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An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization.
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Introduction

Definition (Objective Function)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization.

❼ Usually subject to minimization

❼ Not necessary a function as we know it from high school (like
f(x) = x2 + . . . ) but may be arbitrarily complex. . .
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Introduction

Definition (Multi-Objective Optimization Problem)

In a multi-objective optimization problem (MOP), a set ~f : X 7→ R
n consisting of

n objective functions fi : X 7→ R is to be optimized over a solution space X
[1–3].

~f = {fi : X 7→ R : i ∈ 1 . . . n} (1)

~f(x) = (f1(x), f2(x), . . . )
T =⇒ ~f : X 7→ R

n (2)
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Introduction

❼ These objective functions can have different relations with each
other. [4, 5]
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Independent Objectives

❼ Independent objective functions are unrelated to each other.

❼ Example: Find a (1) fast car with (2) beautiful color. −→ color and
speed may be optimized separately

❼ Uninteresting. Problem can be decomposed into sub-problems which
can be optimized separately and solutions of sub-problems can be
composed to solution of overall problem
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objective will also lead to an improvement in the other.

❼ Example: Find a (1) environmentally friendly car with (2) low fuel
consumption. −→ considering one objective is sufficient

fi ∼X fj ⇒ [fi(x1) < fi(x2)⇒ fj(x1) < fj(x2)∀x1, x2 ∈ X ⊆ X] (3)

❼ (definition is given over a subset X ⊆ X of the solution space)

❼ Uninteresting. One of the objectives can be omitted / left away, as its
presence does neither change the result nor does it make the problem
easier
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Conflicting Objectives

❼ If two objectives conflict, then achieving an improvement in one of
means getting worse in the other one.
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Conflicting Objectives

❼ If two objectives conflict, then achieving an improvement in one of
means getting worse in the other one.

❼ Example: Find a (1) environmentally friendly car which (2) is really
fast.

fi ≁X fj ⇒ [fi(x1) < fi(x2)⇒ fj(x1) > fj(x2)∀x1, x2 ∈ X ⊆ X] (4)

❼ (definition is given over a subset X ⊆ X of the solution space)

❼ This is the really interesting situation – here we need to do something!
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Objectives

❼ Usually, objective functions are neither purely harmonizing nor purely
conflicting

❼
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Objectives

❼ Usually, objective functions are neither purely harmonizing nor purely
conflicting

❼ Instead, they may harmonize in some parts of the solution space and
conflict in others
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Optimal?

Before we look any deeper on how to solve multi-objective optimization
problems, we should ask ourselfs. . .
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Optimal?

Before we look any deeper on how to solve multi-objective optimization
problems, we should ask ourselfs. . .

What does “optimal” mean in the presence of multiple optimization
criteria?
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Optimization with Priorities

❼ Give priorities to the different objective functions. [6–9]

❼ Idea:
❼ in an n-objective problem, f1 is more important than f2, f2 is more

important than f3, . . . , and fn−1 is more important than fn

❼ Method:

1 First consider only f1 on X and obtain the set X
⋆⋆
(1) of solutions for this

single-objective problem.
2 If |X

⋆⋆
(1)| > 1, then consider only f2 and solve this single-objective

problem on X
⋆⋆
(1) and obtain X

⋆⋆
(1,2)

3 If |X
⋆⋆
(1,2)| > 1, then consider only f3 and solve this single-objective

problem on X
⋆⋆
(1,2) and obtain X

⋆⋆
(1,2,3)

4 and so on. . .

❼ Separate a multi-objective optimization problem into n
single-objective ones
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ X
⋆⋆ = X

⋆⋆
(1,2) ∪X

⋆⋆
(2,1) = {

ˆ̂x1} ∪ {ˆ̂x2} = {ˆ̂x1, ˆ̂x2}
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Example B: Two 2d-Functions

❼ Two 2-dimensional functions to minimization:
~f = {f3, f4}, fi : R

2 7→ R ∀i ∈ {3, 4}
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Example B: Two 2d-Functions

