
Metaheuristic Optimization
13. Differential Evolution

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 2/41

w
e
b
s
it
e

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 3/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼ Population treatment

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼ Population treatment:

1 each offspring competes with its direct parent and

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼ Population treatment:

1 each offspring competes with its direct parent and
2 replaces it if and only if it has better objective values

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼ Population treatment:

1 each offspring competes with its direct parent and
2 replaces it if and only if it has better objective values
3 i.e., some local form of selection!

❼

Metaheuristic Optimization Thomas Weise 4/41

Introduction

❼ Simple Evolutionary Algorithm for numerical optimization [1–8]

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Storn and Price [9] in the mid-1990s

❼ Many different variants, but main idea: ternary recombination
operator instead of mutation and binary crossover

❼ Population treatment:

1 each offspring competes with its direct parent and
2 replaces it if and only if it has better objective values
3 i.e., some local form of selection!

❼ The rest: same as in simple population EA

Metaheuristic Optimization Thomas Weise 4/41

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 5/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

❼

❼

Metaheuristic Optimization Thomas Weise 6/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

1 Changing parameters over time independently from the search process
(e.g., Simulated Annealing [10–17])

❼

❼

Metaheuristic Optimization Thomas Weise 6/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

1 Changing parameters over time independently from the search process
(e.g., Simulated Annealing [10–17])

2 Changing parameters according to some policy which uses information
about the progress of the search (e.g., Evolution Strategy with 1/5th
rule [18, 19], exogeneous method)

❼

❼

Metaheuristic Optimization Thomas Weise 6/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

1 Changing parameters over time independently from the search process
(e.g., Simulated Annealing [10–17])

2 Changing parameters according to some policy which uses information
about the progress of the search (e.g., Evolution Strategy with 1/5th
rule [18, 19], exogeneous method)

3 Encoding parameters as additional variables in individual records and
let the evolutionary algorithm adapt them via selection and
reproduction (e.g., Evolution Strategy with endogeneous method [18, 19])

❼

❼

Metaheuristic Optimization Thomas Weise 6/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

1 Changing parameters over time independently from the search process
(e.g., Simulated Annealing [10–17])

2 Changing parameters according to some policy which uses information
about the progress of the search (e.g., Evolution Strategy with 1/5th
rule [18, 19], exogeneous method)

3 Encoding parameters as additional variables in individual records and
let the evolutionary algorithm adapt them via selection and
reproduction (e.g., Evolution Strategy with endogeneous method [18, 19])

❼ Only the latter two are self-adaptation methods, only they allow for
an algorithm behavior that is not anticipated by the designer

❼

Metaheuristic Optimization Thomas Weise 6/41

Self-Adaptiation through Self-Organization

❼ So far, we know three ways for adaptation:

1 Changing parameters over time independently from the search process
(e.g., Simulated Annealing [10–17])

2 Changing parameters according to some policy which uses information
about the progress of the search (e.g., Evolution Strategy with 1/5th
rule [18, 19], exogeneous method)

3 Encoding parameters as additional variables in individual records and
let the evolutionary algorithm adapt them via selection and
reproduction (e.g., Evolution Strategy with endogeneous method [18, 19])

❼ Only the latter two are self-adaptation methods, only they allow for
an algorithm behavior that is not anticipated by the designer

❼ Today, we learn a fourth method: self-adaptation via self-organization
without parameters!

Metaheuristic Optimization Thomas Weise 6/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼ The distances (g1 − g2) decrease

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼ The distances (g1 − g2) decrease ⇒ the search steps get smaller, too

❼

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼ The distances (g1 − g2) decrease ⇒ the search steps get smaller, too

❼ Very simple way to perform self-adaptation without needing any
additional parameter or operation!

❼

Metaheuristic Optimization Thomas Weise 7/41

Ternary Reproduction Operator

❼ Differential Evolution uses a single ternary reproduction operation
recombinationDE which takes three arguments g1, g2, and g3

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ In the beginning, all candidate solutions are spread uniformly in
search space G

❼ The differential information (g1 − g2) is large ⇒ large search steps

❼ As the population converges, the candidate solutions are located
closer to each other

❼ The distances (g1 − g2) decrease ⇒ the search steps get smaller, too

❼ Very simple way to perform self-adaptation without needing any
additional parameter or operation!

