
Metaheuristic Optimization
17. Particle Swarm Optimization

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Basic Phenomena

3 Particle Swarm Optimization

Metaheuristic Optimization Thomas Weise 2/20

w
eb
si
te

Section Outline

1 Introduction

2 Basic Phenomena

3 Particle Swarm Optimization

Metaheuristic Optimization Thomas Weise 3/20

Introduction

❼ Swarms of tiny, simple creatures able to colossal achievements

❼

❼

Metaheuristic Optimization Thomas Weise 4/20

Introduction

❼ Swarms of tiny, simple creatures able to colossal achievements

❼ Self-Organization

❼

Metaheuristic Optimization Thomas Weise 4/20

Introduction

❼ Swarms of tiny, simple creatures able to colossal achievements

❼ Self-Organization

❼ Swarm Intelligence (SI) methods make use of these phenomena for
optimization [1–4]

Metaheuristic Optimization Thomas Weise 4/20

Section Outline

1 Introduction

2 Basic Phenomena

3 Particle Swarm Optimization

Metaheuristic Optimization Thomas Weise 5/20

Emergence

Definition (Emergence)

Emergence is the spontaneous assemblence of new properties or structures
on a macro-level of a system as a result of the joint behavior of its
elements on a micro-level. Emergent properties cannot be traced back to
the properties that the elements of a system’s micro-level exhibit in an
isolated state in an obvious manner.

Metaheuristic Optimization Thomas Weise 6/20

Emergence

Definition (Emergence)

Emergence is the spontaneous assemblence of new properties or structures
on a macro-level of a system as a result of the joint behavior of its
elements on a micro-level. Emergent properties cannot be traced back to
the properties that the elements of a system’s micro-level exhibit in an
isolated state in an obvious manner.

In other words:

Metaheuristic Optimization Thomas Weise 6/20

Emergence

Definition (Emergence)

Emergence is the spontaneous assemblence of new properties or structures
on a macro-level of a system as a result of the joint behavior of its
elements on a micro-level. Emergent properties cannot be traced back to
the properties that the elements of a system’s micro-level exhibit in an
isolated state in an obvious manner.

In other words:
The whole is more than the sum of its parts.

Metaheuristic Optimization Thomas Weise 6/20

Emergence

The whole is more than the sum of its parts.

Metaheuristic Optimization Thomas Weise 6/20

Emergence

The whole is more than the sum of its parts.

single atomes arranged due to the laws of
physics form a geometric structure which
is not related to the features of the single
atomes in any obvious way

Metaheuristic Optimization Thomas Weise 6/20

pictures: http://en.wikipedia.org/wiki/Emergence

http://en.wikipedia.org/wiki/Emergence

Emergence

The whole is more than the sum of its parts.

single atomes arranged due to the laws of
physics form a geometric structure which
is not related to the features of the single
atomes in any obvious way

single termites aggregate pieces of clay,
forming a giant nest whose structure is not
obviously related to the behavioral pat-
terns of a single termite

Metaheuristic Optimization Thomas Weise 6/20

pictures: http://en.wikipedia.org/wiki/Emergence

http://en.wikipedia.org/wiki/Emergence

Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20

Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20

http://en.wikipedia.org/wiki/Self-organization

http://en.wikipedia.org/wiki/Self-organization

Self-Organization

Definition (Self-Organization)

Self-organization is a process where constraints, shape-providing
influences, and/or designing influences during the process of the creation
or modification of a system come from the system itself.

Metaheuristic Optimization Thomas Weise 7/20

http://en.wikipedia.org/wiki/Self-organization

A swarm results from the in-
teractions of the single birds
without the need of any “lead
bird” or controler outside of the
swarm

http://en.wikipedia.org/wiki/Self-organization

Section Outline

1 Introduction

2 Basic Phenomena

3 Particle Swarm Optimization

Metaheuristic Optimization Thomas Weise 8/20

Swarms and PSO

❼ Wilson [5] states about fish schools: “In theory at least, individual

members of the school can profit from the discoveries and previous

experience of all other members of the school during the search for food.

