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ˆ Research by Deneubourg et al.[1{3] on real ants and the simulations by
Stickland et al.[4]

1 When looking for food, ants move from one location to anotherand
2 lay down pheromone:stigmergy= communication by modifying the

environment.
3 Paths with more pheromone on them are more likely to be followed
4 These are often the shortest paths
5 Many combinatorial problems can be considered as �nding theshortest

path on a graph. Example: Traveling Salesman Problem

ˆ Dorigo et al.[5] have the idea to use a simulation of the way ants form
a path in order to solve optimization problems which can be
represented as graphs { Ant Colony Optimization (ACO)
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Ant Path Finding
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Ant Path Finding

ˆ when it turns back, there is pheromone on both paths { but more on
the red one
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Ant Path Finding

ˆ while the one on the blue path evaporates
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Ant Path Finding

ˆ until only the short path has pheromone. . .
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ˆ It is basically amodel-based search algorithm[6] (similar to EDAs, see
Lesson 19:Estimation of Distribution Algorithms):

ˆ It has a pheromone model� assigning a pheromone value to each edge
i j

ˆ � is sampled, i.e., used to generate newps paths (1 per ant) through
the graphG

ˆ based on the objective value of the resulting paths,� is updated
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ACO on a Graph I

ˆ ACO has three main components:
ˆ (simulated)ants which move through a graph along edges. The path

such an ant took represents a solution.
ˆ Ants leavepheromones� on the edges they travel along. This

pheromone helps future ants to decide which path to take. Pheromone
disappears over time (evaporation).

ˆ Knowledge about the problem may be incorporated as aheuristic�
which tells the ant how interesting a given edge is. Togetherwith the
pheromones,� helps the ant to decide where to go. They don't change
over time.

Metaheuristic Optimization Thomas Weise 8/19
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ACO on a Graph II

ˆ Let us assume that all nodesi and j 2 V are connected with edges,
i.e., we have a complete graph topology

ˆ An ant located in nodei in ACO chooses the next nodej where it
will go according to

1 the distance betweeni and j , and
2 the amount of pheromone on the edge connectingi and j

pi ;j =
(� i ;j )

� � (� i ;j )
�

P
8k (� i ;k )� � (� i ;k )

(1)

pi ;j probability of an ant to go
to j if at location i

� i ;j amount of pheromone on
the edge connectingi and
j

� , � weight parameters � i ;j visibility of node j from
i : inversely proportional to
distance betweenj and i
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ˆ At the end of each algorithm round, \pheromone" is dispersed and
the trails are updated (� i ;j stays constant)

� i ;j = (1 � � )� i ;j + � � i ;j (2)

ˆ � is the evaporation coe�cient (fraction of pheromone disappearing
into thin air)

ˆ � � i ;j is the amount of new pheromone dispersed

ˆ the amount � � i ;j usually depends on the quality of the paths the
edge(i ; j ) was part of
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Example: Traveling Salesman Problem

A salesman wants to visitn cities in the shortest possible time. No city
should be visited twice and he wants arrive back at the origin by the end
of the tour.

ˆ Solution Space: X = � f Beijing; Chengdu; Guangzhou; Hefei; Shanghaig
ˆ Objective Function: Minimizef (x) =

P 4
i =0 dist (x[i ]; x[i + 1] )+

dist (x[4]; x[0])
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Example: Traveling Salesman Problem (Idea)

ˆ A TSP is a graph problem by default

ˆ We look for a path that visits alln nodes in a graph (the return back
to the start can be added automatically)

ˆ Let's apply ACO!
ˆ Basic Idea:

ˆ the cities are connected with edges
ˆ we haveps ants
ˆ ant k moves from one city to one of the cities it has not seen yet based

on a given probability
ˆ this probability depends on thepheromoneson the edges and the

distancesto the cities
ˆ after all ants have completed their tour, pheromones are updated
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where � i ; j is the pheromone and� i ; j = 1
dist ( i ; j ) , and � , � are weight

parameters
3 Add the trip back to the starting node=) We get tourxk

2 Calculate pheromone amount� � i ;j to be dispersed on the edgei j
3 Update pheromone value� i ;j according to

� i ;j = (1 � � )� i ;j + � � i ;j (3)

where the evaporation coe�cient� 2 [0; 1] lets old pheromone
disappear
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1 For each antk of the ps ants:

1 Place antk at a randomly chosen city/nodei
2 For n � 1 times:

1 Choose next cityj from the set of cities not yet visited by the ant
(where i is its current location)

2 j has probabilitypi ; j to be chosen as next citypi ; j / (� i ; j ) � � (� i ; j ) �

where � i ; j is the pheromone and� i ; j = 1
dist ( i ; j ) , and � , � are weight

parameters
3 Add the trip back to the starting node=) We get tourxk

2 Calculate pheromone amount� � i ;j to be dispersed on the edgei j
3 Update pheromone value� i ;j

return the best tourx?? discovered.

New Perspective: Path through Graph, Permutation =) ACO is good
for permutation-based problems
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ˆ One pheromone value� i ;j for each edgei ; j in the graph

ˆ If there aren nodes, there may ben(n� 1)
2 undirected orn(n � 1)

directed edges

ˆ Pheromones� usually maintained in a matrix data structure with
O

�
n2

�
elements

ˆ High memory consumption (O
�
n2

�
) and update step of this matrix is

also slow (O
�
n2

�
). . .
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pACO

ˆ Idea ofPopulation-based ACO[7, 8]:
ˆ remember bestb ants
ˆ only these ants determine pheromone
ˆ if a better ant is discovered:

ˆ remove pheromone of worst/oldest ant
ˆ add pheromone for new ant

ˆ this needs onlyO(n) steps for updates and has a memory consumption
of O(n)

ˆ and provides better results[7]

ˆ and is suitable for dynamically changing problems[8]
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Summary

ˆ ACO
ˆ can solve problems that 1) involve permutations, 2) involvepaths

through graphs
ˆ Maintaining pheromone matrix� : can be reduced in complexity to

O(n)
ˆ Can be applied to dynamic problems

ˆ Collectives of simple creatures able to colossal achievements:
ˆ Swarm Intelligence
ˆ PSO: Copy 
ocking behavior
ˆ ACO: Copy ground-based movements / stigmergy
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Caspar David Friedrich, !Der Wanderer über dem Nebelmeer", 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

"""" ""
Thank you
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