❼ The step-width is self-organizing from the structure of the population
and self-adapting along the optimization process

Metaheuristic Optimization Thomas Weise 7/41

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 8/41

Example 1

Minimize f(~x) = 20 +
2

∑

i=1

(

x2i − 10 cos (2 ∗ π ∗ xi)
)

for −5.12 ≤ x ≤ 5.12

Metaheuristic Optimization Thomas Weise 9/41

Example 1

❼ Population after generation 0: uniform spread, large differences

Metaheuristic Optimization Thomas Weise 10/41

Example 1

❼ Population after generation 1

Metaheuristic Optimization Thomas Weise 11/41

Example 1

❼ Population after generation 2

Metaheuristic Optimization Thomas Weise 12/41

Example 1

❼ Population after generation 5

Metaheuristic Optimization Thomas Weise 13/41

Example 1

❼ Population after generation 10

Metaheuristic Optimization Thomas Weise 14/41

Example 1

❼ Population after generation 20: concentration around center

Metaheuristic Optimization Thomas Weise 15/41

Example 1

❼ Population after generation 30

Metaheuristic Optimization Thomas Weise 16/41

Example 1

❼ Population after generation 40

Metaheuristic Optimization Thomas Weise 17/41

Example 1

❼ Population after generation 50

Metaheuristic Optimization Thomas Weise 18/41

Example 1

❼ Population after generation 75

Metaheuristic Optimization Thomas Weise 19/41

Example 1

❼ Population after generation 100

Metaheuristic Optimization Thomas Weise 20/41

Example 1

❼ Population after generation 125: similar individuals in local optima

Metaheuristic Optimization Thomas Weise 21/41

Example 1

❼ Population after generation 150

Metaheuristic Optimization Thomas Weise 22/41

Example 1

❼ Population after generation 175

Metaheuristic Optimization Thomas Weise 23/41

Example 1

❼ Population after generation 200

Metaheuristic Optimization Thomas Weise 24/41

Example 1

❼ Population after generation 250

Metaheuristic Optimization Thomas Weise 25/41

Example 1

❼ Population after generation 300: concentration in optima

Metaheuristic Optimization Thomas Weise 26/41

Example 1

❼ Population initially uniformly spread

❼ Large differential information in population

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/41

Example 1

❼ Population initially uniformly spread

❼ Large differential information in population

❼ Population then collapses to (local) optimum/optima

❼

❼

Metaheuristic Optimization Thomas Weise 27/41

Example 1

❼ Population initially uniformly spread

❼ Large differential information in population

❼ Population then collapses to (local) optimum/optima

❼ As candidate solutions get closer to each other, differential
information decreases

❼

Metaheuristic Optimization Thomas Weise 27/41

Example 1

❼ Population initially uniformly spread

❼ Large differential information in population

❼ Population then collapses to (local) optimum/optima

❼ As candidate solutions get closer to each other, differential
information decreases

❼ Due to different optima, differential information still available

Metaheuristic Optimization Thomas Weise 27/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3

Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =









Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)


 =









Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)


 =





0.28




Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)
0.4 +0.3(0.45 −0.5)



 =





0.28




Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)
0.4 +0.3(0.45 −0.5)



 =





0.28
0.385





Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)
0.4 +0.3(0.45 −0.5)
0.6 +0.3(0.7 −0.7)



 =





0.28
0.385





Metaheuristic Optimization Thomas Weise 28/41

Example 2

❼ Example for

recombinationDEbg1g2g3 = g3 + F (g1 − g2) (1)

g1 = (0.3, 0.45, 0.7)T

g2 = (0.2, 0.5, 0.7)T

g3 = (0.25, 0.4, 0.6)T

F = 0.3 ←− strength parameter

g′ =





0.25 +0.3(0.3 −0.2)
0.4 +0.3(0.45 −0.5)
0.6 +0.3(0.7 −0.7)



