
Metaheuristic Optimization
11. Difficulties

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn


Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 2/72

w
eb
si
te



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

� You now have some experience in solving optimization problems.

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

� You now have some experience in solving optimization problems.

� You may have seen that for some problems, we can find the best
solution rather easily.

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

� You now have some experience in solving optimization problems.

� You may have seen that for some problems, we can find the best
solution rather easily.

� For other problems, the solutions that we get seem to be rather bad.

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

� You now have some experience in solving optimization problems.

� You may have seen that for some problems, we can find the best
solution rather easily.

� For other problems, the solutions that we get seem to be rather bad.

� Why?

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� So far, we have discussed several different optimization methods.

� You now have some experience in solving optimization problems.

� You may have seen that for some problems, we can find the best
solution rather easily.

� For other problems, the solutions that we get seem to be rather bad.

� Why?

� What makes optimization difficult?

Metaheuristic Optimization Thomas Weise 3/72



Why is optimization difficult?

� Some things are pretty clear

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )
� And used different algorithms to solve them

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )
� And used different algorithms to solve them
� Some algorithms worked well, some worked not so well.

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )
� And used different algorithms to solve them
� Some algorithms worked well, some worked not so well.
� The solution quality we get depends on the algorithm we use.

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )
� And used different algorithms to solve them
� Some algorithms worked well, some worked not so well.
� The solution quality we get depends on the algorithm we use.
� Different algorithms deal with the difficulties of optimization tasks

differently.

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� Some things are pretty clear:
� For some problems (e.g., the finding shortest paths in a graph) there

are deterministic algorithms that can give the optimal solutions quickly.
� For other problems, either no such method exists or it is not feasible

(too slow).
� We have looked on some of these problems (Partitioning, TSP, . . . )
� And used different algorithms to solve them
� Some algorithms worked well, some worked not so well.
� The solution quality we get depends on the algorithm we use.
� Different algorithms deal with the difficulties of optimization tasks

differently.
� There may be different aspects that render a problem difficult.

Metaheuristic Optimization Thomas Weise 4/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

� Problems where we can only get bad solutions are difficult.

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

� Problems where we can only get bad solutions are difficult.

� So we discuss different features that make them difficult.

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

� Problems where we can only get bad solutions are difficult.

� So we discuss different features that make them difficult.

� And countermeasures!

Metaheuristic Optimization Thomas Weise 5/72



Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

� Problems where we can only get bad solutions are difficult.

� So we discuss different features that make them difficult.

� And countermeasures!

� A good summary on this topic given in our recent article
“Evolutionary Optimization: Pitfalls and Booby Traps” [1].

Metaheuristic Optimization Thomas Weise 5/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 6/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities
� Determine whether a number is prime or not – space/time depends on

scale of number

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities
� Determine whether a number is prime or not – space/time depends on

scale of number

� Of course, the time/space needed does not just depend on the input
size

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities
� Determine whether a number is prime or not – space/time depends on

scale of number

� Of course, the time/space needed does not just depend on the input
size: It is easy to see that there may be hard and easy TSPs with the
same number of cities. . .

� For a given input size, there might be a best, worst, and average case
scenarios.

Metaheuristic Optimization Thomas Weise 7/72



Algorithmic Complexity

� If we have a deterministic algorithm that finds the exact solutions for
a family problems. . .

� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities
� Determine whether a number is prime or not – space/time depends on

scale of number

� Of course, the time/space needed does not just depend on the input
size: It is easy to see that there may be hard and easy TSPs with the
same number of cities. . .

� For a given input size, there might be a best, worst, and average case
scenarios.

� Under algorithmic complexity we can thus understand the average,
minimum, or maximum time/space an algorithm needs to finish, as
function on the input size.

Metaheuristic Optimization Thomas Weise 7/72



Types of Functions

� There are different mathematical functions

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� There are different mathematical functions

� Some grow fast, some grow slow with the input size x

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� There are different mathematical functions

� Some grow fast, some grow slow with the input size x

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

Metaheuristic Optimization Thomas Weise 9/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

� Big-O Notation [2–4]

Metaheuristic Optimization Thomas Weise 9/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

� Big-O Notation [2–4]

f(x) ∈ O(g(x)) ⇔ ∃x0 ∈ R,m ∈ R
+ : |f(x)| ≤ m|g(x)| ∀x > x0 (1)

Metaheuristic Optimization Thomas Weise 9/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem
� based on best exact algorithm known for the problem or theoretical

bounds

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem
� based on best exact algorithm known for the problem or theoretical

bounds
� depends on the machine solving it

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem
� based on best exact algorithm known for the problem or theoretical

bounds
� depends on the machine solving it

� If we are conservative, we consider the worst case scenarios

Metaheuristic Optimization Thomas Weise 10/72



Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem
� based on best exact algorithm known for the problem or theoretical

bounds
� depends on the machine solving it

� If we are conservative, we consider the worst case scenarios, since we
cannot really know what problem we will exactly get in practice.

� Can we make this even more general?

Metaheuristic Optimization Thomas Weise 10/72



Turing Machines

� Deterministic Turing Machine (DTM) [5]

� Non-Deterministic Turing Machine (NTM)

Tape SymbolState Print Motion Next StateÞ

A 0 1 Right AÞ

B 0 1 BRightÞ

B 1 1 Left CÞ

C 1 0 Left CÞ

C 0 Right1 AÞ

C 0 1 Left AÞ

A 1 0 Right BÞ

A 1 0 Right AÞ

10
0

0
00

00 0
0

1 1 1 0 0 0

0

10
0

0
00

10 0
0

1 1 1 0 0 0

0

10
0

0
00

00 0
0

1 1 1 0 0 0

0

Metaheuristic Optimization Thomas Weise 11/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

� “normal” computers can be simulated with DTMs and vice versa [6]

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

� “normal” computers can be simulated with DTMs and vice versa [6]

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)
� NP ⊆ P , i.e., P = NP : research question, probably does not hold

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)
� NP ⊆ P , i.e., P = NP : research question, probably does not hold
� Algorithm for problem A can also solve problem B: B is not harder

than A, B reduces to A

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)
� NP ⊆ P , i.e., P = NP : research question, probably does not hold
� Algorithm for problem A can also solve problem B: B is not harder

than A, B reduces to A
� All other problems in NP can be reduced to NP-hard problems

Metaheuristic Optimization Thomas Weise 12/72



NP-Hardness

1 NTMs can be simulated by DTMs, but required steps grow
exponentially with the length of the shortest accepting path

2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)
� NP ⊆ P , i.e., P = NP : research question, probably does not hold
� Algorithm for problem A can also solve problem B: B is not harder

than A, B reduces to A
� All other problems in NP can be reduced to NP-hard problems
� No (worst-case) polynomial-time and -space algorithm known for

NP-hard problems

Metaheuristic Optimization Thomas Weise 12/72



Solving NP-hard Problems

� No algorithm with polynomial worst-case space and time complexity
is known for NP-hard problems.

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� No algorithm with polynomial worst-case space and time complexity
is known for NP-hard problems.

