
Metaheuristic Optimization
12. Evolution Strategies

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction

8 CMA-ES
Metaheuristic Optimization Thomas Weise 2/51

w
eb
si
te



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . . )

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . . )

❼ Different population treatments

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . . )

❼ Different population treatments

❼ Mutation as main search operation

❼

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . . )

❼ Different population treatments

❼ Mutation as main search operation

❼ Idea: Self-adaptation of search – search operations automatically
fine-tuned according to progress of search

❼

Metaheuristic Optimization Thomas Weise 3/51



Introduction

❼ Evolutionary Algorithm for numerical optimization

❼ Search space: vectors of real numbers, i.e., G = R
n

❼ Developed by Rechenberg [1–3] and Schwefel [4–6] in Dortmund
(Germany) in the 1960s (before most of Holland’s works on Genetic
Algorithms [7–10] and 10 years before Genetic Algorithms were used to
solve mathematical functions by De Jong [11]. . . )

❼ Different population treatments

❼ Mutation as main search operation

❼ Idea: Self-adaptation of search – search operations automatically
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Selection

❼ Only the µ fittest individuals survive, in both (µ+ λ) and (µ, λ) ES

❼ Simple, deterministic selection algorithm: truncationSelection

❼ Already discussed in the GA lecture
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Truncation Selection

matePool←− truncationSelection(µ, pop)

Input: pop: the list of individuals to select from (length λ or µ+ λ)
Input: µ: the number of individuals to be placed into the mating pool matePool
Output: matePool: the survivors of the truncation which now form the mating pool

begin
sort the pop according to fitness (best first)
return first µ individuals from pop

Metaheuristic Optimization Thomas Weise 8/51



Truncation Selection

Listing: The Truncation Selection Algorithm

public class TruncationSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

Arrays.sort(pop);

System.arraycopy(pop , 0, mate , 0, mate.length);

}

}
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Mutation

❼ Mutation and selection are the main operations that drive the ES

❼ Most common ES: (1 + 1), i.e., there is no recombination

❼ For simplicity, assume that search space G and solution space X are
the same (i.e., we do not need a GPM)

❼ Let us assume the search space is the real numbers, i.e., X = G = R.

❼ ESes mutate an real value x ∈ R by replacing it with a new sample
from a normal distribution with µ = x

❼ Parameter of the mutation operator: standard deviation σ of normal
distribution as step length
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Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2
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❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ The interesting range on the x1-axis seems to
be small, whereas the interesting range on the
x2-axis is rather large

❼ Also, there is a correlation between the two di-
mensions: selected solutions with larger x1 val-
ues also tend to have larger x2 values and vice
versa
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Mutation Operations B-C

❼ Let’s look at the structure of a given population
in a 2D-search space X ⊆ R

2

❼ Of course, D is more
complicated to
implement than C,
which is more
complicated to
implement than B

❼ Also: for C (and even
more so for D), we
need more data (σ,
C), and slower
calculations
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Mutation Operation B

❼ Single-valued standard deviation as step-width for mutation p.w = σ

~x←− mutationESw=σ(σ, ~x
′)

Input: ~x′ ∈ R
n: the input vector

Input: σ ∈ R: the standard deviation of the mutation
Data: i: a counter variable
Output: ~x ∈ R

n: the mutated version of x′

begin
for i←− 0 up to n− 1 do

vecxi ←− ~x′
i + σ{Gaussian random number}

return ~x

Metaheuristic Optimization Thomas Weise 14/51



Mutation Operation C

❼ Vector of standard deviations as step-width for mutation p.w = ~σ

~x←− mutationESw=~σ(~σ, ~x
′)

Input: ~x′ ∈ R
n: the input vector

Input: ~σ ∈ R
n: the standard deviation vector of the mutation

Data: i: a counter variable
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~xi ←− ~x′
i + ~σi{Gaussian random number}

return ~x

Metaheuristic Optimization Thomas Weise 15/51



Mutation Operator B + C

Listing: Mutation Operator B + C

public class RnESUnaryNormal extends Rn implements IUnarySearchOperation <double[]> {

public double [] mutate(final double [] genotype , final double [] sigma , final Random r) {

double d;

double [] g = genotype.clone (); // copy the original vector

for (int i = g.length; (--i) >= 0;) {

do { // create a value close to that gene by using the step length parameter

d = (g[i] + (r.nextGaussian () * sigma[i % sigma.length ]));