❼ Two 2-dimensional functions to minimization:
~f = {f3, f4}, fi : R

2 7→ R ∀i ∈ {3, 4}

❼ X
⋆⋆ = X

⋆⋆
(3,4) ∪X

⋆⋆
(4,3) = {

ˇ̌x1, ˇ̌x2} ∪ {ˇ̌x3, ˇ̌x4} = {ˇ̌x1, ˇ̌x2, ˇ̌x3, ˇ̌x4}
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✔ Easy to perform
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Lexicographic Optimization

✔ Easy to perform

✘ No trade-off between objectives

✘ Only extreme cases will be found
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Weighted-Sum Approach

❼ Sum up the objective values in a weighted sum [10–17]

ws(x) =

n
∑

i=1

wifi(x) =
∑

∀fi∈~f

wifi(x) (5)

❼ The multi-objective optimization problem is turned into a
single-objective problem

x
⋆⋆ ∈ X

⋆⋆ ⇔ ws(x
⋆⋆ ) ≤ ws(x) ∀x ∈ X (6)

❼ We can use any of the single-objective techniques we already know to
solve it. . .

Metaheuristic Optimization Thomas Weise 20/66
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Example B: Two 2d-Functions

❼ Two 2-dimensional functions to minimization:
~f = {f3, f4}, fi : R

2 7→ R ∀i ∈ {3, 4}
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Example C: Two 1d-Functions

❼ Section of two functions subject to either maximization or
minimization
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✔ Easy to implement
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Weighted-Sum Approach

✔ Easy to implement

✘ Cannot handle objective functions which rise or fall with different
speeds properly

✘ How to set weights properly?

✘ Usually only finds one single element

✘ May not be able to discover the whole trade-off curve

✘ Objective functions are not always precise measures of utility, adding
them up thus does not always make sense

Metaheuristic Optimization Thomas Weise 24/66
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Pareto-based Approach

❼ “Find a fast car which is environmentally friendly!”

❼
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Pareto-based Approach

❼ “Find a fast car which is environmentally friendly!”
❼ Assume the following possible candidate solutions:

Car A: 200 km/h with 4 L/100km Car B: 150 km/h with 9 L/100km
Car C: 250 km/h with 7 L/100km Car D: 175 km/h with 7 L/100km
Car E: 300 km/h with 11 L/100km

❼ No car is better than car E
❼ But: No car is worse than car E!
❼ All cars are slower than car E, but all need less fuel

Metaheuristic Optimization Thomas Weise 26/66
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❼ Idea first developed by Edgeworth [18] and Pareto [19] in the last two

decades of the 19th century

❼ Pareto optimality defines the frontier of solutions that can be reached
by trading-off conflicting objectives in an optimal manner [3, 20–25]

❼ Pareto optimality became an important notion in economics, game
theory, engineering, and social sciences [26–29].
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Pareto-based Approach

❼ Idea first developed in the last two decades of the 19th century[18, 19]

❼ Pareto optimality defines the frontier of solutions that can be reached
by trading-off conflicting objectives in an optimal manner [3, 20–25]

Definition (Domination)

An element x1 dominates (is preferred to) an element x2 (x1 ⊣ x2) if x1
is better than x2 in at least one objective function and not worse with
respect to all other objectives. Based on the set ~f of objective functions f ,
we can write:

x1 ⊣ x2 ⇔ ∀i ∈ 1 . . . n⇒ ωifi(x1) ≤ ωifi(x2) ∧

∃j ∈ 1 . . . n : ωjfj(x1) < ωjfj(x2) (7)

ωi =

{

1 if fi should be minimized
−1 if fi should be maximized

(8)
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Pareto-based Approach

❼ Idea first developed in the last two decades of the 19th century[18, 19]

❼ Pareto optimality defines the frontier of solutions that can be reached
by trading-off conflicting objectives in an optimal manner [3, 20–25]

Definition (Pareto Optimal)

An element x
⋆⋆ ∈ X is Pareto optimal (and hence, part of the optimal set

X
⋆⋆ ) if it is not dominated by any other element in the solution space X.