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� No algorithm with polynomial worst-case space and time complexity
is known for NP-hard problems.

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

� Many real-world problems are NP-hard: Traveling Salesman
Problems, Constraint Satisfaction Problems, Bin Packing, Vehicle
Routing, . . .

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� No algorithm with polynomial worst-case space and time complexity
is known for NP-hard problems.

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

� Many real-world problems are NP-hard: Traveling Salesman
Problems, Constraint Satisfaction Problems, Bin Packing, Vehicle
Routing, . . .

� What does this mean?

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

� Many real-world problems are NP-hard: Traveling Salesman
Problems, Constraint Satisfaction Problems, Bin Packing, Vehicle
Routing, . . .

� What does this mean?
1 If we try to find the exact globally optimal solution of these problems,

it may take very long in the worst case. . .

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

1 If we try to find the exact globally optimal solution of these problems,
it may take very long in the worst case. . .

2 . . . but it may also be possible in acceptable time (in the best or even
average case).

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

1 If we try to find the exact globally optimal solution of these problems,
it may take very long in the worst case. . .

2 . . . but it may also be possible in acceptable time (in the best or even
average case).

3 Example: For several pure, classical problems like the TSP, exact
solutions can be found for problems with large scale in reasonable time
(TSP: instances with ≥ 75 000 cities have been solved!).

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

1 If we try to find the exact globally optimal solution of these problems,
it may take very long in the worst case. . .

2 . . . but it may also be possible in acceptable time (in the best or even
average case).

3 Example: For several pure, classical problems like the TSP, exact
solutions can be found for problems with large scale in reasonable time
(TSP: instances with ≥ 75 000 cities have been solved!).

4 (Meta-)Heuristic algorithms may provide very good approximate
solutions very quickly and often even find the global optimum in a
short time . . . but often cannot make good guarantees neither about
runtime nor solution quality.

Metaheuristic Optimization Thomas Weise 13/72



Solving NP-hard Problems

� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

1 If we try to find the exact globally optimal solution of these problems,
it may take very long in the worst case. . .

2 . . . but it may also be possible in acceptable time (in the best or even
average case).

3 Example: For several pure, classical problems like the TSP, exact
solutions can be found for problems with large scale in reasonable time
(TSP: instances with ≥ 75 000 cities have been solved!).

4 (Meta-)Heuristic algorithms may provide very good approximate
solutions very quickly and often even find the global optimum in a
short time . . . but often cannot make good guarantees neither about
runtime nor solution quality.

5 We need to trade-off runtime vs. solution quality, especially if the
problem is not well-researched.

Metaheuristic Optimization Thomas Weise 13/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 14/72



Preface

� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

Metaheuristic Optimization Thomas Weise 15/72



Preface

� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

� We cannot expect to get the global optimum

Metaheuristic Optimization Thomas Weise 15/72



Preface

� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

� We cannot expect to get the global optimum

� We are interested in the quality of the solutions that we can get

Metaheuristic Optimization Thomas Weise 15/72



Preface

� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

� We cannot expect to get the global optimum

� We are interested in the quality of the solutions that we can get

� What features of problems or algorithms allow us to get good
solutions?

Metaheuristic Optimization Thomas Weise 15/72



Preface

� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

� We cannot expect to get the global optimum

� We are interested in the quality of the solutions that we can get

� What features of problems or algorithms allow us to get good
solutions?

� When/why can we not get good solutions?

Metaheuristic Optimization Thomas Weise 15/72



Convergence

� Let us start at the end!

Metaheuristic Optimization Thomas Weise 16/72



Convergence

� Let us start at the end!

� Sooner or later, every optimization process ends (converges)

Metaheuristic Optimization Thomas Weise 16/72



Convergence

� Let us start at the end!

� Sooner or later, every optimization process ends (converges)

Definition (Convergence)

An optimization algorithm has converged if it cannot reach new candidate
solutions anymore or if it keeps on producing candidate solutions from a
small subset of the solution space X. [8, 9]

Metaheuristic Optimization Thomas Weise 16/72



Convergence

� Let us start at the end!

� Sooner or later, every optimization process ends (converges)

Definition (Convergence)

An optimization algorithm has converged if it cannot reach new candidate
solutions anymore or if it keeps on producing candidate solutions from a
small subset of the solution space X. [8, 9]

Definition (multi-modality)

A function/optimization problem is multi-modal if it has more than one
minimum / maximum /optimum. [10–14]

Metaheuristic Optimization Thomas Weise 16/72



Premature Convergence

� Premature Convergence = convergence to local optimum [8, 9]

Metaheuristic Optimization Thomas Weise 17/72



Premature Convergence

� Premature Convergence = convergence to local optimum [8, 9]

Metaheuristic Optimization Thomas Weise 18/72



Non-Uniform Convergence

� Uniformity of convergence: We want a good scan of the potentially
optimal features

Bad convergence, good
spread (uniformity)

Good convergence, bad
spread (non-uniformity)

Good convergence,
good spread (unifor-
mity)

Metaheuristic Optimization Thomas Weise 19/72



Non-Uniform Convergence

� Uniformity of convergence

Bad convergence, good
spread (uniformity) [1, 15]

Good convergence,
bad spread (non-
uniformity) [1, 15]

Good conver-
gence, good spread
(uniformity) [1, 15]

Metaheuristic Optimization Thomas Weise 20/72



Exploration versus Exploitation

� So what is the basic reason for unsatisfying convergence?

Metaheuristic Optimization Thomas Weise 21/72



Exploration versus Exploitation

� So what is the basic reason for unsatisfying convergence?

� Exploration: search in distant areas of the search space, strong
randomization: slow improvement

Metaheuristic Optimization Thomas Weise 21/72



Exploration versus Exploitation

� So what is the basic reason for unsatisfying convergence?

� Exploration: search in distant areas of the search space, strong
randomization: slow improvement

� Exploitation: analyze neighborhood of current best solutions: fast
improvement/convergence

Metaheuristic Optimization Thomas Weise 21/72



Exploration versus Exploitation

� So what is the basic reason for unsatisfying convergence?

� Exploration: search in distant areas of the search space, strong
randomization: slow improvement

� Exploitation: analyze neighborhood of current best solutions: fast
improvement/convergence

� Which should we use more?

Metaheuristic Optimization Thomas Weise 21/72



Exploration versus Exploitation

� Which should we use more?