This advantage can become decisive, outweighing the disadvantages of

competition for food items, whenever the resource is unpredictably

distributed in patches.” [6]

(school = swarm of fish)

❼

Metaheuristic Optimization Thomas Weise 9/20

Swarms and PSO

❼ Wilson [5] states about fish schools: “In theory at least, individual

members of the school can profit from the discoveries and previous

experience of all other members of the school during the search for food.

This advantage can become decisive, outweighing the disadvantages of

competition for food items, whenever the resource is unpredictably

distributed in patches.” [6]

(school = swarm of fish)

❼ Particle Swarm Optimization (PSO) [6–14] was developed by Eberhart
and Kennedy [6, 10, 11] in 1995 to make use of this phenomenon for
optimization

Metaheuristic Optimization Thomas Weise 9/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop:

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v
❼ N(p): neighbors of particle p

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v
❼ N(p): neighbors of particle p

❼ best(p): the particle’s best ever position

❼

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v
❼ N(p): neighbors of particle p

❼ best(p): the particle’s best ever position
❼ best(pop): the best position ever found in the population

❼

Metaheuristic Optimization Thomas Weise 10/20

Particle Swarm Optimization

❼ Copy the behavior with which swarms / schools / flocks in nature find
food for solving optimization problems

❼ Search space is subset of real vectors numbers: G ⊆ R
n

❼ Population pop = swarm of particles p which move in G

❼ Genotype p.g = position of particle p

❼ Resulting Algorithm is a little bit similar to the Evolution Strategy
with endogeneous information:

❼ Information about particles p and population pop::
❼ Endogenous information: velocity vectors of the particles p.~v
❼ N(p): neighbors of particle p

❼ best(p): the particle’s best ever position
❼ best(pop): the best position ever found in the population
❼ best(N(p)): the best position ever found in the neighborhood of p

Metaheuristic Optimization Thomas Weise 10/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

2 Global Update: based on the best position in the population

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

2 Global Update: based on the best position in the population:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(pop).gi − p.gi)]

(2)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi+ [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

2 Global Update: based on the best position in the population:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(pop).gi − p.gi)]

(2)

❼ Social Component: information exchange with other particles

❼

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi+ [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

2 Global Update: based on the best position in the population:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(pop).gi − p.gi)]

(2)

❼ Social Component: information exchange with other particles

❼ Parameters c, d ∈ [0, 1] influence convergence speed

❼

Metaheuristic Optimization Thomas Weise 11/20

Velocity Update

❼ When updating a particle p, first it’s velocity p.~v is updated

❼ There are different two ways to do that:
1 Local Update: based on the particle’s current velocity, it’s best position

in history, and the best position of its neighbors:

p.~vi = p.~vi+ [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(N(p)).gi − p.gi)]

(1)

2 Global Update: based on the best position in the population:

p.~vi = p.~vi + [{randomly from [0, c]} ∗ (best(p).gi − p.gi)] +
[{randomly from [0, d]} ∗ (best(pop).gi − p.gi)]

(2)

❼ Social Component: information exchange with other particles

❼ Parameters c, d ∈ [0, 1] influence convergence speed

❼ Warning: Velocity may increase without bound . . . update must
bound velocity into a [min,max] interval!

Metaheuristic Optimization Thomas Weise 11/20

PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype)

❼

Metaheuristic Optimization Thomas Weise 12/20

PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼

Metaheuristic Optimization Thomas Weise 12/20

PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼ The PSO algorithm works as follows

Metaheuristic Optimization Thomas Weise 12/20

PSO Algorithm

❼ The second step of updating a particle is to update its position
(genotype):

p.gi = p.gi + p.~vi (3)

❼ The PSO algorithm works as follows

pbest ←− PSO(f, ps)

begin

pop←− create population of ps particles
while ¬shouldTerminate do

for i←− 0 up to ps− 1 do

pop[i]←− psoUpdate(pop[i], pop)

return best(pop)

