e



Section Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 3/22



Introduction

� EAs, GP, ES, and GAs are based on principles gleaned from natural
evolution, such as survival of the fittest and reproduction

Metaheuristic Optimization Thomas Weise 4/22



Introduction

� EAs, GP, ES, and GAs are based on principles gleaned from natural
evolution, such as survival of the fittest and reproduction

� Estimation of Distribution Algorithms (EDAs) are similar, but also
different

Metaheuristic Optimization Thomas Weise 4/22



Introduction

� EAs, GP, ES, and GAs are based on principles gleaned from natural
evolution, such as survival of the fittest and reproduction

� Estimation of Distribution Algorithms (EDAs) are similar, but also
different:

� EAs try to evolve a solution

Metaheuristic Optimization Thomas Weise 4/22



Introduction

� EAs, GP, ES, and GAs are based on principles gleaned from natural
evolution, such as survival of the fittest and reproduction

� Estimation of Distribution Algorithms (EDAs) are similar, but also
different:

� EAs try to evolve a solution
� EDAs build a model of what a perfect solution should look like

Metaheuristic Optimization Thomas Weise 4/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Idea

� Information in a population can be represented by statistical model

Metaheuristic Optimization Thomas Weise 5/22



Algorithm

1 Create a statistical model of possible solutions

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)
2.2 perform the genotype-phenotype mapping

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)
2.2 perform the genotype-phenotype mapping
2.3 compute the objective value

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)
2.2 perform the genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals from the ps new candidate solutions

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)
2.2 perform the genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals from the ps new candidate solutions

4 Update the model based on the selected individuals

Metaheuristic Optimization Thomas Weise 6/22



Algorithm

1 Create a statistical model of possible solutions

2 ps times do:

2.1 sample the model (create a new point in search space)
2.2 perform the genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals from the ps new candidate solutions

4 Update the model based on the selected individuals

5 If termination criterion not met, go back to 2

Metaheuristic Optimization Thomas Weise 6/22



Section Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 7/22



UMDA

� Univariate Marginal Distribution Algorithm (UMDA) [1, 2]

Metaheuristic Optimization Thomas Weise 8/22



UMDA

� Univariate Marginal Distribution Algorithm (UMDA) [1, 2]

� Search space: Fixed-Length Bit Strings of length n

Metaheuristic Optimization Thomas Weise 8/22



UMDA

� Univariate Marginal Distribution Algorithm (UMDA) [1, 2]

� Search space: Fixed-Length Bit Strings of length n

� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n

Metaheuristic Optimization Thomas Weise 8/22



UMDA

� Univariate Marginal Distribution Algorithm (UMDA) [1, 2]

� Search space: Fixed-Length Bit Strings of length n

� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n

� M [i] = estimated proability that the bit at locus i of a globally
optimal genotype g

⋆⋆ should be 0

Metaheuristic Optimization Thomas Weise 8/22



UMDA

� Univariate Marginal Distribution Algorithm (UMDA) [1, 2]

� Search space: Fixed-Length Bit Strings of length n

� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n

� M [i] = estimated proability that the bit at locus i of a globally
optimal genotype g

⋆⋆ should be 0

� Initialization: M [i] = 0.5∀i ∈ 1 . . . n

Metaheuristic Optimization Thomas Weise 8/22



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



Metaheuristic Optimization Thomas Weise 9/22

1 Create a statistical model
of possible solutions
(UMDA: (0.5, · · · , 0.5))

2 ps times do:
2.1 sample the model (create a

new genotype)
2.2 perform the

genotype-phenotype mapping
2.3 compute the objective value

3 Select mps individuals
from the ps new
candidate solutions

4 Update the model based
on the selected individuals

5 If termination criterion
not met, go back to 2



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n
� M [i] = estimated proability that the bit at locus i of a globally optimal

genotype g
⋆⋆ should be 0

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n
� M [i] = estimated proability that the bit at locus i of a globally optimal

genotype g
⋆⋆ should be 0

� Initialization: M [i] = 0.5∀i ∈ 1 . . . n

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n
� M [i] = estimated proability that the bit at locus i of a globally optimal

genotype g
⋆⋆ should be 0

� Initialization: M [i] = 0.5∀i ∈ 1 . . . n

� Truncation selection: select mps = 1 individuals and build temporary
model MT according to UMDA

Metaheuristic Optimization Thomas Weise 10/22



PBIL

� Population-Based Incremental Learning (PBIL) [3–5]