� This is called the Exploration versus Exploitation Dilemma [16–23]

Metaheuristic Optimization Thomas Weise 21/72



Countermeasures

� Countermeasures against Premature Convergence

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]:

� it should be possible to reach all other points in the search space from
the current one

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]:

� it should be possible to reach all other points in the search space from
the current one

� ideally within one search step

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]:

� if no improvement for some time, restart algorithm

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]:

� allows for more exploration by putting less pressure to move to better
solutions

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]:

� allows for more exploration by putting less pressure to move to better
solutions

� slows down search

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]:

� allows for more exploration by putting less pressure to move to better
solutions

� slows down search
� only sometimes [31, 68]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]:

� Give solutions that are very similar to each other a worse fitness

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]:

� Clustering: unsupervised machine learning – divide a set of elements
into groups of similar elements

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]:

� Clustering: unsupervised machine learning – divide a set of elements
into groups of similar elements

� Here: cluster population, treat every cluster separately

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]:

� Clustering: unsupervised machine learning – divide a set of elements
into groups of similar elements

� Here: cluster population, treat every cluster separately
� Allows the population to trace different optima at once

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]:

� change parameters of optimization algorithm in order to prevent (or
speed-up) convergence

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]

8 Multi-Objectivization [60–67]

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]

8 Multi-Objectivization [60–67]:

� turn a single-objective problem into an multi-objective one by creating
an artificial objective function targeting one specific aspect of the
solutions

Metaheuristic Optimization Thomas Weise 22/72



Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]

8 Multi-Objectivization [60–67]:

� turn a single-objective problem into an multi-objective one by creating
an artificial objective function targeting one specific aspect of the
solutions

� Pareto-based optimization (see Lesson 15: Multi-Objective

Optimization) then increases diversity

Metaheuristic Optimization Thomas Weise 22/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 23/72



Ruggedness and Weak Causality

� Why??

Metaheuristic Optimization Thomas Weise 24/72



Causality

� Basic assumption behind metaheuristic optimization:

Metaheuristic Optimization Thomas Weise 25/72



Causality

� Basic assumption behind metaheuristic optimization:

Definition (Strong Causality)

Small changes to an object should lead to small changes in its behavior /
objective values. [69–71]

� What happens if the causality in a problem is weak?

Metaheuristic Optimization Thomas Weise 25/72



Countermeasures

1 Hybridization of EAs with local search:

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]:

� EA + local search on the genotype level

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]:

� EA + local search on the genotype level
� Each genotype is generated by the normal search operations and then

refined with a local search

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]:

� EA + local search on the genotype level
� Each genotype is generated by the normal search operations and then

refined with a local search
� The fitness landscape appears smooth to the EA, as it only sees local

optima and not the rugged spikes in between

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]:

� EA + local search on the phenotype level

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]:

� EA + local search on the phenotype level
� Each phenotype is the result of a GPM applied to a genotype

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]:

� EA + local search on the phenotype level
� Each phenotype is the result of a GPM applied to a genotype
� The phenotype is then refined with a local search

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]:

� EA + local search on the phenotype level
� Each phenotype is the result of a GPM applied to a genotype
� The phenotype is then refined with a local search
� The fitness landscape appears smooth to the EA, as it only sees local

optima and not the rugged spikes in between

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]:

� Similar to Baldwin effect and Lamarckian evolution

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]:

� Similar to Baldwin effect and Lamarckian evolution
� The search operations themselves perform some local optimization

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]:

� Similar to Baldwin effect and Lamarckian evolution
� The search operations themselves perform some local optimization
� The fitness landscape appears smooth to the EA, as it only sees local

optima and not the rugged spikes in between

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]:

� Combinations of Evolutionary Algorithms with local search, or
combinations of Evolutionary Algorithms with other concepts from
Machine Learning

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]:
� Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]:
� Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

� Optimize on this simple model (which has stronger causality)

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]:
� Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

� Optimize on this simple model (which has stronger causality)
� After a few steps, go back to original f and test solutions

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]:
� Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

� Optimize on this simple model (which has stronger causality)
� After a few steps, go back to original f and test solutions
� Update M , then repeat

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]

3 (2-, n-) Staged optimization [96]

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]

3 (2-, n-) Staged optimization [96]:
� First, apply an optimization algorithm with slow convergence, which is

good in exploring the search space and finding the region where the
optimum may reside

Metaheuristic Optimization Thomas Weise 26/72



Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]

3 (2-, n-) Staged optimization [96]:
� First, apply an optimization algorithm with slow convergence, which is

good in exploring the search space and finding the region where the
optimum may reside

� Then, apply an optimization algorithm which is very good at
explotation in that region only

Metaheuristic Optimization Thomas Weise 26/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 27/72



Deceptiveness

� Gradient and information lead optimizer away from optimum [88, 97, 98]

� Why??

Metaheuristic Optimization Thomas Weise 28/72



Countermeasures

� Countermeasures

Metaheuristic Optimization Thomas Weise 29/72



Countermeasures

� Countermeasures

1 Choose appropriate representation, maybe combine representations [99]

Metaheuristic Optimization Thomas Weise 29/72



Countermeasures

� Countermeasures

1 Choose appropriate representation, maybe combine representations [99]

2 Preventing convergence:

Metaheuristic Optimization Thomas Weise 29/72



Countermeasures

� Countermeasures

1 Choose appropriate representation, maybe combine representations [99]

2 Preventing convergence:

� Fitness Uniform Selection Scheme [100–103]

Metaheuristic Optimization Thomas Weise 29/72



Countermeasures

� Countermeasures

1 Choose appropriate representation, maybe combine representations [99]

2 Preventing convergence:

� Fitness Uniform Selection Scheme [100–103]

� Novelty Search [104–106]

Metaheuristic Optimization Thomas Weise 29/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 30/72



Neutrality

� Neutrality: Many candidate solutions have same objective values

� Little or no information gained from sampling the solution space

� Why??

Metaheuristic Optimization Thomas Weise 31/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

Metaheuristic Optimization Thomas Weise 32/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

Metaheuristic Optimization Thomas Weise 32/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

premature conver-
gence

Metaheuristic Optimization Thomas Weise 32/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

premature conver-
gence

small neutral
bridge

Metaheuristic Optimization Thomas Weise 32/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

premature conver-
gence

small neutral
bridge

wide neutral bridge

Metaheuristic Optimization Thomas Weise 32/72



Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

premature conver-
gence

small neutral
bridge

wide neutral bridge neutral area too
large

Metaheuristic Optimization Thomas Weise 32/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 33/72



Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]

Metaheuristic Optimization Thomas Weise 34/72



Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]

Definition (Pleiotropy)

One gene is responsible for multiple phenotypical traits [108]

Metaheuristic Optimization Thomas Weise 34/72



Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]

Definition (Pleiotropy)

One gene is responsible for multiple phenotypical traits [108]

Definition (Separability)

A function of n variables is separable if it can be rewritten as a sum of n
functions of just one variable [120–123]

Metaheuristic Optimization Thomas Weise 34/72



Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]

Definition (Pleiotropy)

One gene is responsible for multiple phenotypical traits [108]

Definition (Separability)

A function of n variables is separable if it can be rewritten as a sum of n
functions of just one variable [120–123]

� non-epistatic (separable) problems can be solved efficiently by
decomposition

Metaheuristic Optimization Thomas Weise 34/72



Epistasis / Pleiotropy

Metaheuristic Optimization Thomas Weise 35/72



Epistasis in Bin Packing

Metaheuristic Optimization Thomas Weise 36/72



Influence of Epistasis

Metaheuristic Optimization Thomas Weise 37/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together
� Try to change these genes only together, consider them as a unit

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together
� Try to change these genes only together, consider them as a unit
� For example: In crossover, try to always pass such genes together to

the offspring and to not separate them

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]

5 If epistasis is limited: cooperative-coevolution approach [136–138] (see
later)

Metaheuristic Optimization Thomas Weise 38/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 39/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

Metaheuristic Optimization Thomas Weise 40/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

Metaheuristic Optimization Thomas Weise 40/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

� . . . but their time requirement also grows with problem size. . .