Metaheuristic Optimization Thomas Weise 12/20

PSO Individual Record

Listing: The PSO Individual Record

public class PSOIndividual <X> extends Individual <double[], X> {

/** the velocity vector */

public final double [] velocity;

/** the best position seen by this individual */

public final Individual <double[], X> best;

}

Metaheuristic Optimization Thomas Weise 13/20

The PSO Algorithm

Listing: The PSO Algorithm

public class PSO <X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

final PSOIndividual <X>[] swarm;

PSOIndividual <X> cur;

Individual <double[], X> best;

double limitV;

int i, j;

swarm = new PSOIndividual[this.ps];

best = new Individual <>();

best.g = new double[this.rn.dim];

limitV = 0.1 * (this.rn.max - this.rn.min);

for (i = swarm.length; (--i) >= 0;) {

swarm[i] = cur = new PSOIndividual <>(this.nullary.create(this.random));

cur.x = this.gpm.gpm(cur.g);

cur.v = f.compute(cur.x);

copyIndividual(cur.best , cur);

if (cur.v < best.v) {

copyIndividual(best , cur);

}

if (this.termination.shouldTerminate ()) {

return best;

}

}

for (;;) {

for (i = swarm.length; (--i) >= 0;) {

cur = swarm[i];

for (j = this.rn.dim; (--j) >= 0;) {

cur.velocity[j] = Math.min(limitV , Math.max(-limitV ,

cur.velocity[j] = ((this.random.nextDouble () * this.c) * (cur.best.g[j] - cur.g[j]))

+ ((this.random.nextDouble () * this.d) * (best.g[j] - cur.g[j]))));

}

}

for (i = swarm.length; (--i) >= 0;) {

cur = swarm[i];

for (j = this.rn.dim; (--j) >= 0;) {

cur.g[j] = Math.max(this.rn.min , Math.min(this.rn.max , cur.g[j] + cur.velocity[j]));

cur.x = this.gpm.gpm(cur.g);

cur.v = f.compute(cur.x);

if (cur.v < cur.best.v) {

copyIndividual(cur.best , cur);

if (cur.v < best.v) {

copyIndividual(best , cur);

}

}

if (this.termination.shouldTerminate ()) {

return best;

}

}

}

}

}
Metaheuristic Optimization Thomas Weise 14/20

Summary

❼ PSO is a simple numerical optimization algorithm

❼

❼

❼

Metaheuristic Optimization Thomas Weise 15/20

Summary

❼ PSO is a simple numerical optimization algorithm

❼ But: PSO is not rotationally invariant! [15]

❼

❼

Metaheuristic Optimization Thomas Weise 15/20

Summary

❼ PSO is a simple numerical optimization algorithm

❼ But: PSO is not rotationally invariant! [15]

❼ It performs well on (axis-parallel) separable functions (potentially
better than CMA-ES)

❼

Metaheuristic Optimization Thomas Weise 15/20

Summary

❼ PSO is a simple numerical optimization algorithm

❼ But: PSO is not rotationally invariant! [15]

❼ It performs well on (axis-parallel) separable functions (potentially
better than CMA-ES)

❼ But much worse if the same functions are rotated or the problems are
non-separable (epistatic) [15]

Metaheuristic Optimization Thomas Weise 15/20

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 16/20

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 17/20

Bibliography I

1. Christian Blum and Daniel Merkle, editors. Swarm Intelligence – Introduction and Applications. Natural Computing Series.
New York, NY, USA: Springer New York, 2008. ISBN 978-3-540-74088-9 and 978-3-540-74089-6. doi:
10.1007/978-3-540-74089-6. URL http://books.google.de/books?id=6Ky4bVPCXqMC.

2. Andries P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. New York, NY, USA: John Wiley & Sons
Ltd., 2005. ISBN 0470091916 and 978-0470091913. URL http://books.google.de/books?id=UAg_AAAACAAJ.