� Similar to UMDA:
� Search space: Fixed-Length Bit Strings of length n
� Model: real vector M of length n with M [i] ∈ [0, 1]∀i ∈ 1 . . . n
� M [i] = estimated proability that the bit at locus i of a globally optimal

genotype g
⋆⋆ should be 0

� Initialization: M [i] = 0.5∀i ∈ 1 . . . n

� Truncation selection: select mps = 1 individuals and build temporary
model MT according to UMDA

� Learning rate λ determines influence of the old model M ′ and
temporary model MT on new model: M = (1− λ)M ′ + λMT

Metaheuristic Optimization Thomas Weise 10/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]

� Model M similar to UDMA (n-dimensional bit strings)

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps

M ←− buildModelCompGA(g1, g2,M
′, ps)

In: M ’ – the old model; Out: M – the new model

begin

M ←−M ′

if g2 is better than g1 then

exchange g1 and g2 // g1 is now always better than g2

for i←− 1 up to n do

if g1[i] 6= g2[i] then

if g1[i] = 0 then M [i]←−M ′[i]+ 1
ps

else M [i]←−M ′[i]− 1
ps

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps
� In other words:

� Each set of genotypes has an influence of 1/ps on the model M

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps
� In other words:

� Each set of genotypes has an influence of 1/ps on the model M
� Model is modified “into the direction of” the better genotype g1

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps
� In other words:

� Each set of genotypes has an influence of 1/ps on the model M
� Model is modified “into the direction of” the better genotype g1
� If a bit in g1 is 1, the zero-probability of that gene in the model is

reduced, otherwise it is increased

Metaheuristic Optimization Thomas Weise 11/22



cGA

� Compact Genetic Algorithm (cGA) [6, 7]:
only 2n bits + n doubles = 66n bits memory!

� Model M similar to UDMA (n-dimensional bit strings)
� In each generation, two genotypes g1 and g2 are created and
evaluated.

� Virtual population size ps
� In other words:

� Each set of genotypes has an influence of 1/ps on the model M
� Model is modified “into the direction of” the better genotype g1
� If a bit in g1 is 1, the zero-probability of that gene in the model is

reduced, otherwise it is increased

� Convergence: Achieved when M [i] ∈ {0, 1}∀i ∈ 1 . . . n

Metaheuristic Optimization Thomas Weise 11/22



SHCLVND

� Stochastic Hill Climbing with Learning by Vectors of Normal
Distribution (SHCLVND) [8]

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� Stochastic Hill Climbing with Learning by Vectors of Normal
Distribution (SHCLVND) [8]

� PBIL version for real-vector based search spaces G =
[

G,G
]n

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� Stochastic Hill Climbing with Learning by Vectors of Normal
Distribution (SHCLVND) [8]

� PBIL version for real-vector based search spaces G =
[

G,G
]n

� Model M consists of n-dimensional mean vector M.~µ and
n-dimensional standard deviation vector M.~σ

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� Stochastic Hill Climbing with Learning by Vectors of Normal
Distribution (SHCLVND) [8]

� PBIL version for real-vector based search spaces G =
[

G,G
]n

� Model M consists of n-dimensional mean vector M.~µ and
n-dimensional standard deviation vector M.~σ

� The algorithm works as follows

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� Stochastic Hill Climbing with Learning by Vectors of Normal
Distribution (SHCLVND) [8]

� PBIL version for real-vector based search spaces G =
[

G,G
]n

� Model M consists of n-dimensional mean vector M.~µ and
n-dimensional standard deviation vector M.~σ

� The algorithm works as follows:
1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

3 Sample genotypes g via normal distribution: g[i] = N(M.~µ[i],M.~σ[i])

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

3 Sample genotypes g via normal distribution: g[i] = N(M.~µ[i],M.~σ[i])
4 Create ps genotypes in each generation, select mps genotypes via

truncation selection

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

3 Sample genotypes g via normal distribution: g[i] = N(M.~µ[i],M.~σ[i])
4 Create ps genotypes in each generation, select mps genotypes via

truncation selection
5 Compute the mean mean(g) of the selected mps genotype vectors

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

3 Sample genotypes g via normal distribution: g[i] = N(M.~µ[i],M.~σ[i])
4 Create ps genotypes in each generation, select mps genotypes via

truncation selection
5 Compute the mean mean(g) of the selected mps genotype vectors
6 M.~µ = (1 − λ)M ′.~µ+ λmean(g) (where M ′ is the old model)

Metaheuristic Optimization Thomas Weise 12/22



SHCLVND

� The algorithm works as follows:

1 M.~µ is initialized as center of search space, i.e.,

M.~µ = (G+G

2
, G+G

2
, · · · , G+G

2
)T

2 M.~σ is initialized to large values to emulate uniform distribution:

M.~σ = (G−G

2
, G−G

2
, · · · , G−G

2
)T

3 Sample genotypes g via normal distribution: g[i] = N(M.~µ[i],M.~σ[i])
4 Create ps genotypes in each generation, select mps genotypes via

truncation selection
5 Compute the mean mean(g) of the selected mps genotype vectors
6 M.~µ = (1 − λ)M ′.~µ+ λmean(g) (where M ′ is the old model)
7 M.~σ = σred ∗M

′.~σ (where σred ∈ [0, 1) reduces the standard
deviation step by step)

Metaheuristic Optimization Thomas Weise 12/22



Section Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 13/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

Metaheuristic Optimization Thomas Weise 14/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

Metaheuristic Optimization Thomas Weise 14/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

� Multi-variate EDAs: represent gene interaction/epistasis information
in model

Metaheuristic Optimization Thomas Weise 14/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

� Multi-variate EDAs: represent gene interaction/epistasis information
in model

� Real-valued EDA: use covariance matrix

Metaheuristic Optimization Thomas Weise 14/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

� Multi-variate EDAs: represent gene interaction/epistasis information
in model

� Real-valued EDA: use covariance matrix

� Bit-String EDAs: Model = Bayesian Networks

Metaheuristic Optimization Thomas Weise 14/22



Univariate EDAs vs. Multivariate EDAs

� So far, all EDAs we had used n-dimensional univariate distributions

� Univariat ≡ Implicit assumption: variables are independent from each
other

� Multi-variate EDAs: represent gene interaction/epistasis information
in model

� Real-valued EDA: use covariance matrix

� Bit-String EDAs: Model = Bayesian Networks

� Multi-variate EDAs are more complicated but can deal with epistasis
while univariate ones will produce bad results in these cases

Metaheuristic Optimization Thomas Weise 14/22



Section Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 15/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

Metaheuristic Optimization Thomas Weise 16/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

Metaheuristic Optimization Thomas Weise 16/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

� Model: M =Probabilistic Prototype Tree (PPT)

Metaheuristic Optimization Thomas Weise 16/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

� Model: M =Probabilistic Prototype Tree (PPT)

� Each node has maximum arity1 and holds a vector with the
probability for each possible child type

1number of children
Metaheuristic Optimization Thomas Weise 16/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

� Model: M =Probabilistic Prototype Tree (PPT)

� Each node has maximum arity1 and holds a vector with the
probability for each possible child type

� The PPT is samples top-down according to the node probabilities

1number of children
Metaheuristic Optimization Thomas Weise 16/22



PIPE

� Probabilistic Incremental Program Evolution (PIPE) [9, 10]

� EDA for trees, i.e., same search space as tree-based Genetic
Programming [11]

� Model: M =Probabilistic Prototype Tree (PPT)

� Each node has maximum arity1 and holds a vector with the
probability for each possible child type

� The PPT is samples top-down according to the node probabilities

� Probabilities updated in a rather complex way towards the best tree
found

1number of children
Metaheuristic Optimization Thomas Weise 16/22



Section Outline

1 Introduction

2 Univariate EDAs

3 Multivariate EDAs

4 Tree-based EDA

5 Summary

Metaheuristic Optimization Thomas Weise 17/22



Summary

� EDAs build a model of the perfect solution

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

� After selection, model is updated

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

� After selection, model is updated

� Easy to implement for both bit strings and real vectors

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

� After selection, model is updated

� Easy to implement for both bit strings and real vectors

� Univariate EDAs: simple

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

� After selection, model is updated

� Easy to implement for both bit strings and real vectors

� Univariate EDAs: simple

� Multivariate EDAs: more complicated, but can work better if epistasis
is present

Metaheuristic Optimization Thomas Weise 18/22



Summary

� EDAs build a model of the perfect solution

� Model is sampled in each iteration

� After selection, model is updated

� Easy to implement for both bit strings and real vectors

� Univariate EDAs: simple

� Multivariate EDAs: more complicated, but can work better if epistasis
is present

� Anything which can be evolved with an EA can be evolved with an
EDA (and vice versa)

Metaheuristic Optimization Thomas Weise 18/22



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 19/22

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristic Optimization Thomas Weise 20/22



Bibliography I

1. Heinz Mühlenbein and Gerhard Paaß. From recombination of genes to the estimation of distributions i. binary parameters.
In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN IV), volume 1141/1996 of Lecture Notes in
Computer Science (LNCS), pages 178–187, Berlin, Germany, September 22–24, 1996. Berlin, Germany: Springer-Verlag
GmbH. doi: 10.1007/3-540-61723-X 982. URL ftp://ftp.ais.fraunhofer.de/pub/as/ga/gmd_as_ga-96_04.ps .