Metaheuristic Optimization Thomas Weise 40/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

� . . . but their time requirement also grows with problem size. . .

� “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [139, 140]

Metaheuristic Optimization Thomas Weise 40/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

� . . . but their time requirement also grows with problem size. . .

� “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [139, 140]

� Example: search in (1 . . . 10)n

Metaheuristic Optimization Thomas Weise 40/72



Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

� . . . but their time requirement also grows with problem size. . .

� “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [139, 140]

� Example: search in (1 . . . 10)n

� any algorithm (for non-trivial problems) takes longer for larger
inputs. . .

Metaheuristic Optimization Thomas Weise 40/72



Countermeasures

� Countermeasures

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures
1 Parallelization and distribution:

� sub-linear speed-up can be achieved [149]

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures
1 Parallelization and distribution:

� sub-linear speed-up can be achieved [149]

� Parallelization: Use multi-core CPU + multiple threads

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures
1 Parallelization and distribution:

� sub-linear speed-up can be achieved [149]

� Parallelization: Use multi-core CPU + multiple threads or GPUs [150–155]

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures
1 Parallelization and distribution:

� sub-linear speed-up can be achieved [149]

� Parallelization: Use multi-core CPU + multiple threads or GPUs [150–155]

� Distribution: Use multiple computers in a network [156, 157], a cluster, or a
grid

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]:

� Genotypes are small, search space is smaller, can be explored more
easily

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]:

� Genotypes are small, search space is smaller, can be explored more
easily

� They are mapped to larger, more complex phenotypes by a simple
functional GPM

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]:

� Genotypes are small, search space is smaller, can be explored more
easily

� They are mapped to larger, more complex phenotypes by a simple
functional GPM

� Utilizes/assumes symmetries in the phenotypes

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]:

� Similar to generative mapping, the search space is smaller

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]:

� Similar to generative mapping, the search space is smaller
� But: GPM is more complex, a simulation which incorporates feedback

from an environment or the objective function

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]:

� Similar to generative mapping, the search space is smaller
� But: GPM is more complex, a simulation which incorporates feedback

from an environment or the objective function
� Better behavior than generative mappings

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]:

� Try to divide the problem into (almost) unrelated problems with
smaller search spaces

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]:

� Try to divide the problem into (almost) unrelated problems with
smaller search spaces

� Solve them more or less separately, combine solutions to get overall
solution, and repeat

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]:

� Try to divide the problem into (almost) unrelated problems with
smaller search spaces

� Solve them more or less separately, combine solutions to get overall
solution, and repeat

� Cooperative Coevolution [136, 138]: Use an EA that can find our how to
divide the problem by itself and then applies the above

Metaheuristic Optimization Thomas Weise 41/72



Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]

5 Using multiple algorithms at once [147] or portfolios [148]

Metaheuristic Optimization Thomas Weise 41/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 42/72



No Free Lunch Theorem

� Question: Can an optimization algorithm A be better than algorithm
B?

Metaheuristic Optimization Thomas Weise 43/72



No Free Lunch Theorem

� Question: Can an optimization algorithm A be better than algorithm
B?

� Question: Can an optimization algorithm A be better than a Random
Walk?

Metaheuristic Optimization Thomas Weise 43/72



No Free Lunch Theorem

� Question: Can an optimization algorithm A be better than algorithm
B?

� Question: Can an optimization algorithm A be better than a Random
Walk?

� Wolpert and Macready [158] – No Free Lunch Theorem: Over all
optimization problems φ over finite domains, the sum of the
probabilities to reach a certain objective value y after m steps with
algorithm A is the same as with algorithm B

∑

∀φ

P (y|φ,m,A) =
∑

∀φ

P (y|φ,m,B) (2)

Metaheuristic Optimization Thomas Weise 43/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B?

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B? Not for all problems!

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B? Not for all problems!

� Question: Can an optimization algorithm A be better than a Random
Walk?

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B? Not for all problems!

� Question: Can an optimization algorithm A be better than a Random
Walk? Not for all problems!

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B? Not for all problems!

� Question: Can an optimization algorithm A be better than a Random
Walk? Not for all problems!

� Put simply: For every problem where method A works well, we can
construct a problem where the method does not work

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� According to the No Free Lunch Theorem, the answers are:

� Question: Can an optimization algorithm A be better than algorithm
B? Not for all problems!

� Question: Can an optimization algorithm A be better than a Random
Walk? Not for all problems!

� Put simply: For every problem where method A works well, we can
construct a problem where the method does not work

Metaheuristic Optimization Thomas Weise 44/72



No Free Lunch Theorem

� Different algorithms are good for different problems

Metaheuristic Optimization Thomas Weise 45/72



No Free Lunch Theorem

� Different algorithms are good for different problems and not all
possible problems actually occur in practice [1, 15, 39]

Metaheuristic Optimization Thomas Weise 46/72



Section Outline

1 Complexity

2 Unsatisfying Convergence

3 Ruggedness & Causality

4 Deceptiveness

5 Neutrality

6 Epistasis

7 Scalability

8 No Free Lunch Theorem
Metaheuristic Optimization Thomas Weise 47/72



Summary

� Optimization is difficult: This was the first batch of problems

� Many problems can only be solved exactly with algorithms of high
complexity

� Metaheuristic optimizers may converge prematurely or non-uniformly

� Ruggedness is not good

� Deceptiveness is not good

� Neutrality can be good or bad

� Epistasis is always bad – and often a representation issue!

� No Free Lunch Theorem

Metaheuristic Optimization Thomas Weise 48/72



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 49/72

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristic Optimization Thomas Weise 50/72



Bibliography I

1. Thomas Weise, Raymond Chiong, and Ke Tang. Evolutionary optimization: Pitfalls and booby traps. Journal of
Computer Science and Technology (JCST), 27(5):907–936, September 2012. doi: 10.1007/s11390-012-1274-4.
Special Issue on Evolutionary Computation, edited by Xin Yao and Pietro S. Oliveto.

2. Donald Ervin Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming (TAOCP). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., third edition, 1997. ISBN 0-201-89683-4 and 978-0-201-89683-1.
URL http://books.google.de/books?id=J_MySQAACAAJ .

3. Paul Gustav Heinrich Bachmann. Die Analytische Zahlentheorie / Dargestellt von Paul Bachmann, volume Zweiter Theil
of Zahlentheorie: Versuch einer Gesamtdarstellung dieser Wissenschaft in ihren Haupttheilen. Ann Arbor, MI, USA:
University of Michigan Library, Scholarly Publishing Office, 1894. ISBN 1418169633, 141818540X, 978-1418169633, and
978-1418185404. URL http://gallica.bnf.fr/ark:/12148/bpt6k994750 .

4. Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig, Germany: B. G. Teubner and
Providence, RI, USA: AMS Chelsea Publishing, 1909. ISBN 0821826506 and 9780821826508. URL
http://books.google.de/books?id=2ivxUiSogLgC .

5. Alan Mathison Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the
London Mathematical Society, s2-42(1):230–265, 1937. doi: 10.1112/plms/s2-42.1.230. URL
http://www.thocp.net/biographies/turing_alan.html .

6. Michael Machtey and Paul Young. An Introduction to the General Theory of Algorithms, volume 2 of Theory of
Computation, The Computer Science Library. New York, NY, USA: Elsevier Science Publishing Company, Inc. and
Amsterdam, The Netherlands: North-Holland Scientific Publishers Ltd., 1978. ISBN 0-444-00226-X, 0-444-00227-8, and
978-0-444-00227-3. URL http://books.google.de/books?id=qncEAQAAIAAJ .

7. Jon Kleinberg and Christos H. Papadimitriou. Computability and complexity. In USA: Committee on the Fundamentals of
Computer Science: Challenges Washington, DC, Computer Science Opportunities, and National Research Council of the
National Academies Telecommunications Board, editors, Computer Science: Reflections on the Field, Reflections from the
Field, chapter 2.1, pages 37–50. Washington, DC, USA: National Academies Press, 2004. URL
http://www.cs.cornell.edu/home/kleinber/cstb-turing.pdf .

8. Rasmus K. Ursem. Models for Evolutionary Algorithms and Their Applications in System Identification and Control
Optimization. PhD thesis, Århus, Denmark: University of Aarhus, Department of Computer Science, April 1, 2003. URL
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf .

Metaheuristic Optimization Thomas Weise 51/72

http://books.google.de/books?id=J_MySQAACAAJ
http://gallica.bnf.fr/ark:/12148/bpt6k994750
http://books.google.de/books?id=2ivxUiSogLgC
http://www.thocp.net/biographies/turing_alan.html
http://books.google.de/books?id=qncEAQAAIAAJ
http://www.cs.cornell.edu/home/kleinber/cstb-turing.pdf
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf


Bibliography II

9. James David Schaffer, Larry J. Eshelman, and Daniel Offutt. Spurious correlations and premature convergence in genetic
algorithms. In Bruce M. Spatz and Gregory J. E. Rawlins, editors, Proceedings of the First Workshop on Foundations of
Genetic Algorithms (FOGA’90), pages 102–112, Bloomington, IN, USA: Indiana University, Bloomington Campus, July
15–18, 1990. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

10. J. Shekel. Test functions for multimodal search techniques. In Fifth Annual Princeton Conference on Information Science
and Systems, pages 354–359. Princeton, NJ, USA: Princeton University Press, March 1971. URL
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2354.htm .

11. Antanas Žilinskas. Algorithm as 133: Optimization of one-dimensional multimodal functions. Journal of the Royal
Statistical Society: Series C – Applied Statistics, 27(3):367–375, 1978. doi: 10.2307/2347182.

12. Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Ann Arbor, MI,
USA: University of Michigan, August 1975. URL http://cs.gmu.edu/~eclab/kdj_thesis.html .

13. Jeffrey Horn and David Edward Goldberg. Genetic algorithm difficulty and the modality of the fitness landscape. In
L. Darrell Whitley and Michael D. Vose, editors, Proceedings of the Third Workshop on Foundations of Genetic
Algorithms (FOGA 3), pages 243–269, Estes Park, CO, USA, July 31–August 2, 1994. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3340 .

14. Soraya B. Rana. Examining the Role of Local Optima and Schema Processing in Genetic Search. PhD thesis, Fort Collins,
CO, USA: Colorado State University, Department of Computer Science, GENITOR Research Group in Genetic Algorithms
and Evolutionary Computation, July 1, 1999. URL
http://www.cs.colostate.edu/~genitor/dissertations/rana.ps.gz .

15. Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jesús Nebro Urbaneja. Why is optimization difficult? In
Raymond Chiong, editor, Nature-Inspired Algorithms for Optimisation, volume 193/2009 of Studies in Computational
Intelligence, chapter 1, pages 1–50. Berlin/Heidelberg: Springer-Verlag, April 30, 2009. doi:
10.1007/978-3-642-00267-0 1.

16. Larry J. Eshelman, Richard A. Caruana, and James David Schaffer. Biases in the crossover landscape. In James David
Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pages 10–19,
Fairfax, VA, USA: George Mason University (GMU), June 4–7, 1989. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

17. John Henry Holland. Genetic algorithms – computer programs that “evolve“ in ways that resemble natural selection can
solve complex problems even their creators do not fully understand. Scientific American, 267(1):44–50, July 1992. URL
http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm .

Metaheuristic Optimization Thomas Weise 52/72

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2354.htm
http://cs.gmu.edu/~eclab/kdj_thesis.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3340
http://www.cs.colostate.edu/~genitor/dissertations/rana.ps.gz
http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm


Bibliography III

18. Ágoston E. Eiben and C. A. Schippers. On evolutionary exploration and exploitation. Fundamenta Informaticae – Annales
Societatis Mathematicae Polonae, Series IV, 35(1-2):35–50, July–August 1998. URL
http://www.cs.vu.nl/~gusz/papers/FunInf98-Eiben-Schippers.ps .

19. Nitin Muttil and Shie-Yui Liong. Superior exploration–exploitation balance in shuffled complex evolution. Journal of
Hydraulic Engineering, 130(12):1202–1205, December 2004. doi: 10.1061/(ASCE)0733-9429(2004)130:12(1202).

20. Heni Ben Amor and Achim Rettinger. Intelligent exploration for genetic algorithms: Using self-organizing maps in
evolutionary computation. In Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum,
Eric W. Bonabeau, Erick Cantú-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de Jong, Hod
Lipson, Xavier Llorà, Spiros Mancoridis, Martin Pelikan, Günther R. Raidl, Terence Soule, Jean-Paul Watson, and Eckart
Zitzler, editors, Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05), pages 1531–1538,
Washington, DC, USA: Loews L’Enfant Plaza Hotel, June 25–27, 2005. New York, NY, USA: ACM Press. doi:
10.1145/1068009.1068250.

21. Kalyanmoy Deb. Genetic algorithms for optimization. KanGAL Report 2001002, Kanpur, Uttar Pradesh, India: Kanpur
Genetic Algorithms Laboratory (KanGAL), Department of Mechanical Engineering, Indian Institute of Technology Kanpur
(IIT), 2001. URL http://www.iitk.ac.in/kangal/papers/isna.ps.gz .

22. Fred W. Glover. Tabu search – part ii. ORSA Journal on Computing, 2(1):190–206, Winter 1990. doi:
10.1287/ijoc.2.1.4. URL http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf .

23. Fred W. Glover, Éric D. Taillard, and Dominique de Werra. A user’s guide to tabu search. Annals of Operations Research,
41(1):3–28, March 1993. doi: 10.1007/BF02078647. Special issue on Tabu search.