3. James Kennedy and Russel C. Eberhart. Swarm Intelligence: Collective, Adaptive. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001. ISBN 1558605959 and 9781558605954. URL
http://www.engr.iupui.edu/~eberhart/web/PSObook.html.

4. Eric W. Bonabeau, Marco Dorigo, and Guy Théraulaz. Swarm Intelligence: From Natural to Artificial Systems. New York,
NY, USA: Oxford University Press, Inc., August 1999. ISBN 0195131592 and 9780195131598. URL
http://books.google.de/books?id=mhLj70l8HfAC.

5. Edward Osborne Wilson. Sociobiology: The New Synthesis. Cambridge, MA, USA: Belknap Press and Cambridge, MA,
USA: Harvard University Press, 1975. ISBN 0674000897 and 9780674000896. URL
http://books.google.de/books?id=v7lV9tz8fXAC.

6. James Kennedy and Russel C. Eberhart. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks (ICNN’95), volume 4, pages 1942–1948, Perth, WA, Australia: University of Western Australia,
November 27–December 1, 1995. Los Alamitos, CA, USA: IEEE Computer Society Press. doi:
10.1109/ICNN.1995.488968. URL http://www.engr.iupui.edu/~shi/Coference/psopap4.html.

7. Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle swarm optimization. AIAA Journal, 41(8):1583–1589,
August 2003. URL http://pdf.aiaa.org/getfile.cfm?urlX=2%3CWIG7D%2FQKU%3E6B5%3AKF5%2B%5CQ%3AK%3E%0A&

urla=%26%2B%22L%2F%22P%22%40%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urld=%21%2A0%20%20%0A&

urle=%27%28%22H%22%23PJAT%20%20%20%0A.
8. Tao Cai, Feng Pan, and Jie Chen. Adaptive particle swarm optimization algorithm. In Proceedings of Fifth World Congress

on Intelligent Control and Automation (WCICA’04), volume 3, pages 2245–2247, Hangzhou, Zhejiang, China, June 15–19,
2004. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics Engineers). doi:
10.1109/WCICA.2004.1341988.

Metaheuristic Optimization Thomas Weise 18/20

http://books.google.de/books?id=6Ky4bVPCXqMC
http://books.google.de/books?id=UAg_AAAACAAJ
http://www.engr.iupui.edu/~eberhart/web/PSObook.html
http://books.google.de/books?id=mhLj70l8HfAC
http://books.google.de/books?id=v7lV9tz8fXAC
http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://pdf.aiaa.org/getfile.cfm?urlX=2%3CWIG7D%2FQKU%3E6B5%3AKF5%2B%5CQ%3AK%3E%0A&urla=%26%2B%22L%2F%22P%22%40%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urld=%21%2A0%20%20%0A&urle=%27%28%22H%22%23PJAT%20%20%20%0A
http://pdf.aiaa.org/getfile.cfm?urlX=2%3CWIG7D%2FQKU%3E6B5%3AKF5%2B%5CQ%3AK%3E%0A&urla=%26%2B%22L%2F%22P%22%40%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urld=%21%2A0%20%20%0A&urle=%27%28%22H%22%23PJAT%20%20%20%0A
http://pdf.aiaa.org/getfile.cfm?urlX=2%3CWIG7D%2FQKU%3E6B5%3AKF5%2B%5CQ%3AK%3E%0A&urla=%26%2B%22L%2F%22P%22%40%0A&urlb=%21%2A%20%20%20%0A&urlc=%21%2A0%20%20%0A&urld=%21%2A0%20%20%0A&urle=%27%28%22H%22%23PJAT%20%20%20%0A

Bibliography II

9. Yuelin Gao and Yuhong Duan. An adaptive particle swarm optimization algorithm with new random inertia weight. In
De-Shuang Huang, Laurent Heutte, and Marco Loog, editors, Advanced Intelligent Computing Theories and Applications.
With Aspects of Contemporary Intelligent Computing Techniques – Proceedings of the Third International Conference on
Intelligent Computing (ICIC’07-2), volume 2 of Communications in Computer and Information Science, pages 342–350,
Qingdao, Shandong, China, August 21–24, 2007. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/978-3-540-74282-1 39.