} while ((d < this.min) || (d > this.max)); // make sure that value is OK

g[i] = d; // store value into copied genotype

}

return g; // return the modified copy of the original genotype

}

}
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Mutation Operation D

❼ Rotation matrix p.w = M

~x←− mutationESw=M(M, ~x′)

Input: ~x′ ∈ R
n: the input vector

Input: M ∈ R
n×n: an (orthogonal) rotation matrix

Data: i, j: a counter variable
Data: ~t: a temporary vector
Output: ~x ∈ R

n: the mutated version of ~x′

begin
for i←− 0 up to n− 1 do

~ti ←− {Gaussian random number}

~x←− ~x′

// ~x←− ~x+M~t
for i←− 0 up to n− 1 do

for j ←− 0 up to n− 1 do

~xi ←− ~xi +Mi,j ∗ ~tj

return ~x

1
M if measured, M if theoretical

Metaheuristic Optimization Thomas Weise 17/51

❼ M does not directly represent
a standard deviation, but can
be computed from the
covariance matrix1 of an
n-dimensional normal
distribution

❼
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Input: ~x′ ∈ R
n: the input vector

Input: M ∈ R
n×n: an (orthogonal) rotation matrix
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Data: ~t: a temporary vector
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~x←− ~x′

// ~x←− ~x+M~t
for i←− 0 up to n− 1 do

for j ←− 0 up to n− 1 do

~xi ←− ~xi +Mi,j ∗ ~tj

return ~x

Metaheuristic Optimization Thomas Weise 17/51

❼ M basically is the
Eigen-Vector matrix of the
covariance matrix M.

❼ More information on sampling
multi-dimensional normal
distributions based on
covariance/Eigen-Vector
matrices: [12, 13]
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Self-Adaptation

❼ Evolution Strategies are self-adaptive: the parameter (step width) of
the mutation operator changes over time
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them) or exogenous (maintained for whole population)
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Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed
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Self-Adaptation: Single Strategy Parameter

❼ Assume case B, a single standard deviation as step-width for the
mutation normal distributed

❼ Idea: Adapt this step-width according to success of search [2, 14]

❼ In basic algorithm: (1 + 1)-ES

❼ Two key parameters are measured:

1 success probability P (S) of the mutation operation
2 progress rate ϕ, i.e., the expected distance gain towards the optimum

❼ Example: Sphere function

f(~x) =
n
∑

i=1

~x2i with G = X ⊆ R
n (1)
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Self-Adaptation on Sphere Function

❼ For very small standard deviations σ:

lim
σ→0

P (S) = 0.5 (2)

lim
σ→0

ϕ = 0 (3)

❼ For very large standard deviations σ:

lim
σ→+∞

P (S) = 0 (4)

lim
σ→+∞

ϕ = 0 (5)

❼ In between the two extreme cases (for 0 < σ < +∞) lies an area
where ϕ > 0 and 0 < P (S) < 0.5.
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The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼
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The 1/5th Rule

Definition (1/5th Rule)

In order to obtain nearly optimal (local) performance of the (1 + 1)-ES
with isotropic mutation, tune the mutation strength σ in such a way that
the success rate P (S) (estimated based on past operator applications) is
about 1/5 [15].

