
Metaheuristic Optimization
12. Evolution Strategies

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 2/51

w
eb
si
te

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . .)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . .)

❼ Different population treatments

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . .)

❼ Different population treatments

❼ Mutation as main search operation

❼

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . .)

❼ Different population treatments

❼ Mutation as main search operation

❼ Idea: Self-adaptation of search – search operations automatically
fine-tuned according to progress of search

❼

Metaheuristic Optimization Thomas Weise 3/51

Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . .)

❼ Different population treatments

❼ Mutation as main search operation

❼ Idea: Self-adaptation of search – search operations automatically
fine-tuned according to progress of search

❼ Endogenous and exogenous strategy parameters

Metaheuristic Optimization Thomas Weise 3/51

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 4/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive
❼ parents may survive: preservative/steady-state method

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive
❼ parents may survive: preservative/steady-state method

❼ (µ, λ)-algorithm

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive
❼ parents may survive: preservative/steady-state method

❼ (µ, λ)-algorithm:
❼ λ ≥ µ offspring are created from µ parents

❼

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive
❼ parents may survive: preservative/steady-state method

❼ (µ, λ)-algorithm:
❼ λ ≥ µ offspring are created from µ parents
❼ from the λ offspring, only the µ best ones survive

❼

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ Evolution Strategys use truncation selection – we alreay discussed
that in the GA lecture

❼ Two population size-related parameters:

1 λ number of offsprings
2 µ size of the mating pool

❼ (µ+ λ)-algorithm:
❼ λ offsprings are created from µ parents
❼ the set of λ offsprings and µ parents forms the new population of size

ps = µ+ λ
❼ only the µ fittest among these ps individuals survive
❼ parents may survive: preservative/steady-state method

❼ (µ, λ)-algorithm:
❼ λ ≥ µ offspring are created from µ parents
❼ from the λ offspring, only the µ best ones survive
❼ all parents are discarded: extinctive/generational EA

Metaheuristic Optimization Thomas Weise 5/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: ?

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: ?

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: ?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation
❼ ρ = number of parents per offspring

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation
❼ ρ = number of parents per offspring
❼ Default: ρ = 1 (mutation only); ρ = 2 (crossover)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation
❼ ρ = number of parents per offspring
❼ Default: ρ = 1 (mutation only); ρ = 2 (crossover)

❼ (µ/ρ, λ)

❼

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation
❼ ρ = number of parents per offspring
❼ Default: ρ = 1 (mutation only); ρ = 2 (crossover)

❼ (µ/ρ, λ):
❼ (µ, λ) Evolution Strategy with ρ-ary reproduction operation

❼

Metaheuristic Optimization Thomas Weise 6/51

Population Treatment

❼ (µ+ λ)-algorithm

❼ (µ, λ)-algorithm

❼ (1 + 1)-ES: Hill Climbing

❼ (1, 1)-ES: Random Walk

❼ (∞ +, ∗)-ES: Random Sampling

❼ (µ/ρ + λ):
❼ (µ+ λ) Evolution Strategy with ρ-ary reproduction operation
❼ ρ = number of parents per offspring
❼ Default: ρ = 1 (mutation only); ρ = 2 (crossover)

❼ (µ/ρ, λ):
❼ (µ, λ) Evolution Strategy with ρ-ary reproduction operation
❼ from the λ offspring, only the µ best ones survive

Metaheuristic Optimization Thomas Weise 6/51

Selection

❼ Only the µ fittest individuals survive, in both (µ+ λ) and (µ, λ) ES

❼

❼

Metaheuristic Optimization Thomas Weise 7/51

Selection

❼ Only the µ fittest individuals survive, in both (µ+ λ) and (µ, λ) ES

❼ Simple, deterministic selection algorithm: truncationSelection

❼

Metaheuristic Optimization Thomas Weise 7/51

Selection

❼ Only the µ fittest individuals survive, in both (µ+ λ) and (µ, λ) ES

❼ Simple, deterministic selection algorithm: truncationSelection

❼ Already discussed in the GA lecture

Metaheuristic Optimization Thomas Weise 7/51

Truncation Selection

matePool←− truncationSelection(µ, pop)

Input: pop: the list of individuals to select from (length λ or µ+ λ)
Input: µ: the number of individuals to be placed into the mating pool matePool
Output: matePool: the survivors of the truncation which now form the mating pool

begin
sort the pop according to fitness (best first)
return first µ individuals from pop

Metaheuristic Optimization Thomas Weise 8/51

Truncation Selection

Listing: The Truncation Selection Algorithm

public class TruncationSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

Arrays.sort(pop);

System.arraycopy(pop , 0, mate , 0, mate.length);

}

}

Metaheuristic Optimization Thomas Weise 9/51

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 10/51

Mutation

❼ Mutation and selection are the main operations that drive the ES

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/51

Mutation

❼ Mutation and selection are the main operations that drive the ES

❼ Most common ES: (1 + 1), i.e., there is no recombination

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/51

Mutation

❼ Mutation and selection are the main operations that drive the ES

❼ Most common ES: (1 + 1), i.e., there is no recombination

❼ For simplicity, assume that search space G and solution space X are
the same (i.e., we do not need a GPM)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/51

Mutation

❼ Mutation and selection are the main operations that drive the ES

❼ Most common ES: (1 + 1), i.e., there is no recombination

❼ For simplicity, assume that search space G and solution space X are
the same (i.e., we do not need a GPM)

❼ Let us assume the search space is the real numbers, i.e., X = G = R.

❼

❼

Metaheuristic Optimization Thomas Weise 11/51

Mutation

Metaheuristic Optimization Thomas Weise 11/51

Mutation

Metaheuristic Optimization Thomas Weise 11/51

Mutation

Metaheuristic Optimization Thomas Weise 11/51

Mutation

Metaheuristic Optimization Thomas Weise 11/51

Mutation

❼ Mutation and selection are the main operations that drive the ES

❼ Most common ES: (1 + 1), i.e., there is no recombination

❼ For simplicity, assume that search space G and solution space X are
the same (i.e., we do not need a GPM)

❼ Let us assume the search space is the real numbers, i.e., X = G = R.