 =





0.28
0.385
0.6





Metaheuristic Optimization Thomas Weise 28/41

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 29/41

DE Recombination

Listing: The Ternary DE Recombination Method

public class RnRecombineDE extends Rn implements

ITernarySearchOperation <double[]> {

/** the strength */

final double F;

public double [] recombine(final double [] g1, final double [] g2, final

double [] g3, final Random r) {

final double [] res = new double[g1.length];

for (int i = res.length; (--i) >= 0;) {

res[i] = Math.max(this.min , Math.min(this.max , //

(g3[i] + (this.F * (g1[i] - g2[i])))));

}

return res;

}

}

Metaheuristic Optimization Thomas Weise 30/41

Differential Evolution Implementation

Listing: Implementation of the Differential Evolution Algorithm

public class DE<X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

Individual <double[], X> pbest , pcur;

Individual <double[], X>[] pop , ofs;

int i, j, k;

pbest = new Individual <>();

pop = new Individual[this.ps]; // the population: all elements are null

ofs = new Individual[this.ps]; // the set of offsprings

for (i = ofs.length; (--i) >= 0;) {

ofs[i] = pcur = new Individual <>();

pcur.g = this.nullary.create(this.random);

}

for (;;) {

for (i = ofs.length; (--i) >= 0;) {

pcur = ofs[i]; // pcur is the ith offspring

pcur.x = this.gpm.gpm(pcur.g); // do gpm

pcur.v = f.compute(pcur.x); // get objective value

if ((pop[i] == null) || (pcur.v <= pop[i].v)) { // offspring better than parent?

pop[i] = pcur; // replace parent

if (pcur.v < pbest.v) { // check if we found best

pbest.assign(pcur);

}

}

if (this.termination.shouldTerminate ()) {

return pbest;

}

}

for (i = pop.length; (--i) >= 0;) { // create offspring

ofs[i] = pcur = new Individual <>(); // pick first parent

do {

j = this.random.nextInt(pop.length);

} while (j == i); // different parents!

do {

k = this.random.nextInt(pop.length);

} while ((k == i) || (k == j)); // different parents!

pcur.g = this.ternary.recombine(pop[j].g, pop[k].g, pop[i].g, this.random);

}

}

}

} Metaheuristic Optimization Thomas Weise 31/41

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 32/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼

❼

❼

Metaheuristic Optimization Thomas Weise 33/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼

❼

Metaheuristic Optimization Thomas Weise 33/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼ The rest are just copied from g3 directly

❼

Metaheuristic Optimization Thomas Weise 33/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼ The rest are just copied from g3 directly

❼ Two basic methods

Metaheuristic Optimization Thomas Weise 33/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼ The rest are just copied from g3 directly

❼ Two basic methods

1 binomial: For each gene in the offspring, use ternary crossover principle
with probability cr and copy the corresponding value from g3 with
probability 1− cr

Metaheuristic Optimization Thomas Weise 33/41

Gene-wise Recombination

recombinationDE(g1, g2, g3) = g3 + F (g1 − g2) (1)

❼ Modification: crossover is not applied to all genes at once

❼ Instead, a gene crossover rate cr is used to determine which genes
should computed according to the ternary principle

❼ The rest are just copied from g3 directly

❼ Two basic methods

1 binomial: For each gene in the offspring, use ternary crossover principle
with probability cr and copy the corresponding value from g3 with
probability 1− cr

2 exponential: use ternary crossover principle for a consecutive group of
genes, with a exponentially distributed length according to cr; copy the
rest from g3

Metaheuristic Optimization Thomas Weise 33/41

Binomial DE Recombination

Listing: The Binomial DE Recombination

public class RnRecombineDEBin extends RnRecombineDE {

/** the crossover rate */

private final double cr;

public double [] recombine(final double [] g1, final double [] g2, final

double [] g3, final Random r) {

final double [] res = g1.clone();

for (int i = res.length; (--i) >= 0;) {

if (r.nextDouble () < this.cr) {

res[i] = Math.max(this.min , Math.min(this.max , //

(g3[i] + (this.F * (g1[i] - g2[i])))));

}

}

return res;