❼ P (S) is monotonously decreasing with rising σ from
limσ→0 P (S) = 0.5 to limσ→+∞ P (S) = 0

1 if success probability P (S) > 0.2, increase the mutation strength σ ⇒
faster progress towards optimum

2 if the fraction of accepted mutations falls below 0.2, step size is too
large and σ must be reduced

Metaheuristic Optimization Thomas Weise 24/51



1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber
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❼ Initialize iteration counter t,
success counter s, and
mutation strength σ
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❼ (1 + 1)-ES = self-adaptive hill
climber

❼ Create initial point in search
space pbest.g, map it to
candidate solution pbest.x,
compute its objective value
pbest.y = f(pbest.x), and store
it in “current” individual pnew



1/5th Rule-based (1 + 1) Evolution Strategy

pbest ←− (1+1) ES 1

5

(f, L, a, σ0)

begin
t←− 1
s←− 0
σ ←− σ0

pbest.g ←− create starting point
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y < pbest.y then

pbest ←− pnew
s←− s+ 1

if (t mod L) = 0 then
P (S)←− s

L

if P (S) < 0.2 then σ ←− σ ∗ a

else if P (S) > 0.2 then σ ←− σ/a

s←− 0

pnew.g ←− mutationESσ(σ, pnew)
t←− t+ 1

return pbest

Metaheuristic Optimization Thomas Weise 25/51

❼ (1 + 1)-ES = self-adaptive hill
climber

❼ map point in search space
pnew.g of current individual to
candidate solution pnew.x and
compute its objective value
pnew.y = f(pnew.x)
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(1+1) ES with 1/5th rule

Listing: (1+1) ES with 1/5th rule

public class ES1P1 <X> extends OptimizationAlgorithm <double[], X> {

public Individual <double[], X> solve(final IObjectiveFunction <X> f) {

Individual <double[], X> pstar = new Individual <>(); // best individual

Individual <double[], X> pnew = new Individual <>(); // "new" individual

RnESUnaryNormal esUnary = (( RnESUnaryNormal) (this.unary));

double [] sigma = new double [] { this.sigma0 };

int s = 0;

int t = 1; // init success and iteration counter

pstar.g = this.nullary.create(this.random); // create first genotype

pstar.x = this.gpm.gpm(pstar.g); // get phenotype for that genotype

pstar.v = f.compute(pstar.x); // evaluate: how good is the phenotype?

while (!( this.termination.shouldTerminate ())) { // until we should finish ...

pnew.g = esUnary.mutate(pstar.g, sigma , this.random); // mutate using sigma

pnew.x = this.gpm.gpm(pnew.g); // get phenotype for that genotype

pnew.v = f.compute(pnew.x); // evaluate the new phenotype

if (pnew.v <= pstar.v) { // if the new individual is better ...

pstar.assign(pnew); // it becomes the new best individual

s++; // count the success

}

if ((t % this.L) == 0) { // is it time to update sigma?

double Ps = ((( double) s) / (( double) (this.L))); // need floating point div!

if (Ps < 0.2d) {

sigma [0] *= this.a; // not enough success: decrease sigma

} else {

if (Ps > 0.2d) {

sigma [0] /= this.a; // too successful: increase sigma

}

}

s = 0; // reset success counter

}

t++; // count iteration

}

return pstar; // return the best individual that we have discovered

}

}
Metaheuristic Optimization Thomas Weise 26/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
❼ intended for (1 + 1)-ES: makes no use of population

❼

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
❼ intended for (1 + 1)-ES: makes no use of population
❼ Only a single parameter σ: cannot model different step widths for

different dimensions or dependencies between dimensions

❼

Metaheuristic Optimization Thomas Weise 27/51



1/5th Rule: Advantages and Drawbacks

❼ The 1/5th rule has advantages:
❼ Many mutations are successful −→ we can make larger steps and

progress faster
❼ Many mutations are unsuccessful −→ we make smaller steps so that

we can approach the optimum instead of jumping over it
❼ Balance between exploration and exploitation
❼ Sound theoretical foundation

❼ The 1/5th rule has drawbacks:
❼ Can easily lead to premature convergence: no improvement ⇒ smaller

steps
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different dimensions or dependencies between dimensions
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Section Outline

1 Population Treatment

2 Mutation

3 Self-Adaptation

4 The 1/5th Rule

5 Endogeneous Adaptation

6 Recombination

7 Parameter Reproduction
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Endogeneous Parameters

❼ Instead of having one central exogeneous1 (set of) strategy
parameter(s). . .

❼

❼

❼

❼

❼

❼

1≡ outside of the genes
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Endogeneous Parameters

❼ Instead of having one central exogeneous (set of) strategy
parameter(s). . .