❼ ESes mutate an real value x ∈ R by replacing it with a new sample
from a normal distribution with µ = x

❼ Parameter of the mutation operator: standard deviation σ of normal
distribution as step length

Metaheuristic Optimization Thomas Weise 11/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel

❼

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel

❼

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼ We want to be able to create new candidate solutions in a way that
can “follow” these shapes!

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼ We want to be able to create new candidate solutions in a way that
can “follow” these shapes!

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼ We want to be able to create new candidate solutions in a way that
can “follow” these shapes!

Metaheuristic Optimization Thomas Weise 12/51

Objective Function

❼ The objective function is usually n-dimensional and may have
different characteristics:

❼ It could be nice: symmetric and axis-parallel
❼ Maybe it is ill-defined (values alone one axis have much higher impact)

and axis-parallel
❼ Maybe it is both ill-defined and not axis-parallel

❼ We want to be able to create new candidate solutions in a way that
can “follow” these shapes!

Metaheuristic Optimization Thomas Weise 12/51

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

Metaheuristic Optimization Thomas Weise 13/51

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Assume that the individuals in the blue sphere
are selected, as they are the best ones for some
reason

Metaheuristic Optimization Thomas Weise 13/51

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Assume that the individuals in the blue sphere
are selected, as they are the best ones for some
reason

❼ The interesting range on the x1-axis seems to
be small, whereas the interesting range on the
x2-axis is rather large

❼

Metaheuristic Optimization Thomas Weise 13/51

selected
parents

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ The interesting range on the x1-axis seems to
be small, whereas the interesting range on the
x2-axis is rather large

❼ Also, there is a correlation between the two di-
mensions: selected solutions with larger x1 val-
ues also tend to have larger x2 values and vice
versa

Metaheuristic Optimization Thomas Weise 13/51

selected
parents

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ It would be cool if the (normal) dis-
tribution of possible offspring could
also have such features

Metaheuristic Optimization Thomas Weise 13/51

selected
parents

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ It would be cool if the (normal) dis-
tribution of possible offspring could
also have such features

❼ Say we want to mutate the solution
~x′ in the middle and create a cloud

of n offspring points from it. . .

Metaheuristic Optimization Thomas Weise 13/51

selected
parents

x’

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Say we want to mutate the solution
~x′ in the middle and create a cloud

of n offspring points from it. . .

B if we mutate each
dimension with the
same standard
deviation, we get a
round cloud of points
(the iso-probability
lines form circles)

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X

0 10 1

2

B

selected
parents

x’

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Say we want to mutate the solution
~x′ in the middle and create a cloud

of n offspring points from it. . .

B if we mutate each
dimension with the
same standard
deviation, we get a
round cloud of points
(the iso-probability
lines form circles)

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X

0 10 1

2

B

selected
parents

x’

A
x1

x2

Many solutions gener-
ated outside the inter-
esting range.

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Say we want to mutate the solution
~x′ in the middle and create a cloud

of n offspring points from it. . .

C if we mutate each
dimension with a
separate standard
deviation (i.e., use a
vector σ), we can get
an elliptic cloud of
points (the
iso-probability lines
form ellipses)

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X0 10 1

2 sX X1 1

sX X0 0()s »

B C

selected
parents

x’

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Say we want to mutate the solution
~x′ in the middle and create a cloud

of n offspring points from it. . .

C if we mutate each
dimension with a
separate standard
deviation (i.e., use a
vector σ), we can get
an elliptic cloud of
points (the
iso-probability lines
form ellipses)

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X0 10 1

2 sX X1 1

sX X0 0()s »

B C

selected
parents

x’

A
x1

x2

Fewer solutions gener-
ated outside the inter-
esting range, but still
many.

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

D with full covariance
matrices C, we can get
a cloud of points which
is shaped similar to the
selection, i.e., we has
the shape of a rotated
ellipse

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X0 10 1

2 C = sX X1 1

sX X0 0
sX X0 1

sX X1 0
()sX X1 1

sX X0 0()s »

B C D

selected
parents

x’

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

D with full covariance
matrices C, we can get
a cloud of points which
is shaped similar to the
selection, i.e., we has
the shape of a rotated
ellipse

❼ Of course, D is more
complicated to
implement than C,
which is more
complicated to
implement than B

❼

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X0 10 1

2 C = sX X1 1

sX X0 0
sX X0 1

sX X1 0
()sX X1 1

sX X0 0()s »

B C D

selected
parents

x’

A
x1

x2

Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Of course, D is more
complicated to
implement than C,
which is more
complicated to
implement than B

❼ Also: for C (and even
more so for D), we
need more data (σ,
C), and slower
calculations

Metaheuristic Optimization Thomas Weise 13/51

s »
s +sX X X X0 10 1

2 C = sX X1 1

sX X0 0
sX X0 1

sX X1 0
()sX X1 1

sX X0 0()s »

B C D

selected
parents

x’

A
x1

x2

Mutation Operation B

❼ Single-valued standard deviation as step-width for mutation p.w = σ

~x←− mutationESw=σ(σ, ~x
′)

Input: ~x′ ∈ R
n: the input vector

Input: σ ∈ R: the standard deviation of the mutation
Data: i: a counter variable
Output: ~x ∈ R

n: the mutated version of x′

begin
for i←− 0 up to n− 1 do

vecxi ←− ~x′
i + σ{Gaussian random number}

return ~x

Metaheuristic Optimization Thomas Weise 14/51

Mutation Operation C

❼ Vector of standard deviations as step-width for mutation p.w = ~σ

~x←− mutationESw=~σ(~σ, ~x
′)

Input: ~x′ ∈ R
n: the input vector

Input: ~σ ∈ R
n: the standard deviation vector of the mutation

Data: i: a counter variable
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~xi ←− ~x′
i + ~σi{Gaussian random number}

return ~x

Metaheuristic Optimization Thomas Weise 15/51

Mutation Operator B + C

Listing: Mutation Operator B + C

public class RnESUnaryNormal extends Rn implements IUnarySearchOperation <double[]> {

public double [] mutate(final double [] genotype , final double [] sigma , final Random r) {

double d;

double [] g = genotype.clone (); // copy the original vector

for (int i = g.length; (--i) >= 0;) {

do { // create a value close to that gene by using the step length parameter

d = (g[i] + (r.nextGaussian () * sigma[i % sigma.length]));