X
⋆⋆ is called the Pareto-optimal set or Pareto set.

x
⋆⋆ ∈ X

⋆⋆ ⇔6 ∃x ∈ X : x ⊣ x
⋆⋆ (7)
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Pareto-based Approach

❼ Idea first developed in the last two decades of the 19th century[18, 19]

❼ Pareto optimality defines the frontier of solutions that can be reached
by trading-off conflicting objectives in an optimal manner [3, 20–25]

Definition (Pareto Frontier)

For a given optimization problem, the Pareto front(ier) F
⋆⋆ ⊂ R

n is defined
as the set of results the objective function vector ~f creates when it is
applied to all the elements of the Pareto-optimal set X

⋆⋆ .

F
⋆⋆ = {~f(x

⋆⋆ } : x
⋆⋆ ∈ X

⋆⋆ ) (7)
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❼ Dominated: D, B

❼ Pareto set: X
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Pareto-based Approach

❼ Non-dominated: A, C, E

❼ Dominated: D, B

❼ Pareto set: X
⋆⋆ = {A,C,E}

❼ Pareto front: F
⋆⋆ = {(4, 200), (7, 250), (11, 300)}

Metaheuristic Optimization Thomas Weise 28/66



Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ X
⋆⋆ = [x2, x3] ∪ [x5, x6]
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ all x ∈ [x1, x2) are dominated by other points in the same region or in
[x2, x3] – f1 and f2 can be improved by increasing x
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ f1 and f2 harmonize in [x1, x2): f1 ∼[x1,x2) f2
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ f1(x1 +∆) > f1(x1) and f2(x1 +∆) > f2(x1) for all ∆ ≤ x2 − x1
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ If we reach x2, the situation changes
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ x2 demarks the global maximum of f2 – the point with the highest
possible f2 value – which can never be dominated
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ From here on, f2 will decrease for some time, but f1 keeps rising.
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ If we now go a small step ∆ to the right, we will find a point x2 +∆
with f2(x2 +∆) < f2(x2) but also f1(x2 +∆) > f1(x2).
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ One objective can only get better if another one degenerates, i.e., f1
and f2 conflict f1 ≁[x2,x3] f2.
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ No point in [x1, x2) dominates any point in [x2, x4]
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ f1 keeps rising until x4 is reached.
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ At x3 however, f2 steeply falls to a very low level – lower than f2(x5).
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ The f1 values of the points in [x5, x6] are also higher than those of
the points in (x3, x4]
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ All points in the set [x5, x6] (which also contains the global maximum
of f1) dominate those in (x3, x4].
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Example A: Two 1d-Functions

❼ Two 1-dimensional functions subject to maximization:
~f = {f1, f2}, fi : R 7→ R ∀i ∈ {1, 2}

❼ All points in [x4, x5] and after x6 are also dominated by the
non-dominated regions just discussed.

Metaheuristic Optimization Thomas Weise 29/66



Example B: Two 2d-Functions

❼ Grid-based resolution of two 2-dimensional functions to minimization:
~f = {f3, f4}, fi : R

2 7→ R ∀i ∈ {3, 4}

❼
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Example B: Two 2d-Functions

❼ Grid-based resolution of two 2-dimensional functions to minimization:
~f = {f3, f4}, fi : R

2 7→ R ∀i ∈ {3, 4}

❼ X
⋆⋆ = X

⋆⋆
1 ∪X

⋆⋆
2 ∪X

⋆⋆
3 ∪X

⋆⋆
4 are not dominated by any other candidate

solution
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#dom(x,X) = |{x′ : (x′ ∈ X)∧
(x′ ⊣ x)}|



Pareto-based Optimization Results

❼ Goal: Uniformity of convergence – many solutions close to Pareto
Front that cover many different “optimal” characteristics

Bad convergence, good
spread (uniformity) [30]

Good convergence,
bad spread (non-
uniformity) [30]

Good conver-
gence, good spread
(uniformity) [30]
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Pareto-based Approach

✔ Relative rising/falling speed of objective functions plays no role
(big-O class irrelevant)
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Pareto-based Approach

✔ Relative rising/falling speed of objective functions plays no role
(big-O class irrelevant)

✔ No weights or additional parameters necessary

✔ Results are best trade-off solutions −→ Operator can make informed
decision

✔ Multiple solutions can be discovered

✘ Maybe too many solutions will be discovered

✘ In many problems, the number of Pareto-optimal solutions may be
infinite −→ Which to chose?