❼ create one set of parameters of each individual in the Evolution
Strategy!

❼ i.e., , the individual records extended with information p.w encoding
the strategy parameters

❼ Strategy parameters are now similar to (or inside) the
genotype/genes, i.e., are endogeneous

❼ p.w could be step-width for mutation if applied to individual p

❼ Information p.w undergoes reproduction, similar to genotypes p.g ∈ G

❼ As it is subject to selection, good strategy parameters will be
discovered in the same way in which good candidate solutions are
discovered.
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Endogeneous Adaptation

pbest ←− generalES(f, µ, λ, ρ)

begin
t←− 1
pop←− random initialization
while ¬shouldTerminate do

perform genotype-phenotype mapping
compute objective values (possibly update best-so-far solution pbest)
if t > 1 then

if strategy = (µ/ρ, λ) then
matePool←− truncationSelection(µ, pop)

else
matePool←− truncationSelection(µ, pop ∪matePool)

else
matePool←− pop

for i←− 1 up to λ do
parents←− choose ρ parents from matePool
pnew.g ←− recombinationES(p.g∀p ∈ parents)
pnew.w ←− infoRecombinationES(p.w∀p ∈ parents)
pnew.w ←− infoMutationES(pnew.w)
pnew.g ←− mutationES(pnew.g, pnew.w)
population[i]←− pnew

t←− t+ 1

return best solution x̃ discovered
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Perform survival selection
❼ in (µ, λ)-ESs, select only

from the current population
❼ in (µ+ λ)-ESs, select from

the current population and
the mating pool

❼ Only in first iteration: no
selection.
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❼ For each offspring individual
that we want to create. . .
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❼ . . . first select ρ parents,
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ . . . first select ρ parents,
❼ (re)combine the parental

genotypes,
❼ and then (re)combine the

endogenous information.
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that we want to create. . .

❼ One endogeneous set of
parameters (for mutation
operation) exists per
individual

❼
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same basic pattern as GAs

❼ For each offspring individual
that we want to create. . .

❼ One endogeneous set of
parameters (for mutation
operation) exists per
individual

❼ Parameter setting of
algorithm evolves along with
the solutions

❼ Good settings survive along
with the candidate solutions
that they have created
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❼ Mutate the endogenous
information (parameter settings
for genotype mutation)
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Mutate the endogenous
information (parameter settings
for genotype mutation)

❼ Endogenous information is
mutated before applying it in
the mutation operation: only
the values that actually
influenced the fitness are in w
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Use the mutated endogenous
information as parameter for
the mutation operator (e.g., as
step length) in order to mutate
the newly created genotype
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Put the new individuals into
the population

❼
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Put the new individuals into
the population. . .

❼ . . . and start the next cycle
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❼ Evolution Strategies follow
same basic pattern as GAs

❼ Return the best candidate
solutions that were discovered
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[A] Discrete Recombination

❼ Extension of uniform crossover to ρ real vectors

❼ if ρ = 2, returns corner of hyper-cube created by parents

~g′ ←− recombinationDiscrete(parents)

Input: parents: the list of ρ parent individuals
Data: i: a counter variable
Data: p: a parent individual
Output: ~g′: the offspring of the parents

begin
for i←− 0 up to n− 1 do

p←− parents[{randomly from 0..ρ− 1}]

~g′i ←− p.gi

return ~g′
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Discrete Recombination

Listing: Discrete Recombination for 2 Parents

public class RnBinaryDiscrete extends Rn implements

IBinarySearchOperation <double[]> {

public double [] recombine(final double [] parent1 , final

double [] parent2 , final Random r) {

double [] res = parent1.clone ();

for (int i = parent2.length; (--i) >= 0;) {

if (r.nextBoolean ()) {

res[i] = parent2[i];

}

}

return res;

}

}
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[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors

❼
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[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors
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[B] Intermediate Recombination

❼ Extension of weighted average crossover to ρ real vectors

❼ Returns a point inside of hyper-cube defined by the parents

~g′ ←− recombinationIntermediate(parents)