} while ((d < this.min) || (d > this.max)); // make sure that value is OK

g[i] = d; // store value into copied genotype

}

return g; // return the modified copy of the original genotype

}

}

Metaheuristic Optimization Thomas Weise 16/51

Mutation Operation D

❼ Rotation matrix p.w = M

~x←− mutationESw=M(M, ~x′)

Input: ~x′ ∈ R
n: the input vector

Input: M ∈ R
n×n: an (orthogonal) rotation matrix

Data: i, j: a counter variable
Data: ~t: a temporary vector
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~ti ←− {Gaussian random number}

~x←− ~x′

// ~x←− ~x+M~t
for i←− 0 up to n− 1 do

for j ←− 0 up to n− 1 do

~xi ←− ~xi +Mi,j ∗ ~tj

return ~x

1
M if measured, M if theoretical

Metaheuristic Optimization Thomas Weise 17/51

❼ M does not directly represent
a standard deviation, but can
be computed from the
covariance matrix1 of an
n-dimensional normal
distribution

❼

❼

Mutation Operation D

❼ Rotation matrix p.w = M

~x←− mutationESw=M(M, ~x′)

Input: ~x′ ∈ R
n: the input vector

Input: M ∈ R
n×n: an (orthogonal) rotation matrix

Data: i, j: a counter variable
Data: ~t: a temporary vector
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~ti ←− {Gaussian random number}

~x←− ~x′

// ~x←− ~x+M~t
for i←− 0 up to n− 1 do

for j ←− 0 up to n− 1 do

~xi ←− ~xi +Mi,j ∗ ~tj

return ~x

Metaheuristic Optimization Thomas Weise 17/51

❼ M basically is the
Eigen-Vector matrix of the
covariance matrix M.

❼

Mutation Operation D

❼ Rotation matrix p.w = M

~x←− mutationESw=M(M, ~x′)

Input: ~x′ ∈ R
n: the input vector

Input: M ∈ R
n×n: an (orthogonal) rotation matrix

Data: i, j: a counter variable
Data: ~t: a temporary vector
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~ti ←− {Gaussian random number}

~x←− ~x′

// ~x←− ~x+M~t
for i←− 0 up to n− 1 do

for j ←− 0 up to n− 1 do

~xi ←− ~xi +Mi,j ∗ ~tj

return ~x

Metaheuristic Optimization Thomas Weise 17/51

❼ M basically is the
Eigen-Vector matrix of the
covariance matrix M.

❼ More information on sampling
multi-dimensional normal
distributions based on
covariance/Eigen-Vector
matrices: [12, 13]

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 18/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼ This is the exploration versus exploitation dilemma we talked about in
Lesson 11: Difficulties in Optimization

❼

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼ This is the exploration versus exploitation dilemma we talked about in
Lesson 11: Difficulties in Optimization

❼ Instead of choosing a fixed step-size with its drawbacks. . .

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼ This is the exploration versus exploitation dilemma we talked about in
Lesson 11: Difficulties in Optimization

❼ Instead of choosing a fixed step-size with its drawbacks. Let
the optimization algorithm adapt the step size over time

❼

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼ This is the exploration versus exploitation dilemma we talked about in
Lesson 11: Difficulties in Optimization

❼ Instead of choosing a fixed step-size with its drawbacks. Let
the optimization algorithm adapt the step size over time

❼ Can either be endogeneous (encoded in individuals and evolve with
them)

Metaheuristic Optimization Thomas Weise 19/51

Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time

❼ Mutation step size – remember the simple hill climbing for real-valued
optimization:

❼ Large step size: high initial speed of improvement, later slow
improvement

❼ Small step size: initially low speed, high speed for some time, then
lower speed again

❼ This is the exploration versus exploitation dilemma we talked about in
Lesson 11: Difficulties in Optimization

❼ Instead of choosing a fixed step-size with its drawbacks. Let
the optimization algorithm adapt the step size over time

❼ Can either be endogeneous (encoded in individuals and evolve with
them) or exogenous (maintained for whole population)

Metaheuristic Optimization Thomas Weise 19/51

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 20/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼ Two key parameters are measured:

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼ Two key parameters are measured:

1 success probability P (S) of the mutation operation

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼ Two key parameters are measured:

1 success probability P (S) of the mutation operation
2 progress rate ϕ, i.e., the expected distance gain towards the optimum

❼

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼ Two key parameters are measured:

1 success probability P (S) of the mutation operation
2 progress rate ϕ, i.e., the expected distance gain towards the optimum

❼ Example: Sphere function

f(~x) =
n
∑

i=1

~x2i with G = X ⊆ R
n (1)

Metaheuristic Optimization Thomas Weise 21/51

Self-Adaptation on Sphere Function

Metaheuristic Optimization Thomas Weise 22/51

Self-Adaptation on Sphere Function

Metaheuristic Optimization Thomas Weise 22/51

Self-Adaptation on Sphere Function

Metaheuristic Optimization Thomas Weise 22/51

Self-Adaptation on Sphere Function

Metaheuristic Optimization Thomas Weise 22/51

Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

❼

❼

Metaheuristic Optimization Thomas Weise 23/51

Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

lim
σ→0

P (S) = 0.5 (2)

lim
σ→0

ϕ = 0 (3)

❼

❼

Metaheuristic Optimization Thomas Weise 23/51

Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

lim
σ→0

P (S) = 0.5 (2)

lim
σ→0

ϕ = 0 (3)

❼ For very large standard deviations σ:

❼

Metaheuristic Optimization Thomas Weise 23/51

Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

lim
σ→0

P (S) = 0.5 (2)

lim
σ→0

ϕ = 0 (3)

❼ For very large standard deviations σ:

lim
σ→+∞

P (S) = 0 (4)

lim
σ→+∞

ϕ = 0 (5)

❼

Metaheuristic Optimization Thomas Weise 23/51

Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

lim
σ→0

P (S) = 0.5 (2)

lim
σ→0

ϕ = 0 (3)

❼ For very large standard deviations σ:

lim
σ→+∞

P (S) = 0 (4)

lim
σ→+∞

ϕ = 0 (5)

❼ In between the two extreme cases (for 0 < σ < +∞) lies an area
where ϕ > 0 and 0 < P (S) < 0.5.

