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❼ Swarms of tiny, simple creatures able to colossal achievements

❼ Self-Organization

❼ Swarm Intelligence (SI) methods make use of these phenomena for
optimization [1–4]
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Emergence

Definition (Emergence)

Emergence is the spontaneous assemblence of new properties or structures
on a macro-level of a system as a result of the joint behavior of its
elements on a micro-level. Emergent properties cannot be traced back to
the properties that the elements of a system’s micro-level exhibit in an
isolated state in an obvious manner.
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Emergence

The whole is more than the sum of its parts.

single atomes arranged due to the laws of
physics form a geometric structure which
is not related to the features of the single
atomes in any obvious way

single termites aggregate pieces of clay,
forming a giant nest whose structure is not
obviously related to the behavioral pat-
terns of a single termite
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Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20



Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20

http://en.wikipedia.org/wiki/Self-organization

http://en.wikipedia.org/wiki/Self-organization


Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20

http://en.wikipedia.org/wiki/Self-organization

A swarm results from the in-
teractions of the single birds
without the need of any “lead
bird” or controler outside of the
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Swarms and PSO

❼ Wilson [5] states about fish schools: “In theory at least, individual

members of the school can profit from the discoveries and previous

experience of all other members of the school during the search for food.

This advantage can become decisive, outweighing the disadvantages of

competition for food items, whenever the resource is unpredictably

distributed in patches.” [6]

(school = swarm of fish)

❼
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experience of all other members of the school during the search for food.

This advantage can become decisive, outweighing the disadvantages of

competition for food items, whenever the resource is unpredictably

distributed in patches.” [6]

(school = swarm of fish)

❼ Particle Swarm Optimization (PSO) [6–14] was developed by Eberhart
and Kennedy [6, 10, 11] in 1995 to make use of this phenomenon for
optimization
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Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v
❼ N(p): neighbors of particle p

❼ best(p): the particle’s best ever position
❼ best(pop): the best position ever found in the population
❼ best(N(p)): the best position ever found in the neighborhood of p
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❼ There are different two ways to do that:
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p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(pop).gi − p.gi)]

(2)

❼ Social Component: information exchange with other particles

❼ Parameters c, d ∈ [0, 1] influence convergence speed

❼ Warning: Velocity may increase without bound . . . update must
bound velocity into a [min,max] interval!

Metaheuristic Optimization Thomas Weise 11/20



PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype)

❼

Metaheuristic Optimization Thomas Weise 12/20



PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼

Metaheuristic Optimization Thomas Weise 12/20



PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼ The PSO algorithm works as follows

Metaheuristic Optimization Thomas Weise 12/20



PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼ The PSO algorithm works as follows

pbest ←− PSO(f, ps)

begin

pop←− create population of ps particles
while ¬shouldTerminate do

for i←− 0 up to ps− 1 do

pop[i]←− psoUpdate(pop[i], pop)

return best(pop)
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PSO Individual Record

Listing: The PSO Individual Record

public class PSOIndividual <X> extends Individual <double[], X> {

/** the velocity vector */

public final double [] velocity;

/** the best position seen by this individual */

public final Individual <double[], X> best;

}
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The PSO Algorithm

Listing: The PSO Algorithm

public class PSO <X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

final PSOIndividual <X>[] swarm;

PSOIndividual <X> cur;

Individual <double[], X> best;

double limitV;

int i, j;

swarm = new PSOIndividual[this.ps];

best = new Individual <>();

best.g = new double[this.rn.dim];

limitV = 0.1 * (this.rn.max - this.rn.min);

for (i = swarm.length; (--i) >= 0;) {

swarm[i] = cur = new PSOIndividual <>(this.nullary.create(this.random));

cur.x = this.gpm.gpm(cur.g);

cur.v = f.compute(cur.x);

copyIndividual(cur.best , cur);

if (cur.v < best.v) {

copyIndividual(best , cur);

}

if (this.termination.shouldTerminate ()) {

return best;

}

}

for (;;) {

for (i = swarm.length; (--i) >= 0;) {

cur = swarm[i];

for (j = this.rn.dim; (--j) >= 0;) {

cur.velocity[j] = Math.min(limitV , Math.max(-limitV ,

cur.velocity[j] = ((this.random.nextDouble () * this.c) * (cur.best.g[j] - cur.g[j]))

+ ((this.random.nextDouble () * this.d) * (best.g[j] - cur.g[j]))));

}

}

for (i = swarm.length; (--i) >= 0;) {

cur = swarm[i];

for (j = this.rn.dim; (--j) >= 0;) {

cur.g[j] = Math.max(this.rn.min , Math.min(this.rn.max , cur.g[j] + cur.velocity[j]));

cur.x = this.gpm.gpm(cur.g);

cur.v = f.compute(cur.x);

if (cur.v < cur.best.v) {

copyIndividual(cur.best , cur);

if (cur.v < best.v) {

copyIndividual(best , cur);

}

}

if (this.termination.shouldTerminate ()) {

return best;

}

}

}

}

}
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Summary

❼ PSO is a simple numerical optimization algorithm

❼ But: PSO is not rotationally invariant! [15]

❼ It performs well on (axis-parallel) separable functions (potentially
better than CMA-ES)

❼ But much worse if the same functions are rotated or the problems are
non-separable (epistatic) [15]
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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