Metaheuristic Optimization Thomas Weise 32/66



Section Outline

1 Introduction

2 Lexicographic Optimization

3 Weighted-Sum Approach

4 Pareto-based Approach

5 MOEAs

6 Pareto Ranking

7 Problems
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MOEAs and Fitness Assignment

❼ Multi-objective Evolutionary Algorithms (MOEAs) can deal with
multiple, conflicting objectives [1, 2, 7, 31–53]

❼

❼

❼

❼

❼
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❼ Traditional selection schemes cannot be used as is, becaus now we
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MOEAs and Fitness Assignment

❼ Multi-objective Evolutionary Algorithms (MOEAs) can deal with
multiple, conflicting objectives [1, 2, 7, 31–53]

❼ The goal is to return a good approximation of the Pareto front with a
good spread

❼ How can we incorporate multiple objectives in the Scheme of EAs?

❼ Traditional selection schemes cannot be used as is, becaus now we
have a vector ~f(p.x) of objective values per individual instead of a
single scalar value

❼ Introduce fitness assignment process into the EA which maps the
objective value vectors ~f(p.x) to scalar fitness values ν(p)

❼ After such a scalar fitness has been assigned, the traditional selection
schemes (fitness proportionate, tournament, . . . ) can be used!

Metaheuristic Optimization Thomas Weise 34/66



Evolutionary Algorithms: First Generation

❼ Nullary search operation to create initial individuals: create a
population of random bit strings
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Evolutionary Algorithms: GPM

❼ Map the genotypes to phenotypes

❼ The GPM is usually problem-dependent
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Evolutionary Algorithms: Evaluation

❼ Evaluate the objective functions – each solution may have different
featues

❼ Each candidate solution x now has a vector of objective values ~f(x)
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Evolutionary Algorithms: Fitness Assignment

❼ Fitness is relative: e.g., Pareto optimal inside population means
non-dominated by the other individuals
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Evolutionary Algorithms: Selection

❼ Select the best individuals with highest probability
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Evolutionary Algorithms: Reproduction

❼ Mutation and recombination
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Evolutionary Algorithms: New Generation

❼ Start with new population in next generation.
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Basic MOEA

X̃ ←− basicMOEA(~f, ps,mps)

begin
pop←− create initial population
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values
assign fitness
matePool←− select parents from pop
pop←− apply reproduction operations

return non-dominated solutions in pop
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❼ A Multi-Objective Evolutionary
Algorithm works like a normal
EA

❼ Initialize first generation and
generation counter
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❼ Compute objective values for
all objective functions on all
individuals

❼ Execute fitness assignment
process: transform vectors of
objective values to scalar
fitness
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begin
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compute objective values
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process: transform vectors of
objective values to scalar
fitness
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algorithm
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Basic MOEA

X̃ ←− basicMOEA(~f, ps,mps)

begin
pop←− create initial population
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values
assign fitness
matePool←− select parents from pop
pop←− apply reproduction operations

return non-dominated solutions in pop

Metaheuristic Optimization Thomas Weise 42/66

❼ Use (e.g., traditional) selection
algorithm

❼ Apply reproduction operators
mutation and crossover



Dealing with Multiple Solutions

❼ So far, we our optimization algorithms return one single solutions
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Dealing with Multiple Solutions

❼ So far, we our optimization algorithms return one single solutions

❼ Pareto frontier can contain multiple solutions

❼ If we want to do Pareto-based optimization, we need to deal with
that. . .

❼ Currently, we update the single, best solution

❼ Now: Maintain archive of the best (non-dominated) solutions

❼ Danger: Archive may grow very big ⇒ set size limit

❼ If size limit is reached: delete elements from the archive (maybe
randomly, maybe based on density information).