24. Liviu Badea and Monica Stanciu. Refinement operators can be (weakly) perfect. In Sašo Džeroski and Peter A. Flach,
editors, Proceedings of 9th International Workshop on Inductive Logic Programming (ILP-99), volume 1634/1999 of
Lecture Notes in Computer Science (LNCS), pages 21–32, Bled, Slovenia, June 24–27, 1999. Berlin, Germany:
Springer-Verlag GmbH. doi: 10.1007/3-540-48751-4 4. URL http://www.ai.ici.ro/papers/ilp99.ps.gz .

25. Hendrik Skubch. Hierarchical strategy learning for flux agents. Master’s thesis, Dresden, Sachsen, Germany: Technische
Universität Dresden, February 18, 2007.

26. Hendrik Skubch. Hierarchical Strategy Learning for FLUX Agents: An Applied Technique. Saarbrücken, Saarland,
Germany: VDM Verlag Dr. Müller AG und Co. KG, 2006. ISBN 3-8364-5271-5 and 978-3-8364-5271-7. URL
http://books.google.de/books?id=syxkPQAACAAJ .

Metaheuristic Optimization Thomas Weise 53/72

http://www.cs.vu.nl/~gusz/papers/FunInf98-Eiben-Schippers.ps
http://www.iitk.ac.in/kangal/papers/isna.ps.gz
http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf
http://www.ai.ici.ro/papers/ilp99.ps.gz
http://books.google.de/books?id=syxkPQAACAAJ


Bibliography IV

27. Paola Festa and Mauricio G.C. Resende. An annotated bibliography of grasp. AT&T Labs Research Technical Report
TD-5WYSEW, Florham Park, NJ, USA: AT&T Labs, February 29, 2004. URL
http://www.research.att.com/~mgcr/grasp/gannbib/gannbib.html .

28. Thomas A. Feo and Mauricio G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6(2):109–133, March 1995. doi: 10.1007/BF01096763. URL
http://www.research.att.com/~mgcr/doc/gtut.ps.Z .

29. Tianshi Chen, Jun He, Guoliang Chen, and Xin Yao. Choosing selection pressure for wide-gap problems. Theoretical
Computer Science, 411(6):926–934, February 6, 2010. doi: 10.1016/j.tcs.2009.12.014. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.158.8889 .

30. Jun He and Xin Yao. From an individual to a population: An analysis of the first hitting time of population-based
evolutionary algorithms. IEEE Transactions on Evolutionary Computation (IEEE-EC), 6(5):495–511, October 2002. doi:
10.1109/TEVC.2002.800886. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2275 .

31. Tianshi Chen, Ke Tang, Guoliang Chen, and Xin Yao. A large population size can be unhelpful in evolutionary algorithms.
Theoretical Computer Science, 436:54–70, June 8, 2012. doi: 10.1016/j.tcs.2011.02.016.

32. John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. Ann Arbor, MI, USA: University of Michigan Press, 1975. ISBN 0-472-08460-7 and
978-0-472-08460-9. URL http://books.google.de/books?id=JE5RAAAAMAAJ .

33. Kalyanmoy Deb. Genetic algorithms for multimodal function optimization. Master’s thesis, Tuscaloosa: Clearinghouse for
Genetic Algorithms, University of Alabama, 1989. TCGA Report No. 89002.

34. David Edward Goldberg and Jon T. Richardson. Genetic algorithms with sharing for multimodal function optimization. In
John J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms and their
Applications (ICGA’87), pages 41–49, Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), July 28–31,
1987. Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. (LEA).

35. Kalyanmoy Deb and David Edward Goldberg. An investigation of niche and species formation in genetic function
optimization. In James David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms
(ICGA’89), pages 42–50, Fairfax, VA, USA: George Mason University (GMU), June 4–7, 1989. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

36. Bruno Sareni and Laurent Krähenbühl. Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 2(3):97–106, September 1998. doi: 10.1109/4235.735432. URL
http://hal.archives-ouvertes.fr/hal-00359799/en/ .

Metaheuristic Optimization Thomas Weise 54/72

http://www.research.att.com/~mgcr/grasp/gannbib/gannbib.html
http://www.research.att.com/~mgcr/doc/gtut.ps.Z
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.158.8889
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2275
http://books.google.de/books?id=JE5RAAAAMAAJ
http://hal.archives-ouvertes.fr/hal-00359799/en/


Bibliography V

37. Brad L. Miller and Michael J. Shaw. Genetic algorithms with dynamic niche sharing for multimodal function optimization.
IlliGAL Report 95010, Urbana-Champaign, IL, USA: University of Illinois at Urbana-Champaign, Department of Computer
Science, Department of General Engineering, Illinois Genetic Algorithms Laboratory (IlliGAL), December 1, 1995. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3568 .

38. David Edward Goldberg, Kalyanmoy Deb, and Jeffrey Horn. Massive multimodality, deception, and genetic algorithms. In
Reinhard Männer and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN II),
pages 37–48, Brussels, Belgium, September 28–30, 1992. Amsterdam, The Netherlands: Elsevier Science Publishers B.V.
and Amsterdam, The Netherlands: North-Holland Scientific Publishers Ltd.

39. Thomas Weise. Global Optimization Algorithms – Theory and Application. Germany: it-weise.de (self-published), 2009.
URL http://www.it-weise.de/projects/book.pdf .

40. Thomas Weise, Alexander Podlich, and Christian Gorldt. Solving real-world vehicle routing problems with evolutionary
algorithms. In Raymond Chiong and Sandeep Dhakal, editors, Natural Intelligence for Scheduling, Planning and Packing
Problems, volume 250 of Studies in Computational Intelligence, chapter 2, pages 29–53. Berlin/Heidelberg:
Springer-Verlag, October 2009. doi: 10.1007/978-3-642-04039-9 2.

41. Thomas Weise, Alexander Podlich, Kai Reinhard, Christian Gorldt, and Kurt Geihs. Evolutionary freight transportation
planning. In Mario Giacobini, Penousal Machado, Anthony Brabazon, Jon McCormack, Stefano Cagnoni, Michael O’Neill,
Gianni A. Di Caro, Ferrante Neri, Anikó Ekárt, Mike Preuß, Anna Isabel Esparcia-Alcázar, Franz Rothlauf, Muddassar
Farooq, Ernesto Tarantino, Andreas Fink, and Shengxiang Yang, editors, Applications of Evolutionary Computing –
Proceedings of EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP,
EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG (EvoWorkshops’09), volume 5484/2009 of
Lecture Notes in Computer Science (LNCS), pages 768–777, Tübingen, Germany: Eberhard-Karls-Universität Tübingen,
Fakultät für Informations- und Kognitionswissenschaften, April 15–17, 2009. Berlin, Germany: Springer-Verlag GmbH.
doi: 10.1007/978-3-642-01129-0 87.