Input: parents: the list of ρ parent individuals
Data: p: a parent individual
Output: ~g′: the offspring of the parents

begin
for i←− 0 up to n− 1 do

s←− 0
for j ←− 0 up to ρ− 1 do

p←− parents[j]
s←− s+ p.gi

~g′i ←−
s
ρ

return ~g′
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Intermediate Recombination

Listing: Intermediate Recombination for 2 Parents

public class RnBinaryIntermediate extends Rn implements

IBinarySearchOperation <double[]> {

public double [] recombine(final double [] parent1 , final

double [] parent2 , final Random r) {

double [] res = new double[parent1.length ];

for (int i = parent2.length; (--i) >= 0;) {

res[i] = (0.5d * (parent1[i] + parent2[i]));

}

return res;

}

}
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Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

❼

❼
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❼ Mutation is different from mutation of a genotype: we mutate a
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❼ Mutation means to mutate the degree with which a candidate
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Reproduction of Endogenous Parameters
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Reproduction of Endogenous Parameters

❼ Recombination of strategy parameters p.w: intermediate crossover

~σ ←− infoMutationES(~σ′)

Input: ~σ′ ∈ R
n: the old mutation strength

vector
Data: i: a counter variable
Output: ~σ ∈ R

n: the new mutation strength
vector

begin

ν ←− eτ0{Gaussian random number}

~σ ←− ~0
for i←− 0 up to n− 1 do

~σi ←−
ν ∗ eτ{Gaussian random number} ∗ ~σ′

i

return ~σ
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c = 1 (8)

n ≡ dimension (9)
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❼ Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by
Hansen et al. [16–23] in the mid-1990s

❼ Extremely powerful optimization method for continuous domains
(Rn) [20, 22–24]

❼ Works well on rugged landscapes with discontinuities, sharp bends or
ridges, noise, local optima, outliers . . . if a landscape is uni-modal and
continuous, one would not need a metaheuristic method anyway)

Metaheuristic Optimization Thomas Weise 40/51
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❼ The new offspring population of each generation is sampled from a
multi-variate normal distribution [25] similar to the method D
introduced for mutation which allows to represent second-order
relationships, i.e., dependencies between variables

❼ Parents selected via Truncation selection

❼ Of course, we need a matrix C (step-width) of co-variances for the
normal distribution and a center (mean µ)

❼ Both are exogenous parameters maintained centrally and updated by
the algorithm

❼ The center µ of the distribution is set to the weighted average of the
selected parent points

❼ Covariance matrix is updated in each iteration with information from
the selected parets

❼ New population is sampled from normal distribution, parent
individuals are discarted (no traditional mutation/crossover)

Metaheuristic Optimization Thomas Weise 41/51
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CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)
❼ order preserving (i.e., strictly monotonic) transformations of the

objective function value (i.e., ||x||2 and 3||x||0.2 − 100 lead to same
result!)
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CMA-ES: Invariances

❼ Using co-variance information allows to express relationships between
variables (e.g., “in good solutions, large values of x1 require large
values of x2”)

❼ This leads to rotation invariance: if the objective function is rotated
in the search space, CMA-ES will give the same result! [26, 27]

❼ Generally, CMA-ES is invariant to [27]:
❼ angle preserving (rigid) transformations of the search space (if the start

points are also transformed)
❼ order preserving (i.e., strictly monotonic) transformations of the

objective function value

❼ We want this! (Remember: Roulette-Wheel Selection versus
Truncation Selection)
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CMA-ES: Material

❼ Algorithm itself is a bit more complicated and will not be discussed
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❼ Algorithm itself is a bit more complicated and will not be discussed
here

❼ But: There exist many excellent, ready-to-use, industrial-strength,
open-source implementations, e.g.,
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❼ Official source code page:
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❼ A dedicated website: http://www.lri.fr/~hansen/cmaesintro.html

❼ An own Wikipedia [29] page: https://en.wikipedia.org/wiki/CMA-ES

❼ A tutorial: [25]

❼ When doing numerical optimization, this is the way to go!
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❼ Evolution Strategies are Evolutionary Algorithms for (usually) G ⊆ R
n

❼ Population handling: (µ/ρ + λ) or (µ/ρ, λ)
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