Metaheuristic Optimization Thomas Weise 43/66
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1 Introduction
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3 Weighted-Sum Approach
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Pareto Ranking

❼ Reflect the Pareto dominance relationship of the individuals in the
population in the fitness! [41, 54–56]
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❼ Reflect the Pareto dominance relationship of the individuals in the
population in the fitness! [41, 54–56]
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Example: two-
objective problem
with 15 individuals
(1) to (15)



Pareto Ranking: First (Wrong) Idea

❼ Reflect the Pareto dominance relationship of the individuals in the
population in the fitness! [41, 54–56]

❼ Idea: Count the number dominates(p, pop) of individuals that the
individual p and set ν(p) = 1/(1+dominates(p,pop))
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Pareto Ranking: First (Wrong) Idea

❼ Reflect the Pareto dominance relationship of the individuals in the
population in the fitness! [41, 54–56]

❼ Idea: Count the number
dominates(p, pop) of individu-
als that the individual p and set
ν(p) = 1/(1+dominates(p,pop))

Metaheuristic Optimization Thomas Weise 46/66

Are individual 4 and 15 really as
same as interesting?
Is individual 4 really worse than
individual 2? Of course not!

This method is bad.



Pareto Ranking

❼ Reflect the Pareto dominance relationship of the individuals in the
population in the fitness! [41, 54–56]

❼ Idea: Count the number #dom(p, pop) of individuals in the
population that dominate individual p, set ν(p) = #dom(p, pop)
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❼ Pareto Ranking: Count the number
#dom(p, pop) of individuals in the
population that dominate individual
p, set ν(p) = #dom(p, pop)

Metaheuristic Optimization Thomas Weise 47/66

All the non-dominated individu-
als have the same, best possible
fitness!
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❼ Pareto ranking can easily be
implemented (see [56] for better
method):

❼ If p1 wins, count it as loss for
p2

❼ If p2 wins, count it as loss for
p1
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How to use Pareto Ranking?

❼ Pareto Ranking translates the vectors of objective values to scalar
fitness, depending on the population structure

❼ Scale of the fitness values independent of scale of objective values

❼ Can be comined with all traditional selection schemes:

1 Tournament Selection
2 Truncation Selection
3 also with Roulette Wheel selection: Pareto rank is scale-independent

and thus, the problems of Roulette Wheel selection (for fitness
minimization) do not occur. . .

Metaheuristic Optimization Thomas Weise 49/66
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One more thing though: Individ-
uals (1) and (2) reside in well-
explored regions, whereas (4) is
at a border. . . Should they really
have the same fitness?

Of course not, if we want to
have a good spread, solution (4)
is more interesting. . .
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❼ Good examples are:

1 NSGA-II by Deb et al. [57] (Pareto rank combined with the crowding
distance in objective space)

2 SPEA-2 by Zitzler et al. [58] (Pareto-domination based strength together
with distance to the k nearest neighbor in objective space)

3 PESA by Corne et al. [59] (Pareto domination and number of other
individuals in the same hyper-box in a grid defined over the search
space)

Metaheuristic Optimization Thomas Weise 52/66
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1 set i←− 1
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❼ Divide population into Pareto fronts according the domination
criterion

❼ To obtain a good spread of solutions along the Pareto front, the
diversity in the population must be preserved

❼ Within each “front i”, the solutions are sorted according to their
crowding distance cd

❼ Individual A is better than individual B if it is in a lower front or if
they are in the same front and A has a higher cd

❼ Truncation selection is performed on this sorted population

❼ Elitism: Parents and children compete with each other

❼ Read [36, 37, 57] for more details.
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❼ Can we now solve problems with arbitrarily many optimization goals?

❼ Pareto-(ranking) based optimization performs very bad if the number
n of objective functions is too high! [47, 60–62]

❼ Most studies consider mainly bi-objective problems [47, 63]

❼ When the dimension of the MOPs increases, the majority of the
candidate solutions become non-dominated

❼ The increasing dimensionality of the objective space leads to three
main problems [64]:

1 The performance of traditional approaches based solely on Pareto
comparisons deteriorates.

2 The utility of the solutions cannot be understood by the human
operator anymore.

3 The number of possible Pareto-optimal solutions may increase
exponentially.

❼ Therefore: Do NOT use too many objective functions!
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Summary

❼ Many problems are multi-objective by nature, for example Genetic
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Summary

❼ Many problems are multi-objective by nature

❼ If objectives conflict, a special treatment is necessary

❼ Pareto ranking is a good idea: incorporated into MOEAs

❼ Many treatments (e.g., Pareto) can be reduced to binary comparisons
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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24. E. A. Galperin. Pareto analysis vis-à-vis balance space approach in multiobjective global optimization. Journal of
Optimization Theory and Applications, 93(3):533–545, June 1997. doi: 10.1023/A:1022639028824.