42. Alan Pétrowski. A clearing procedure as a niching method for genetic algorithms. In Keisoku Jidō and Seigyo Gakkai,
editors, Proceedings of IEEE International Conference on Evolutionary Computation (CEC’96), pages 798–803, Nagoya,
Aichi, Japan: Nagoya University, Symposium & Toyoda Auditorium, 1996. Los Alamitos, CA, USA: IEEE Computer
Society Press. doi: 10.1109/ICEC.1996.542703. URL
http://sci2s.ugr.es/docencia/cursoMieres/clearing-96.pdf .

Metaheuristic Optimization Thomas Weise 55/72

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.3568
http://www.it-weise.de/projects/book.pdf
http://sci2s.ugr.es/docencia/cursoMieres/clearing-96.pdf


Bibliography VI

43. Alan Pétrowski. An efficient hierarchical clustering technique for speciation. Technical report, Evry Cedex, France: Institut
National des Télécommunications, 1997. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1131 .

44. Simon Ronald, John Asenstorfer, and Millist Vincent. Representational redundancy in evolutionary algorithms. In Second
IEEE International Conference on Evolutionary Computation (CEC’95), volume 2, pages 631–637, Perth, WA, Australia:
University of Western Australia, November 29–December 1, 1995. Los Alamitos, CA, USA: IEEE Computer Society Press.
doi: 10.1109/ICEC.1995.487457.

45. Paul J. Darwen and Xin Yao. Every niching method has its niche: Fitness sharing and implicit sharing compared. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN IV), volume 1141/1996 of Lecture Notes in
Computer Science (LNCS), pages 398–407, Berlin, Germany, September 22–24, 1996. Berlin, Germany: Springer-Verlag
GmbH. doi: 10.1007/3-540-61723-X 1004. URL sclab.yonsei.ac.kr/courses/03EC/darwen96every.pdf .

46. Thomas Weise, Stefan Niemczyk, Raymond Chiong, and Mingxu Wan. A framework for multi-model edas with model
recombination. In Proceedings of the 4th European Event on Bio-Inspired Algorithms for Continuous Parameter
Optimisation (EvoNUM’11), Applications of Evolutionary Computation – Proceedings of EvoApplications 2011:
EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Part 1 (EvoAPPLICATIONS’11),
volume 6624 of Lecture Notes in Computer Science (LNCS), pages 304–313, Torino, Italy, April 27–29, 2011. Berlin,
Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-642-20525-5 31.

47. Stefan Niemczyk and Thomas Weise. A general framework for multi-model estimation of distribution algorithms.
Technical report, Kassel, Hesse, Germany: University of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed
Systems Group, March 10, 2010.

48. David Wallin and Conor Ryan. Maintaining diversity in edas for real-valued optimisation problems. In Frontiers in the
Convergence of Bioscience and Information Technologies (FBIT’07), pages 795–800, Jeju City, South Korea, October
11–13, 2007. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics Engineers). doi:
10.1109/FBIT.2007.132.

49. Teresa Miquélez, Endika Bengoetxea, and Pedro Larrañaga. Evolutionary computation based on bayesian classifiers.
International Journal of Applied Mathematics and Computer Science (AMCS), 14(3):335–349, September 2004. URL
http://www.amcs.uz.zgora.pl/?action=get_file&file=AMCS_2004_14_3_4.pdf .

Metaheuristic Optimization Thomas Weise 56/72

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1131
sclab.yonsei.ac.kr/courses/03EC/darwen96every.pdf
http://www.amcs.uz.zgora.pl/?action=get_file&file=AMCS_2004_14_3_4.pdf


Bibliography VII

50. Quiang Lu and Xin Yao. Clustering and learning gaussian distribution for continuous optimization. IEEE Transactions on
Systems, Man, and Cybernetics – Part C: Applications and Reviews, 35(2):195–204, May 2005. doi:
10.1109/TSMCC.2004.841914. URL http://www.cs.bham.ac.uk/~xin/papers/published_IEEETSMC_LuYa05.pdf .

51. Michaël Defoin Platel, Stefan Schliebs, and Nikola Kasabov. Quantum-inspired evolutionary algorithm: A multimodel eda.
IEEE Transactions on Evolutionary Computation (IEEE-EC), 13(6):1218–1232, December 2009. doi:
10.1109/TEVC.2008.2003010.

52. Marcus Gallagher, Marcus R. Frean, and Tom Downs. Real-valued evolutionary optimization using a flexible probability
density estimator. In Wolfgang Banzhaf, Jason M. Daida, Ágoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark J.
Jakiela, and Robert Elliott Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’99), pages 840–846, Orlando, FL, USA, July 13–17, 1999. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5113 .

53. Shumeet Baluja. Population-based incremental learning – a method for integrating genetic search based function
optimization and competitive learning. Technical Report CMU-CS-94-163, Pittsburgh, PA, USA: Carnegy Mellon
University (CMU), School of Computer Science, Computer Science Department, June 2, 1994. URL
http://www.ri.cmu.edu/pub_files/pub1/baluja_shumeet_1994_2/baluja_shumeet_1994_2.pdf .

54. Chang Wook Ahn and Rudrapatna S. Ramakrishna. Clustering-based probabilistic model fitting in estimation of
distribution algorithms. IEICE Transactions on Information and Systems, Oxford Journals, E89-D(1):381–383, January
2006. doi: 10.1093/ietisy/e89-d.1.381.

55. Aizeng Cao, Yueting Chen, Jun Wei, and Jinping Li. A hybrid evolutionary algorithm based on edas and clustering
analysis. In Dàizhǎn Chéng and M̌ın Wú, editors, Proceedings of the 26th Chinese Control Conference (CCC’07), pages
754–758, Zhangjiajie, Hunan, China, July 26–31, 2007. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics
Engineers). doi: 10.1109/CHICC.2006.4347236.

56. Tatsuya Okabe, Yaochu Jin, Bernhard Sendhoff, and Markus Olhofer. Voronoi-based estimation of distribution algorithm
for multi-objective optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC’04), volume 2,
pages 1594–1601, Portland, OR, USA, June 20–23, 2004. Los Alamitos, CA, USA: IEEE Computer Society Press. doi:
10.1109/CEC.2004.1331086. URL http://www.soft-computing.de/cec-2004-1445-final.pdf .

Metaheuristic Optimization Thomas Weise 57/72

http://www.cs.bham.ac.uk/~xin/papers/published_IEEETSMC_LuYa05.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5113
http://www.ri.cmu.edu/pub_files/pub1/baluja_shumeet_1994_2/baluja_shumeet_1994_2.pdf
http://www.soft-computing.de/cec-2004-1445-final.pdf


Bibliography VIII

57. Kumara Sastry and David Edward Goldberg. Multiobjective hboa, clustering, and scalability. In Hans-Georg Beyer,
Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantú-Paz, Dipankar
Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llorà, Spiros Mancoridis, Martin
Pelikan, Günther R. Raidl, Terence Soule, Jean-Paul Watson, and Eckart Zitzler, editors, Proceedings of Genetic and
Evolutionary Computation Conference (GECCO’05), pages 663–670, Washington, DC, USA: Loews L’Enfant Plaza Hotel,
June 25–27, 2005. New York, NY, USA: ACM Press. doi: 10.1145/1068009.1068122.