10. Russel C. Eberhart and James Kennedy. A new optimizer using particle swarm theory. In Proceedings of the Sixth
International Symposium on Micro Machine and Human Science (MHS’95), pages 39–43, Nagoya, Aichi, Japan, October
4–6, 1995. Piscataway, NJ, USA: IEEE Computer Society. doi: 10.1109/MHS.1995.494215. URL
http://webmining.spd.louisville.edu/Websites/COMB-OPT/FINAL-PAPERS/SwarmsPaper.pdf.

11. Russel C. Eberhart and Yuhui Shi. A modified particle swarm optimizer. In Patrick K. Simpson, editor, The 1998 IEEE
International Conference on Evolutionary Computation (CEC’98), 1998 IEEE World Congress on Computation Intelligence
(WCCI’98), pages 69–73, Anchorage, AK, USA: Egan Civic & Convention Center and Anchorage Hilton Hotel, May 4–9,
1998. Piscataway, NJ, USA: IEEE Computer Society, Piscataway, NJ, USA: IEEE Computer Society. doi:
10.1109/ICEC.1998.699146.

12. Yuelin Gao and Zihui Ren. Adaptive particle swarm optimization algorithm with genetic mutation operation. In Jingsheng
Lei, JingTao Yao, and Qingfu Zhang, editors, Proceedings of the Third International Conference on Advances in Natural
Computation (ICNC’07), volume 2, pages 211–215, Haikou, Hainan, China, August 24–27, 2007. Los Alamitos, CA, USA:
IEEE Computer Society Press. doi: 10.1109/ICNC.2007.161.

13. Russel C. Eberhart and Yuhui Shi. Comparison between genetic algorithms and particle swarm optimization. In
Vincent William Porto, N. Saravanan, D. Waagen, and Ágoston E. Eiben, editors, Evolutionary Programming VII –
Proceedings of the 7th International Conference on Evolutionary Programming (EP’98), volume 1447/1998 of Lecture
Notes in Computer Science (LNCS), pages 611–616, San Diego, CA, USA: Mission Valley Marriott, May 25–27, 1998.
Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/BFb0040812.

14. Peter John Angeline. Evolutionary optimization versus particle swarm optimization: Philosophy and performance
differences. In Vincent William Porto, N. Saravanan, D. Waagen, and Ágoston E. Eiben, editors, Evolutionary
Programming VII – Proceedings of the 7th International Conference on Evolutionary Programming (EP’98), volume
1447/1998 of Lecture Notes in Computer Science (LNCS), pages 601–610, San Diego, CA, USA: Mission Valley Marriott,
May 25–27, 1998. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/BFb0040811.

Metaheuristic Optimization Thomas Weise 19/20

http://webmining.spd.louisville.edu/Websites/COMB-OPT/FINAL-PAPERS/SwarmsPaper.pdf

Bibliography III

15. Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger. Impacts of invariance in search:
When cma-es and pso face ill-conditioned and non-separable problems. 11(8):5755–5769, December 2011. doi:
10.1016/j.asoc.2011.03.001. URL hal.inria.fr/inria-00583669/PDF/hansen2011impacts.pdf. INRIA Report
inria-00583669, version 1, 2011-04-06.

Metaheuristic Optimization Thomas Weise 20/20

hal.inria.fr/inria-00583669/PDF/hansen2011impacts.pdf

	Outline
	Introduction
	Section Outline
	Introduction

	Basic Phenomena
	Section Outline
	Emergence
	Self-Organization

	Particle Swarm Optimization
	Section Outline
	Swarms and PSO
	Particle Swarm Optimization
	Velocity Update
	PSO Algorithm
	PSO Individual Record
	The PSO Algorithm
	Summary

	Presentation End
	Bibliography