25. Aharon Ben-Tal. Characterization of pareto and lexicographic optimal solutions. In Joel N. Morse, editor, Proceedings of
the 4th International Conference on Multiple Criteria Decision Making: Organizations, Multiple Agents With Multiple
Criteria (MCDM’80), volume 190 of Lecture Notes in Economics and Mathematical Systems, pages 1–11, Newark, DE,
USA: University of Delaware, August 10–15, 1980. Berlin/Heidelberg: Springer-Verlag.

26. Altannar Chinchuluun, Panos M. Pardalos, Athanasios Migdalas, and Leonidas S. Pitsoulis, editors. Pareto Optimality,
Game Theory and Equilibria, volume 17 of Springer Optimization and Its Applications. New York, NY, USA: Springer New
York, 2008. ISBN 0387772464, 978-0-387-77246-2, and 978-0-387-77247-9. doi: 10.1007/978-0-387-77247-9. URL
http://books.google.de/books?id=kNqHxU3Tc2YC.

27. Wikipedia – the free encyclopedia, 2009. URL http://en.wikipedia.org/.
28. Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. Cambridge, MA, USA: MIT Press, July 1994. ISBN

0-2626-5040-1 and 978-0-262-65040-3. URL http://books.google.de/books?id=5ntdaYX4LPkC.

Metaheuristic Optimization Thomas Weise 60/66

http://ann.sagepub.com/cgi/reprint/9/3/128.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.7779
http://books.google.de/books?id=fQ5VPQAACAAJ
http://books.google.de/books?id=r5P0AQAACAAJ
http://books.google.de/books?id=skkEdJir95QC
http://books.google.de/books?id=kNqHxU3Tc2YC
http://en.wikipedia.org/
http://books.google.de/books?id=5ntdaYX4LPkC


Bibliography IV

29. Drew Fudenberg and Jean Tirole. Game Theory. Cambridge, MA, USA: MIT Press, August 1991. ISBN 0-2620-6141-4
and 978-0-262-06141-4. URL http://books.google.de/books?id=pFPHKwXro3QC.

30. Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jesús Nebro Urbaneja. Why is optimization difficult? In
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Engineering, Computer Engineering and Networks Laboratory (TIK), May 2001. URL
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf. Errata added 2001-09-27.

59. David Wolfe Corne, Joshua D. Knowles, and Martin J. Oates. The pareto envelope-based selection algorithm for
multiobjective optimization. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julián
Merelo-Guervós, and Hans-Paul Schwefel, editors, Proceedings of the 6th International Conference on Parallel Problem
Solving from Nature (PPSN VI), volume 1917/2000 of Lecture Notes in Computer Science (LNCS), pages 839–848, Paris,
France, September 18–20, 2000. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-45356-3 82. URL
http://www.lania.mx/~ccoello/corne00.ps.gz.

60. Vineet Khare. Performance scaling of multi-objective evolutionary algorithms. Master’s thesis, Birmingham, UK: University
of Birmingham, School of Computer Science, September 21, 2002. URL
http://www.lania.mx/~ccoello/EMOO/thesis_khare.pdf.gz.

61. Andrzej Jaszkiewicz. On the computational efficiency of multiple objective metaheuristics: The knapsack problem case
study. European Journal of Operational Research (EJOR), 158(2):418–433, October 16, 2004. doi:
10.1016/j.ejor.2003.06.015.