}

}

Metaheuristic Optimization Thomas Weise 34/41

Section Outline

1 Introduction

2 Reproduction I

3 Examples

4 Putting it Together

5 Reproduction II

6 Summary

Metaheuristic Optimization Thomas Weise 35/41

Summary

❼ EA for numerical optimization

❼

❼

Metaheuristic Optimization Thomas Weise 36/41

Summary

❼ EA for numerical optimization

❼ Simple self-adaption without any parameter by ternary recombination

❼

Metaheuristic Optimization Thomas Weise 36/41

Summary

❼ EA for numerical optimization

❼ Simple self-adaption without any parameter by ternary recombination

❼ Parents compete with their children in the population

Metaheuristic Optimization Thomas Weise 36/41

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 37/41

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 38/41

Bibliography I

1. Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution – A Practical Approach to Global
Optimization. Natural Computing Series. Basel, Switzerland: Birkhäuser Verlag, 2005. ISBN 3-540-20950-6,
3-540-31306-0, 978-3-540-20950-8, and 978-3-540-31306-9. URL http://books.google.de/books?id=S67vX-KqVqUC.

2. Vitaliy Feoktistov. Differential Evolution – In Search of Solutions, volume 5 of Springer Optimization and Its Applications.
New York, NY, USA: Springer New York, December 2006. ISBN 0-387-36895-7, 0-387-36896-5, 978-0-387-36895-5, and
978-0-387-36896-2. URL http://books.google.de/books?id=kG7aP_v-SU4C.

3. Efrén Mezura-Montes, Jesús Velázquez-Reyes, and Carlos Artemio Coello Coello. A comparative study of differential
evolution variants for global optimization. In Maarten Keijzer and Mike Cattolico, editors, Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation (GECCO’06), pages 485–492, Seattle, WA, USA: Renaissance
Seattle Hotel, July 8–12, 2006. New York, NY, USA: ACM Press. doi: 10.1145/1143997.1144086. URL
http://delta.cs.cinvestav.mx/~ccoello/conferences/mezura-gecco2006.pdf.gz.

4. Janez Brest, Viljem Žumer, and Mirjam Sepesy Maučec. Control parameters in self-adaptive differential evolution. In
Bogdan Filipič and Jurij Šilc, editors, Proceedings of the Second International Conference on Bioinspired Optimization
Methods and their Applications (BIOMA’06), Informacijska Družba (Information Society), pages 35–44, Ljubljana,
Slovenia: Jožef Stefan International Postgraduate School, October 9–10, 2006. Ljubljana, Slovenia: Jožef Stefan Institute.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8106.

5. Jouni A. Lampinen and Ivan Zelinka. On stagnation of the differential evolution algorithm. In Pavel Osmera, editor,
Proceedings of the 6th International Conference on Soft Computing (MENDEL’00), pages 76–83, Brno, Czech Republic:

Brno University of Technology, June 7–9, 2000. Brno, Czech Republic: Brno University of Technology, Ústav Automatizace
a Informatiky. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7932.

6. Roberto R. F. Mendes and Arvind S. Mohais. Dynde: A differential evolution for dynamic optimization problems. In
David Wolfe Corne, Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca,
Günther R. Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’05), volume 3, pages 2808–2815, Edinburgh, Scotland, UK, September 2–5, 2005. Piscataway, NJ,
USA: IEEE Computer Society. doi: 10.1109/CEC.2005.1555047. URL
http://www3.di.uminho.pt/~rcm/publications/DynDE.pdf.