Metaheuristic Optimization Thomas Weise 23/51

The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼

Metaheuristic Optimization Thomas Weise 24/51

The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼ P (S) is monotonously decreasing with rising σ from
limσ→0 P (S) = 0.5 to limσ→+∞ P (S) = 0

Metaheuristic Optimization Thomas Weise 24/51

The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼ P (S) is monotonously decreasing with rising σ from
limσ→0 P (S) = 0.5 to limσ→+∞ P (S) = 0

1 if success probability P (S) > 0.2, increase the mutation strength σ ⇒
faster progress towards optimum

Metaheuristic Optimization Thomas Weise 24/51

The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼ P (S) is monotonously decreasing with rising σ from
limσ→0 P (S) = 0.5 to limσ→+∞ P (S) = 0

1 if success probability P (S) > 0.2, increase the mutation strength σ ⇒
faster progress towards optimum

2 if the fraction of accepted mutations falls below 0.2, step size is too
large and σ must be reduced

Metaheuristic Optimization Thomas Weise 24/51

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Initialize iteration counter t,
success counter s, and
mutation strength σ

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Create initial point in search
space pbest.g, map it to
candidate solution pbest.x,
compute its objective value
pbest.y = f(pbest.x), and store
it in “current” individual pnew

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ map point in search space
pnew.g of current individual to
candidate solution pnew.x and
compute its objective value
pnew.y = f(pnew.x)

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ If current individual pnew is
better then best known
individual pbest,

❼

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ If current individual pnew is
better then best known
individual pbest,

❼ store it in pbest and

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ If current individual pnew is
better then best known
individual pbest,

❼ store it in pbest and

❼ increase success counter s by
one.

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼

❼

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼ if less than 0.2. . .

❼

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼ if less than 0.2, decrease σ by
multiplying it with constant
a ∈ [0, 1].

❼

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼ if less than 0.2, decrease σ by
multiplying it with constant
a ∈ [0, 1].

❼ if larger than 0.2. . .

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼ if larger than 0.2, increase σ by
dividing it by constant
a ∈ [0, 1].

❼

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ After every L iterations, it is
time for self-adaptation.

❼ Compute the achieved success
rate P (S) during the last L
steps.

❼ if larger than 0.2, increase σ by
dividing it by constant
a ∈ [0, 1].

❼ Finally, reset success counter s
to 0.

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Perform mutation by using
step-width σ

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Increase iteration counter t

1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Return best candidate solution
discovered.

(1+1) ES with 1/5th rule

Listing: (1+1) ES with 1/5th rule

public class ES1P1 <X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

Individual <double[], X> pstar = new Individual <>(); // best individual

Individual <double[], X> pnew = new Individual <>(); // "new" individual

RnESUnaryNormal esUnary = ((RnESUnaryNormal) (this.unary));

double [] sigma = new double [] { this.sigma0 };

int s = 0;

int t = 1; // init success and iteration counter

pstar.g = this.nullary.create(this.random); // create first genotype

pstar.x = this.gpm.gpm(pstar.g); // get phenotype for that genotype

pstar.v = f.compute(pstar.x); // evaluate: how good is the phenotype?

while (!(this.termination.shouldTerminate ())) { // until we should finish ...

pnew.g = esUnary.mutate(pstar.g, sigma , this.random); // mutate using sigma

pnew.x = this.gpm.gpm(pnew.g); // get phenotype for that genotype

pnew.v = f.compute(pnew.x); // evaluate the new phenotype

if (pnew.v <= pstar.v) { // if the new individual is better ...

pstar.assign(pnew); // it becomes the new best individual

s++; // count the success

}

if ((t % this.L) == 0) { // is it time to update sigma?

double Ps = (((double) s) / ((double) (this.L))); // need floating point div!

if (Ps < 0.2d) {

sigma [0] *= this.a; // not enough success: decrease sigma

} else {

if (Ps > 0.2d) {

sigma [0] /= this.a; // too successful: increase sigma

}

}

s = 0; // reset success counter

}

t++; // count iteration

}

return pstar; // return the best individual that we have discovered

}

}
Metaheuristic Optimization Thomas Weise 26/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
❼ intended for (1 + 1)-ES: makes no use of population

❼

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
❼ intended for (1 + 1)-ES: makes no use of population
❼ Only a single parameter σ: cannot model different step widths for

different dimensions or dependencies between dimensions

❼

Metaheuristic Optimization Thomas Weise 27/51

1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
❼ intended for (1 + 1)-ES: makes no use of population
❼ Only a single parameter σ: cannot model different step widths for

different dimensions or dependencies between dimensions
❼ Only a single parameter σ: cannot easily be extended for

population-based methods

Metaheuristic Optimization Thomas Weise 27/51

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 28/51

Endogeneous Parameters

❼ Instead of having one central exogeneous1 (set of) strategy
parameter(s). . .

❼

❼

❼

❼

❼

❼

1≡ outside of the genes
Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼ Strategy parameters are now similar to (or inside) the
genotype/genes, i.e., are endogeneous1

❼

❼

❼

1≡ inside of the genes
Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼ Strategy parameters are now similar to (or inside) the
genotype/genes, i.e., are endogeneous

❼ p.w could be step-width for mutation if applied to individual p

❼

❼

Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼ Strategy parameters are now similar to (or inside) the
genotype/genes, i.e., are endogeneous

❼ p.w could be step-width for mutation if applied to individual p

❼ Information p.w undergoes reproduction, similar to genotypes p.g ∈ G

❼

Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼ Strategy parameters are now similar to (or inside) the
genotype/genes, i.e., are endogeneous

❼ p.w could be step-width for mutation if applied to individual p

❼ Information p.w undergoes reproduction, similar to genotypes p.g ∈ G

❼ As it is subject to selection, good strategy parameters will be
discovered in the same way in which good candidate solutions are
discovered.