62. Hisao Ishibuchi, Yusuke Nojima, and Tsutomu Doi. Comparison between single-objective and multi-objective genetic
algorithms: Performance comparison and performance measures. In Gary G. Yen, Simon M. Lucas, Gary B. Fogel, Graham
Kendall, Ralf Salomon, Byoung-Tak Zhang, Carlos Artemio Coello Coello, and Thomas Philip Runarsson, editors,
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’06), 2006 IEEE World Congress on Computation
Intelligence (WCCI’06), pages 3959–3966, Vancouver, BC, Canada: Sheraton Vancouver Wall Centre Hotel, July 16–21,
2006. Piscataway, NJ, USA: IEEE Computer Society, Piscataway, NJ, USA: IEEE Computer Society. doi:
10.1109/CEC.2006.1688438.

63. Tomoyuki Hiroyasu, Hiroyuki Ishida, Mitsunori Miki, and Hisatake Yokouchi. Difficulties of evolutionary many-objective
optimization. Intelligent Systems Design Laboratory Research Reports (ISDL Reports) 20081006004, Kyoto, Japan:
Doshisha University, Department of Knowledge Engineering and Computer Sciences, Intelligent Systems Design Laboratory,
October 13, 2008. URL
http://mikilab.doshisha.ac.jp/dia/research/report/2008/1006/004/report20081006004.html.

Metaheuristic Optimization Thomas Weise 65/66

http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf
http://www.lania.mx/~ccoello/corne00.ps.gz
http://www.lania.mx/~ccoello/EMOO/thesis_khare.pdf.gz
http://mikilab.doshisha.ac.jp/dia/research/report/2008/1006/004/report20081006004.html


Bibliography IX

64. Hisao Ishibuchi, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-objective optimization: A short review. In
Zbigniew Michalewicz and Robert G. Reynolds, editors, Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’08), Computational Intelligence: Research Frontiers – IEEE World Congress on Computational Intelligence –
Plenary/Invited Lectures (WCCI), volume 5050/2008 of Lecture Notes in Computer Science (LNCS), pages 2424–2431,
Hong Kong (Xianggang), China: Hong Kong Convention and Exhibition Centre, June 1–6, 2008. Piscataway, NJ, USA:
IEEE Computer Society. doi: 10.1109/CEC.2008.4631121. URL http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_

lab_e/research/pdf_file/multiobjective/CEC2008_Many_Objective_Final.pdf.

Metaheuristic Optimization Thomas Weise 66/66

http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/research/pdf_file/multiobjective/CEC2008_Many_Objective_Final.pdf
http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/research/pdf_file/multiobjective/CEC2008_Many_Objective_Final.pdf

	Outline
	Introduction
	Section Outline
	Introduction
	Introduction
	Introduction
	Independent Objectives
	Harmonizing Objectives
	Conflicting Objectives
	Objectives
	Optimal?

	Lexicographic Optimization
	Section Outline
	Optimization with Priorities
	Example A: Two 1d-Functions
	Example A: Two 1d-Functions
	Example B: Two 2d-Functions
	Example B: Two 2d-Functions
	Lexicographic Optimization

	Weighted-Sum Approach
	Section Outline
	Weighted-Sum Approach
	Example A: Two 1d-Functions
	Example B: Two 2d-Functions
	Example C: Two 1d-Functions
	Weighted-Sum Approach

	Pareto-based Approach
	Section Outline
	Pareto-based Approach
	Pareto-based Approach
	Pareto-based Approach
	Example A: Two 1d-Functions
	Example B: Two 2d-Functions
	Pareto-based Optimization Results
	Pareto-based Approach

	MOEAs
	Section Outline
	MOEAs and Fitness Assignment
	Evolutionary Algorithms: First Generation
	Evolutionary Algorithms: GPM
	Evolutionary Algorithms: Evaluation
	Evolutionary Algorithms: Fitness Assignment
	Evolutionary Algorithms: Selection
	Evolutionary Algorithms: Reproduction
	Evolutionary Algorithms: New Generation
	Basic MOEA
	Dealing with Multiple Solutions

	Pareto Ranking
	Section Outline
	Pareto Ranking
	Pareto Ranking: First (Wrong) Idea
	Pareto Ranking
	Pareto Ranking
	How to use Pareto Ranking?

	Problems
	Section Outline
	How about diversity?
	Practical MOEAs
	NSGA-II
	Many-Objective Optimization Optimization
	Summary

	Presentation End
	Bibliography