Metaheuristic Optimization Thomas Weise 39/41

http://books.google.de/books?id=S67vX-KqVqUC
http://books.google.de/books?id=kG7aP_v-SU4C
http://delta.cs.cinvestav.mx/~ccoello/conferences/mezura-gecco2006.pdf.gz
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8106
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7932
http://www3.di.uminho.pt/~rcm/publications/DynDE.pdf

Bibliography II

7. Patricia Besson, Jean-Marc Vesin, Vlad Popovici, and Murat Kunt. Differential evolution applied to a multimodal
information theoretic optimization problem. In Franz Rothlauf, Jürgen Branke, Stefano Cagnoni, Ernesto Jorge Fernandes
Costa, Carlos Cotta, Rolf Drechsler, Evelyne Lutton, Penousal Machado, Jason H. Moore, Juan Romero, George D. Smith,
Giovanni Squillero, and Hideyuki Takagi, editors, Applications of Evolutionary Computing – Proceedings of EvoWorkshops
2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC (EvoWorkshops’06),
volume 3907/2006 of Lecture Notes in Computer Science (LNCS), pages 505–509, Budapest, Hungary, April 10–12, 2006.
Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/11732242 46.

8. Rainer M. Storn. Differential evolution (de) for continuous function optimization (an algorithm by kenneth price and rainer
storn), 2010. URL http://www.icsi.berkeley.edu/~storn/code.html.

9. Rainer M. Storn and Kenneth V. Price. Differential evolution – a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report TR-95-012, Berkeley, CA, USA: International Computer Science
Institute (ICSI), University of California, March 1995. URL http://http.icsi.berkeley.edu/~storn/TR-95-012.pdf.

10. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine,
220(4598):671–680, May 13, 1983. doi: 10.1126/science.220.4598.671. URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf.

11. Vladiḿır Černý. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41–51, January 1985. doi: 10.1007/BF00940812. URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf. Communicated by S. E. Dreyfus. Also: Technical
Report, Comenius University, Mlynská Dolina, Bratislava, Czechoslovakia, 1982.

12. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. ACM SIGMICRO
Newsletter, 13(4):143–148, December 1982.

13. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. In International
Symposium on Microarchitecture – Proceedings of the 15th Annual Workshop on Microprogramming (MICRO 15), pages
143–146, Palo Alto, CA, USA, October 5–7, 1982. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics
Engineers).

14. Peter Salamon, Paolo Sibani, and Richard Frost. Facts, Conjectures, and Improvements for Simulated Annealing, volume 7
of SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics (SIAM), 2002. ISBN 0898715083 and 9780898715088. URL
http://books.google.de/books?id=jhAldlYvClcC.

Metaheuristic Optimization Thomas Weise 40/41

http://www.icsi.berkeley.edu/~storn/code.html
http://http.icsi.berkeley.edu/~storn/TR-95-012.pdf
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf
http://books.google.de/books?id=jhAldlYvClcC

Bibliography III

15. Peter J. M. van Laarhoven and Emile H. L. Aarts, editors. Simulated Annealing: Theory and Applications, volume 37 of
Mathematics and its Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987. ISBN 90-277-2513-6,
978-90-277-2513-4, and 978-90-481-8438-5. URL http://books.google.de/books?id=-IgUab6Dp_IC.

16. Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research Notes in Artificial Intelligence. London,
UK: Pitman, 1987. ISBN 0273087711, 0934613443, 9780273087717, and 978-0934613446. URL
http://books.google.de/books?id=edfSSAAACAAJ.

17. James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience, first
edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 978-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f66OIvvkKnAC.

18. Hans-Georg Beyer. The Theory of Evolution Strategies. Natural Computing Series. New York, NY, USA: Springer New
York, May 27, 2001. ISBN 3-540-67297-4 and 978-3-540-67297-5. URL
http://books.google.de/books?id=8tbInLufkTMC.

19. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ.

Metaheuristic Optimization Thomas Weise 41/41

http://books.google.de/books?id=-IgUab6Dp_IC
http://books.google.de/books?id=edfSSAAACAAJ
http://books.google.de/books?id=f66OIvvkKnAC
http://books.google.de/books?id=8tbInLufkTMC
http://books.google.de/books?id=QcNNGQAACAAJ

	Outline
	Introduction
	Section Outline
	Introduction

	Reproduction I
	Section Outline
	Self-Adaptiation through Self-Organization
	Ternary Reproduction Operator

	Examples
	Section Outline
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 2

	Putting it Together
	Section Outline
	DE Recombination
	Differential Evolution Implementation

	Reproduction II
	Section Outline
	Gene-wise Recombination
	Binomial DE Recombination

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