Metaheuristic Optimization Thomas Weise 29/51

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Start with creating a random
initial population, where each
individual p has a (random)
point in search space p.g
(genotype) and (random)
information p.w component

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform the
genotype-phenotype mapping,
i.e., translate the genotypes p.g
to the corresponding candidate
solutions p.x

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Compute the objective values
(update best-so-far solution
pbest if a new, better one is
discovered)

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform survival selection

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform survival selection
❼ in (µ, λ)-ESs, select only

from the current population

❼

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform survival selection
❼ in (µ, λ)-ESs, select only

from the current population
❼ in (µ+ λ)-ESs, select from

the current population and
the mating pool

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform survival selection
❼ in (µ, λ)-ESs, select only

from the current population
❼ in (µ+ λ)-ESs, select from

the current population and
the mating pool

❼ Only in first iteration: no
selection.

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ . . . first select ρ parents,

❼

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ . . . first select ρ parents,
❼ (re)combine the parental

genotypes,

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ . . . first select ρ parents,
❼ (re)combine the parental

genotypes,
❼ and then (re)combine the

endogenous information.

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ One endogeneous set of
parameters (for mutation
operation) exists per
individual

❼

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ One endogeneous set of
parameters (for mutation
operation) exists per
individual

❼ Parameter setting of
algorithm evolves along with
the solutions

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ One endogeneous set of
parameters (for mutation
operation) exists per
individual

❼ Parameter setting of
algorithm evolves along with
the solutions

❼ Good settings survive along
with the candidate solutions
that they have created

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Mutate the endogenous
information (parameter settings
for genotype mutation)

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Mutate the endogenous
information (parameter settings
for genotype mutation)

❼ Endogenous information is
mutated before applying it in
the mutation operation: only
the values that actually
influenced the fitness are in w

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Use the mutated endogenous
information as parameter for
the mutation operator (e.g., as
step length) in order to mutate
the newly created genotype

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Put the new individuals into
the population

❼

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Put the new individuals into
the population. . .

❼ . . . and start the next cycle

Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered

Metaheuristic Optimization Thomas Weise 30/51

❼ Evolution Strategies follow
same basic pattern as GAs

❼ Return the best candidate
solutions that were discovered

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 31/51

[A] Discrete Recombination

❼ Extension of uniform crossover to ρ real vectors

❼

Metaheuristic Optimization Thomas Weise 32/51

[A] Discrete Recombination

❼ Extension of uniform crossover to ρ real vectors

❼ if ρ = 2, returns corner of hyper-cube created by parents

Metaheuristic Optimization Thomas Weise 32/51

[A] Discrete Recombination

❼ Extension of uniform crossover to ρ real vectors

❼ if ρ = 2, returns corner of hyper-cube created by parents

~g′ ←− recombinationDiscrete(parents)

Input: parents: the list of ρ parent individuals
Data: i: a counter variable
Data: p: a parent individual
Output: ~g′: the offspring of the parents

begin
for i←− 0 up to n− 1 do

p←− parents[{randomly from 0..ρ− 1}]

~g′i ←− p.gi

return ~g′

Metaheuristic Optimization Thomas Weise 32/51

Discrete Recombination

Listing: Discrete Recombination for 2 Parents

public class RnBinaryDiscrete extends Rn implements

IBinarySearchOperation <double[]> {

public double [] recombine(final double [] parent1 , final

double [] parent2 , final Random r) {

double [] res = parent1.clone ();

for (int i = parent2.length; (--i) >= 0;) {

if (r.nextBoolean ()) {

res[i] = parent2[i];

}

}

return res;

}

}

Metaheuristic Optimization Thomas Weise 33/51

[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors

❼

Metaheuristic Optimization Thomas Weise 34/51

[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors

❼ Returns a point inside of hyper-cube defined by the parents

Metaheuristic Optimization Thomas Weise 34/51

[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors

❼ Returns a point inside of hyper-cube defined by the parents

~g′ ←− recombinationIntermediate(parents)

Input: parents: the list of ρ parent individuals
Data: p: a parent individual
Output: ~g′: the offspring of the parents

begin
for i←− 0 up to n− 1 do

s←− 0
for j ←− 0 up to ρ− 1 do

p←− parents[j]
s←− s+ p.gi

~g′i ←−
s
ρ

return ~g′

Metaheuristic Optimization Thomas Weise 34/51

Intermediate Recombination

Listing: Intermediate Recombination for 2 Parents

public class RnBinaryIntermediate extends Rn implements

IBinarySearchOperation <double[]> {

public double [] recombine(final double [] parent1 , final

double [] parent2 , final Random r) {

double [] res = new double[parent1.length];

for (int i = parent2.length; (--i) >= 0;) {

res[i] = (0.5d * (parent1[i] + parent2[i]));

}

return res;

}

}

Metaheuristic Optimization Thomas Weise 35/51

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 36/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ Mutation is different from mutation of a genotype: we mutate a
mutation strength

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ Mutation is different from mutation of a genotype: we mutate a
mutation strength

❼ Mutation means to mutate the degree with which a candidate
solution should be changed

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ Mutation is different from mutation of a genotype: we mutate a
mutation strength

❼ Mutation means to mutate the degree with which a candidate
solution should be changed

❼ Here, not the absolute value (1, 7, 1.5, etc.) is interesting. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ Mutation is different from mutation of a genotype: we mutate a
mutation strength

❼ Mutation means to mutate the degree with which a candidate
solution should be changed

❼ Here, not the absolute value (1, 7, 1.5, etc.) is interesting. . .

❼ . . . but more the scale, i.e., 1, 10, 0.1, 10000, 0.001, . . .

