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1 each offspring competes with its direct parent and
2 replaces it if and only if it has better objective values
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reproduction (e.g., Evolution Strategy with endogeneous method [18, 19])

❼ Only the latter two are self-adaptation methods, only they allow for
an algorithm behavior that is not anticipated by the designer
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search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼ The distances (g1 − g2) decrease ⇒ the search steps get smaller, too

❼ Very simple way to perform self-adaptation without needing any
additional parameter or operation!

❼ The step-width is self-organizing from the structure of the population
and self-adapting along the optimization process
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Example 1

Minimize f(~x) = 20 +
2

∑

i=1

(

x2i − 10 cos (2 ∗ π ∗ xi)
)

for −5.12 ≤ x ≤ 5.12
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Example 1

❼ Population initially uniformly spread

❼ Large differential information in population

❼ Population then collapses to (local) optimum/optima
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DE Recombination

Listing: The Ternary DE Recombination Method

public class RnRecombineDE extends Rn implements

ITernarySearchOperation <double[]> {

/** the strength */

final double F;

public double [] recombine(final double [] g1, final double [] g2, final

double [] g3, final Random r) {

final double [] res = new double[g1.length ];

for (int i = res.length; (--i) >= 0;) {

res[i] = Math.max(this.min , Math.min(this.max , //

(g3[i] + (this.F * (g1[i] - g2[i])))));

}

return res;

}

}

Metaheuristic Optimization Thomas Weise 30/41



Differential Evolution Implementation

Listing: Implementation of the Differential Evolution Algorithm

public class DE<X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

Individual <double[], X> pbest , pcur;

Individual <double[], X>[] pop , ofs;

int i, j, k;

pbest = new Individual <>();

pop = new Individual[this.ps]; // the population: all elements are null

ofs = new Individual[this.ps]; // the set of offsprings

for (i = ofs.length; (--i) >= 0;) {

ofs[i] = pcur = new Individual <>();

pcur.g = this.nullary.create(this.random);

}

for (;;) {

for (i = ofs.length; (--i) >= 0;) {

pcur = ofs[i]; // pcur is the ith offspring

pcur.x = this.gpm.gpm(pcur.g); // do gpm

pcur.v = f.compute(pcur.x); // get objective value

if ((pop[i] == null) || (pcur.v <= pop[i].v)) { // offspring better than parent?

pop[i] = pcur; // replace parent

if (pcur.v < pbest.v) { // check if we found best

pbest.assign(pcur);

}

}

if (this.termination.shouldTerminate ()) {

return pbest;

}

}

for (i = pop.length; (--i) >= 0;) { // create offspring

ofs[i] = pcur = new Individual <>(); // pick first parent

do {

j = this.random.nextInt(pop.length);

} while (j == i); // different parents!

do {

k = this.random.nextInt(pop.length);

} while ((k == i) || (k == j)); // different parents!

pcur.g = this.ternary.recombine(pop[j].g, pop[k].g, pop[i].g, this.random);

}

}

}
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recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼ The rest are just copied from g3 directly

❼ Two basic methods

1 binomial: For each gene in the offspring, use ternary crossover principle
with probability cr and copy the corresponding value from g3 with
probability 1− cr

2 exponential: use ternary crossover principle for a consecutive group of
genes, with a exponentially distributed length according to cr; copy the
rest from g3
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Binomial DE Recombination

Listing: The Binomial DE Recombination

public class RnRecombineDEBin extends RnRecombineDE {

/** the crossover rate */

private final double cr;

public double [] recombine(final double [] g1, final double [] g2, final

double [] g3, final Random r) {

final double [] res = g1.clone();

for (int i = res.length; (--i) >= 0;) {

if (r.nextDouble () < this.cr) {

res[i] = Math.max(this.min , Math.min(this.max , //

(g3[i] + (this.F * (g1[i] - g2[i])))));

}

}

return res;

}

}
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Summary

❼ EA for numerical optimization

❼ Simple self-adaption without any parameter by ternary recombination

❼ Parents compete with their children in the population
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