2. Heinz Mühlenbein. The equation for response to selection and its use for prediction. Evolutionary Computation, 5(3):
303–346, Fall 1997. doi: 10.1162/evco.1997.5.3.303. URL http://citeseer.ist.psu.edu/old/730919.html .

3. Shumeet Baluja. Population-based incremental learning – a method for integrating genetic search based function
optimization and competitive learning. Technical Report CMU-CS-94-163, Pittsburgh, PA, USA: Carnegy Mellon University
(CMU), School of Computer Science, Computer Science Department, June 2, 1994. URL
http://www.ri.cmu.edu/pub_files/pub1/baluja_shumeet_1994_2/baluja_shumeet_1994_2.pdf .

4. Shumeet Baluja and Richard A. Caruana. Removing the genetics from the standard genetic algorithm. In Armand Prieditis
and Stuart J. Russell, editors, Proceedings of the Twelfth International Conference on Machine Learning (ICML’95), pages
38–46, Tahoe City, CA, USA, July 9–12, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.cs.cornell.edu/~caruana/ml95.ps .

5. Shumeet Baluja. An empirical comparison of seven iterative and evolutionary function optimization heuristics. Technical
Report CMU-CS-95-193, Pittsburgh, PA, USA: Carnegy Mellon University (CMU), School of Computer Science, Computer
Science Department, September 1, 1995. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1108 .

6. Georges Raif Harik, Fernando G. Lobo, and David Edward Goldberg. The compact genetic algorithm. IEEE Transactions
on Evolutionary Computation (IEEE-EC), 3(4):287–297, November 1999. doi: 10.1109/4235.797971.

7. Georges Raif Harik, Fernando G. Lobo, and David Edward Goldberg. The compact genetic algorithm. IlliGAL Report
97006, Urbana-Champaign, IL, USA: University of Illinois at Urbana-Champaign, Department of Computer Science,
Department of General Engineering, Illinois Genetic Algorithms Laboratory (IlliGAL), August 1997. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.906 .

8. Stefan Rudlof and Mario Köppen. Stochastic hill climbing with learning by vectors of normal distribution. In Takeshi
Furuhashi, editor, First Online Workshop on Soft Computing (WSC1), pages 60–70, Nagoya, Aichi, Japan: Nagoya
University, August 19–30, 1996. URL http://eprints.kfupm.edu.sa/66958/1/66958.pdf . Second corrected and
enhanced version, 1997-09-03.

Metaheuristic Optimization Thomas Weise 21/22

ftp://ftp.ais.fraunhofer.de/pub/as/ga/gmd_as_ga-96_04.ps
http://citeseer.ist.psu.edu/old/730919.html
http://www.ri.cmu.edu/pub_files/pub1/baluja_shumeet_1994_2/baluja_shumeet_1994_2.pdf
http://www.cs.cornell.edu/~caruana/ml95.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1108
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.906
http://eprints.kfupm.edu.sa/66958/1/66958.pdf


Bibliography II

9. Rafa l Sa lustowicz and Jürgen Schmidhuber. Probabilistic incremental program evolution: Stochastic search through
program space. In Maarten van Someren and Gerhard Widmer, editors, 9th European Conference on Machine Learning
(ECML’97), volume 1224/1997 of Lecture Notes in Computer Science (LNCS), pages 213–220, Prague, Czech Republic,
April 23–25, 1997. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-62858-4 86. URL
ftp://ftp.idsia.ch/pub/juergen/ECML_PIPE.ps.gz .

10. Rafa l Sa lustowicz and Jürgen Schmidhuber. Probabilistic incremental program evolution: Stochastic search through
program space. Evolutionary Computation, 5(2):123–141, February 1997. doi: 10.1162/evco.1997.5.2.123.

11. John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Bradford Books.
Cambridge, MA, USA: MIT Press, December 1992. ISBN 0-262-11170-5 and 978-0-262-11170-6. URL
http://books.google.de/books?id=Bhtxo60BV0EC . 1992 first edition, 1993 second edition.

Metaheuristic Optimization Thomas Weise 22/22

ftp://ftp.idsia.ch/pub/juergen/ECML_PIPE.ps.gz
http://books.google.de/books?id=Bhtxo60BV0EC

	Outline
	Introduction
	Section Outline
	Introduction
	Idea
	Algorithm

	Univariate EDAs
	Section Outline
	UMDA
	
	PBIL
	cGA
	SHCLVND

	Multivariate EDAs
	Section Outline
	Univariate EDAs vs. Multivariate EDAs

	Tree-based EDA
	Section Outline
	PIPE

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