❼

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ So we are concerned about the scale

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ So we are concerned about the scale

❼ Normal distribution produces values of approximately same scale
around its center

❼

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼ So we are concerned about the scale

❼ Log-Normal distribution produces values of difference scale

Metaheuristic Optimization Thomas Weise 37/51

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation with

τ0 =
c√
2n

(6)

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation with

τ0 =
c√
2n

(6)

τ =
c

√

2
√
n

(7)

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation with

τ0 =
c√
2n

(6)

τ =
c

√

2
√
n

(7)

c = 1 (8)

Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ

Metaheuristic Optimization Thomas Weise 38/51

❼ Mutation of strategy
parameters: apply lognormal
mutation with

τ0 =
c√
2n

(6)

τ =
c

√

2
√
n

(7)

c = 1 (8)

n ≡ dimension (9)

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 39/51

CMA-ES

❼ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by
Hansen et al. [16–23] in the mid-1990s

❼

❼

Metaheuristic Optimization Thomas Weise 40/51

CMA-ES

❼ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by
Hansen et al. [16–23] in the mid-1990s

❼ Extremely powerful optimization method for continuous domains
(Rn) [20, 22–24]

❼

Metaheuristic Optimization Thomas Weise 40/51

CMA-ES

❼ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by
Hansen et al. [16–23] in the mid-1990s

❼ Extremely powerful optimization method for continuous domains
(Rn) [20, 22–24]

❼ Works well on rugged landscapes with discontinuities, sharp bends or
ridges, noise, local optima, outliers

Metaheuristic Optimization Thomas Weise 40/51

CMA-ES

❼ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by
Hansen et al. [16–23] in the mid-1990s

❼ Extremely powerful optimization method for continuous domains
(Rn) [20, 22–24]

❼ Works well on rugged landscapes with discontinuities, sharp bends or
ridges, noise, local optima, outliers . . . if a landscape is uni-modal and
continuous, one would not need a metaheuristic method anyway)

Metaheuristic Optimization Thomas Weise 40/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25]

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

Metaheuristic Optimization Thomas Weise 41/51

s »
s +sX X X X0 10 1

2 C = sX X1 1

sX X0 0
sX X0 1

sX X1 0
()sX X1 1

sX X0 0()s »

B C D

selected
parents

x’

A
x1

x2

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼ Both are exogenous parameters maintained centrally and updated by
the algorithm

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼ Both are exogenous parameters maintained centrally and updated by
the algorithm

❼ The center µ of the distribution is set to the weighted average of the
selected parent points

❼

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼ Both are exogenous parameters maintained centrally and updated by
the algorithm

❼ The center µ of the distribution is set to the weighted average of the
selected parent points

❼ Covariance matrix is updated in each iteration with information from
the selected parets

❼

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Principles

❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼ Both are exogenous parameters maintained centrally and updated by
the algorithm

❼ The center µ of the distribution is set to the weighted average of the
selected parent points

❼ Covariance matrix is updated in each iteration with information from
the selected parets

❼ New population is sampled from normal distribution, parent
individuals are discarted (no traditional mutation/crossover)

Metaheuristic Optimization Thomas Weise 41/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:

❼ angle preserving (rigid) transformations of the search space (if the start
points are also transformed), such as

❼ rotation

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:

❼ angle preserving (rigid) transformations of the search space (if the start
points are also transformed), such as

❼ rotation
❼ reflection, and

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:

❼ angle preserving (rigid) transformations of the search space (if the start
points are also transformed), such as

❼ rotation
❼ reflection, and
❼ translation

❼

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)
❼ order preserving (i.e., strictly monotonic) transformations of the

objective function value

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)
❼ order preserving (i.e., strictly monotonic) transformations of the

objective function value (i.e., ||x||2 and 3||x||0.2 − 100 lead to same
result!)

❼

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)
❼ order preserving (i.e., strictly monotonic) transformations of the

objective function value

❼ We want this! (Remember: Roulette-Wheel Selection versus
Truncation Selection)

Metaheuristic Optimization Thomas Weise 42/51

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼ Much literature [16–23, 25] and comprehensive benchmark results [20, 22–24]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼ Much literature [16–23, 25] and comprehensive benchmark results [20, 22–24]

❼ A dedicated website: http://www.lri.fr/~hansen/cmaesintro.html

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼ Much literature [16–23, 25] and comprehensive benchmark results [20, 22–24]

❼ A dedicated website: http://www.lri.fr/~hansen/cmaesintro.html

❼ An own Wikipedia [29] page: https://en.wikipedia.org/wiki/CMA-ES

❼

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼ Much literature [16–23, 25] and comprehensive benchmark results [20, 22–24]

❼ A dedicated website: http://www.lri.fr/~hansen/cmaesintro.html

❼ An own Wikipedia [29] page: https://en.wikipedia.org/wiki/CMA-ES

❼ A tutorial: [25]

❼

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,

❼ ESKit [28]: http://www.marmakoide.org/content/code/eskit.html

❼ Official source code page:
http://www.lri.fr/~hansen/cmaes_inmatlab.html

❼ Much literature [16–23, 25] and comprehensive benchmark results [20, 22–24]

❼ A dedicated website: http://www.lri.fr/~hansen/cmaesintro.html

❼ An own Wikipedia [29] page: https://en.wikipedia.org/wiki/CMA-ES

❼ A tutorial: [25]

❼ When doing numerical optimization, this is the way to go!

Metaheuristic Optimization Thomas Weise 43/51

http://www.marmakoide.org/content/code/eskit.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaesintro.html
https://en.wikipedia.org/wiki/CMA-ES

Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 44/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼ Exogeneous method: central parameters, based on success, e.g.,
1/5th rule

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼ Exogeneous method: central parameters, based on success, e.g.,
1/5th rule

❼ Endogenous method: information encoded in individuals

❼

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼ Exogeneous method: central parameters, based on success, e.g.,
1/5th rule

❼ Endogenous method: information encoded in individuals

❼ Intermediate crossover, Dominant crossover

❼

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼ Exogeneous method: central parameters, based on success, e.g.,
1/5th rule

❼ Endogenous method: information encoded in individuals

❼ Intermediate crossover, Dominant crossover

❼ Log-Normal Parameter Mutation

❼

Metaheuristic Optimization Thomas Weise 45/51

Summary

❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)

❼ Mutation step strength: single value, vector, or matrix

❼ Self-adaptive: adapt to the current phase of the search

❼ Search operator strength is “learned” during optimization

❼ Exogeneous method: central parameters, based on success, e.g.,
1/5th rule

❼ Endogenous method: information encoded in individuals

❼ Intermediate crossover, Dominant crossover

❼ Log-Normal Parameter Mutation

❼ CMA-ES: Powerful Tool!!!

Metaheuristic Optimization Thomas Weise 45/51

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 46/51

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 47/51

Bibliography I

1. Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem. Farnborough, Hampshire, UK: Royal Aircraft
Establishment, August 1965. Library Translation 1122.

2. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ.

3. Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Bad Cannstadt, Stuttgart,
Baden-Württemberg, Germany: Frommann-Holzboog Verlag, 1994. ISBN 3-7728-1642-8 and 978-3-772-81642-0. URL
http://books.google.de/books?id=savAAAACAAJ.

4. Hans-Paul Schwefel. Kybernetische evolution als strategie der exprimentellen forschung in der strömungstechnik. Master’s
thesis, Berlin, Germany: Technische Universität Berlin, 1965.

5. Hans-Paul Schwefel. Experimentelle optimierung einer zweiphasendüse teil i. Technical Report 35, Berlin, Germany: AEG
Research Institute, 1968. Project MHD–Staustrahlrohr 11.034/68.

6. Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Berlin, Germany: Technische
Universität Berlin, Institut für Meß- und Regelungstechnik, Institut für Biologie und Anthropologie, 1975.

7. John Henry Holland. Outline for a logical theory of adaptive systems. Journal of the Association for Computing Machinery
(JACM), 9(3):297–314. doi: 10.1145/321127.321128.

8. John Henry Holland. Adaptive plans optimal for payoff-only environments. In Proceedings of the Second Hawaii
International Conference on System Sciences (HICSS’69), pages 917–920, Honolulu, HI, USA: University of Hawaii at
Manoa, January 22–24, 1969. Amsterdam, The Netherlands: North-Holland Scientific Publishers Ltd. DTIC Accession
Number: AD0688839.

9. John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. Ann Arbor, MI, USA: University of Michigan Press, 1975. ISBN 0-472-08460-7 and
978-0-472-08460-9. URL http://books.google.de/books?id=JE5RAAAAMAAJ.

10. John Henry Holland. Nonlinear environments permitting efficient adaptation. In Julius T. Tou, editor, Proceedings of the
Symposium on Computer and Information Sciences II, pages 147–164, Columbus, OH, USA, August 22–24, 1966. London,
New York: Academic Press.

11. Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Ann Arbor, MI,
USA: University of Michigan, August 1975. URL http://cs.gmu.edu/~eclab/kdj_thesis.html.

12. Stefan Niemczyk and Thomas Weise. A general framework for multi-model estimation of distribution algorithms. Technical
report, Kassel, Hesse, Germany: University of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed Systems
Group, March 10, 2010.

Metaheuristic Optimization Thomas Weise 48/51

http://books.google.de/books?id=QcNNGQAACAAJ
http://books.google.de/books?id=savAAAACAAJ
http://books.google.de/books?id=JE5RAAAAMAAJ
http://cs.gmu.edu/~eclab/kdj_thesis.html

Bibliography II

13. Thomas Weise, Stefan Niemczyk, Raymond Chiong, and Mingxu Wan. A framework for multi-model edas with model
recombination. In Proceedings of the 4th European Event on Bio-Inspired Algorithms for Continuous Parameter
Optimisation (EvoNUM’11), Applications of Evolutionary Computation – Proceedings of EvoApplications 2011:
EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Part 1 (EvoAPPLICATIONS’11),
volume 6624 of Lecture Notes in Computer Science (LNCS), pages 304–313, Torino, Italy, April 27–29, 2011. Berlin,
Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-642-20525-5 31.

14. Hans-Georg Beyer. The Theory of Evolution Strategies. Natural Computing Series. New York, NY, USA: Springer New
York, May 27, 2001. ISBN 3-540-67297-4 and 978-3-540-67297-5. URL
http://books.google.de/books?id=8tbInLufkTMC.

15. Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – a comprehensive introduction. Natural Computing: An
International Journal, 1(1):3–52, March 2002. doi: 10.1023/A:1015059928466. URL
http://www.cs.bham.ac.uk/~pxt/NIL/es.pdf.

16. Nikolaus Hansen, Andreas Ostermeier, and Andreas Gawelczyk. On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. In Larry J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA’95), pages 57–64, Pittsburgh, PA, USA: University of Pittsburgh,
July 15–19, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9321.

17. Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The
covariance matrix adaptation. In Keisoku Jidō and Seigyo Gakkai, editors, Proceedings of IEEE International Conference on
Evolutionary Computation (CEC’96), pages 312–317, Nagoya, Aichi, Japan: Nagoya University, Symposium & Toyoda
Auditorium, May 20–22, 1996. Los Alamitos, CA, USA: IEEE Computer Society Press. URL
http://www.lri.fr/~hansen/CMAES.pdf.

18. Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary
Computation, 9(2):159–195, 2001. URL http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf.

19. Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (cma-es). Evolutionary Computation, 11(1):1–18, Spring 2003. doi:
10.1162/106365603321828970. URL http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf.

Metaheuristic Optimization Thomas Weise 49/51

http://books.google.de/books?id=8tbInLufkTMC
http://www.cs.bham.ac.uk/~pxt/NIL/es.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9321
http://www.lri.fr/~hansen/CMAES.pdf
http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf
http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf

Bibliography III

20. Nikolaus Hansen and Stefan Kern. Evaluating the cma evolution strategy on multimodal test functions. In Xin Yao,
Edmund K. Burke, José Antonio Lozano, Jim Smith, Juan Julián Merelo-Guervós, John A. Bullinaria, Jonathan E. Rowe,
Peter Tiño, Ata Kabán, and Hans-Paul Schwefel, editors, Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature (PPSN VIII), volume 3242/2004 of Lecture Notes in Computer Science (LNCS), pages
282–291, Birmingham, UK, September 18–22, 2008. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/978-3-540-30217-9 29. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.163.

21. Nikolaus Hansen. The cma evolution strategy: A comparing review. In José Antonio Lozano, Pedro Larrañaga, Iñaki Inza,
and Endika Bengoetxea, editors, Towards a New Evolutionary Computation – Advances on Estimation of Distribution
Algorithms, volume 192/2006 of Studies in Fuzziness and Soft Computing, pages 75–102. Berlin, Germany: Springer-Verlag
GmbH, 2006. URL http://www.lri.fr/~hansen/hansenedacomparing.pdf.

22. Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with increasing population size. In David Wolfe Corne,
Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca, Günther R. Raidl,
Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary Computation (CEC’05),
pages 1769–1776, Edinburgh, Scotland, UK, September 2–5, 2005. Piscataway, NJ, USA: IEEE Computer Society. doi:
10.1109/CEC.2005.1554902. URL http://www.lri.fr/~hansen/cec2005ipopcmaes.pdf.

23. Anne Auger and Nikolaus Hansen. Performance evaluation of an advanced local search evolutionary algorithm. In
David Wolfe Corne, Zbigniew Michalewicz, Robert Ian McKay, Ágoston E. Eiben, David B. Fogel, Carlos M. Fonseca,
Günther R. Raidl, Kay Chen Tan, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’05), volume 2, pages 1777–1784, Edinburgh, Scotland, UK, September 2–5, 2005. Piscataway, NJ,
USA: IEEE Computer Society. doi: 10.1109/CEC.2005.1554903. URL
http://www.lri.fr/~hansen/cec2005localcmaes.pdf.

Metaheuristic Optimization Thomas Weise 50/51

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.163
http://www.lri.fr/~hansen/hansenedacomparing.pdf
http://www.lri.fr/~hansen/cec2005ipopcmaes.pdf
http://www.lri.fr/~hansen/cec2005localcmaes.pdf

Bibliography IV

24. Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function testbed. In Franz Rothlauf, Günther R.
Raidl, Anna Isabel Esparcia-Alcázar, Ying-Ping Chen, Gabriela Ochoa, Ender Ozcan, Marc Schoenauer, Anne Auger,
Hans-Georg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros, L. Darrell Whitley, Garnett Wilson, Simon Harding,
William Benjamin Langdon, Man Leung Wong, Laurence D. Merkle, Frank W. Moore, Sevan G. Ficici, William Rand,
Rick L. Riolo, Nawwaf Kharma, William R. Buckley, Julian Francis Miller, Kenneth Owen Stanley, Jaume Bacardit i
Peñarroya, Will N. Browne, Jan Drugowitsch, Nicola Beume, Mike Preuß, Stephen L. Smith, Stefano Cagnoni, Alexandru
Floares, Aaron Baughman, Steven Matt Gustafson, Maarten Keijzer, Arthur Kordon, and Clare Bates Congdon, editors,
Proceedings of the 11th Annual Conference – Companion on Genetic and Evolutionary Computation Conference
(GECCO’09), pages 2389–2395, Montréal, QC, Canada: Delta Centre-Ville Hotel, July 8–12, 2009. New York, NY, USA:
Association for Computing Machinery (ACM). doi: 10.1145/1570256.1570333. URL
http://hal.archives-ouvertes.fr/inria-00382093/en.

25. Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. Orsay, France: Université Paris Sud, Institut National de
Recherche en Informatique et en Automatique (INRIA) Futurs, Équipe TAO, June 28, 2011. URL
http://www.lri.fr/~hansen/cmatutorial.pdf.

26. Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger. Impacts of invariance in search:
When cma-es and pso face ill-conditioned and non-separable problems. 11(8):5755–5769, December 2011. doi:
10.1016/j.asoc.2011.03.001. URL hal.inria.fr/inria-00583669/PDF/hansen2011impacts.pdf. INRIA Report
inria-00583669, version 1, 2011-04-06.

27. Nikolaus Hansen. The cma evolution strategy, February 13, 2012. URL http://www.lri.fr/~hansen/cmaesintro.html.
28. Alexandre Devert. ESKit. Oslo, Østlandet, Norway: Gitorious.org, 2012. URL

http://www.marmakoide.org/content/code/eskit.html.
29. Wikipedia – the free encyclopedia, 2009. URL http://en.wikipedia.org/.

Metaheuristic Optimization Thomas Weise 51/51

http://hal.archives-ouvertes.fr/inria-00382093/en
http://www.lri.fr/~hansen/cmatutorial.pdf
hal.inria.fr/inria-00583669/PDF/hansen2011impacts.pdf
http://www.lri.fr/~hansen/cmaesintro.html
http://www.marmakoide.org/content/code/eskit.html
http://en.wikipedia.org/

	Outline
	Introduction
	Population Treatment
	Section Outline
	Population Treatment
	Population Treatment
	Selection
	Truncation Selection
	Truncation Selection

	Mutation
	Section Outline
	Mutation
	Objective Function
	Mutation Operations B-C
	Mutation Operation B
	Mutation Operation C
	containsverbatim
	Mutation Operation D

	Self-Adaptation
	Section Outline
	Self-Adaptation

	The 1/5th Rule
	Section Outline
	Self-Adaptation: Single Strategy Parameter
	Self-Adaptation on Sphere Function
	Self-Adaptation on Sphere Function
	The 1/5th Rule
	1/5th Rule-based (1+1) Evolution Strategy
	(1+1) ES with 1/5th rule
	1/5th Rule: Advantages and Drawbacks

	Endogeneous Adaptation
	Section Outline
	Endogeneous Parameters
	Endogeneous Adaptation

	Recombination
	Section Outline
	[A] Discrete Recombination
	Discrete Recombination
	[B] Intermediate Recombination
	Intermediate Recombination

	Parameter Reproduction
	Section Outline
	Reproduction of Endogenous Parameters
	Reproduction of Endogenous Parameters

	CMA-ES
	Section Outline
	CMA-ES
	CMA-ES: Principles
	CMA-ES: Invariances
	CMA-ES: Material

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