58. Günter Rudolph. Self-adaptation and global convergence: A counter-example. In Peter John Angeline, Zbigniew
Michalewicz, Marc Schoenauer, Xin Yao, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’99), volume 1, pages 646–651, Washington, DC, USA: Mayflower Hotel, July 6–9, 1999.
Piscataway, NJ, USA: IEEE Computer Society. doi: 10.1109/CEC.1999.781994. URL
http://ls11-www.cs.uni-dortmund.de/people/rudolph/publications/papers/CEC99.pdf .

59. Günter Rudolph. Self-adaptive mutations may lead to premature convergence. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 5(4):410–414, 2001. doi: 10.1109/4235.942534.

60. Darrell F. Lochtefeld and Frank William Ciarallo. Multiobjectivization via helper-objectives with the tunable objectives
problem. IEEE Transactions on Evolutionary Computation (IEEE-EC), 16(3):373–395, June 2012. doi:
10.1109/TEVC.2011.2136345.

61. Darrell F. Lochtefeld and Frank William Ciarallo. Helper-objective optimization strategies for the job-shop scheduling
problem. Applied Soft Computing, 11(6):4161–4174, September 2011. doi: 10.1016/j.asoc.2011.03.007.

62. Joshua D. Knowles, Richard A. Watson, and David Wolfe Corne. Reducing local optima in single-objective problems by
multi-objectivization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos Artemio Coello Coello, and David Wolfe
Corne, editors, Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO’01),
volume 1993/2001 of Lecture Notes in Computer Science (LNCS), pages 269–283, Zürich, Switzerland: Eidgenössische
Technische Hochschule (ETH) Zürich, March 7–9, 2001. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/3-540-44719-9 19. URL http://www.macs.hw.ac.uk/~dwcorne/rlo.pdf .

63. Mikkel T. Jensen. Guiding single-objective optimization using multi-objective methods. In Günther R. Raidl, Jean-Arcady
Meyer, Martin Middendorf, Stefano Cagnoni, Juan Jesús Romero Cardalda, David Wolfe Corne, Jens Gottlieb, Agnès
Guillot, Emma Hart, Colin G. Johnson, and Elena Marchiori, editors, Applications of Evolutionary Computing, Proceedings
of EvoWorkshop 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM (EvoWorkshop’03), volume
2611/2003 of Lecture Notes in Computer Science (LNCS), pages 91–98, Wivenhoe Park, Colchester, Essex, UK:
University of Essex, April 14–16, 2003. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-36605-9 25.

Metaheuristic Optimization Thomas Weise 58/72

http://ls11-www.cs.uni-dortmund.de/people/rudolph/publications/papers/CEC99.pdf
http://www.macs.hw.ac.uk/~dwcorne/rlo.pdf


Bibliography IX

64. Mikkel T. Jensen. Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation.
Journal of Mathematical Modelling and Algorithms, 3(4):323–347, December 2004. doi:
10.1023/B:JMMA.0000049378.57591.c6.

65. Frank Neumann and Ingo Wegener. Can single-objective optimization profit from multiobjective optimization? In
Multiobjective Problem Solving from Nature – From Concepts to Applications, Natural Computing Series, pages 115–130.
New York, NY, USA: Springer New York, 2008. doi: 10.1007/978-3-540-72964-8 6.

66. Martin Jähne, Xiaodong Li, and Jürgen Branke. Evolutionary algorithms and multi-objectivization for the travelling
salesman problem. In Franz Rothlauf, Günther R. Raidl, Anna Isabel Esparcia-Alcázar, Ying-Ping Chen, Gabriela Ochoa,
Ender Ozcan, Marc Schoenauer, Anne Auger, Hans-Georg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros,
L. Darrell Whitley, Garnett Wilson, Simon Harding, William Benjamin Langdon, Man Leung Wong, Laurence D. Merkle,
Frank W. Moore, Sevan G. Ficici, William Rand, Rick L. Riolo, Nawwaf Kharma, William R. Buckley, Julian Francis
Miller, Kenneth Owen Stanley, Jaume Bacardit i Peñarroya, Will N. Browne, Jan Drugowitsch, Nicola Beume, Mike
Preuß, Stephen Frederick Smith, Stefano Cagnoni, Alexandru Floares, Aaron Baughman, Steven Matt Gustafson, Maarten
Keijzer, Arthur Kordon, and Clare Bates Congdon, editors, Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO’09), pages 595–602, Montréal, QC, Canada: Delta Centre-Ville Hotel, July 8–12,
2009. New York, NY, USA: Association for Computing Machinery (ACM). doi: 10.1145/1569901.1569984. URL
http://goanna.cs.rmit.edu.au/~xiaodong/publications/multi-objectivization-jahne-gecco09.pdf .

67. Darrell F. Lochtefeld and Frank William Ciarallo. Deterministic helper objective sequence applied to the job-shop
scheduling problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’10), pages
431–438, Portland, OR, USA: Portland Marriott Downtown Waterfront Hotel, July 7–11, 2010. New York, NY, USA:
ACM Press. doi: 10.1145/1830483.1830566.

68. Erik van Nimwegen and James P. Crutchfield. Optimizing epochal evolutionary search: Population-size dependent theory.
Machine Learning, 45(1):77–114, October 2001. doi: 10.1023/A:1012497308906.

69. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ .

70. Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Bad Cannstadt,
Stuttgart, Baden-Württemberg, Germany: Frommann-Holzboog Verlag, 1994. ISBN 3-7728-1642-8 and
978-3-772-81642-0. URL http://books.google.de/books?id=savAAAACAAJ .

Metaheuristic Optimization Thomas Weise 59/72

http://goanna.cs.rmit.edu.au/~xiaodong/publications/multi-objectivization-jahne-gecco09.pdf
http://books.google.de/books?id=QcNNGQAACAAJ
http://books.google.de/books?id=savAAAACAAJ


Bibliography X

71. Justinian P. Rosca and Dana H. Ballard. Causality in genetic programming. In Larry J. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms (ICGA’95), pages 256–263, Pittsburgh, PA, USA: University of
Pittsburgh, July 15–19, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2503 .

72. Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck. Philosophie zoologique – ou Exposition des considérations
relatives à l’histoire naturelle des Animaux; à la diversité de leur organisation et des facultés qu’ils en obtiennent; . . . .
Paris, France: Dentu and Paris, France: J. B. Baillière Liberaire, 1809. ISBN 1412116465 and 9781412116466. URL
http://www.lamarck.cnrs.fr/ice/ice_book_detail.php?type=text&bdd=lamarck&table=ouvrages_lamarck&bookId=29 .
Philosophie zoologique – ou Exposition des considérations relatives à l’histoire naturelle des Animaux; à la diversité de leur
organisation et des facultés qu’ils en obtiennent; aux causes physiques qui maintiennent en eux la vie et donnent lieu aux
mouvements qu’ils exécutant; enfin, à celles qui produisent les unes le sentiment, et les autres l’intelligence de ceux qui en
sont doués.

73. L. Darrell Whitley, V. Scott Gordon, and Keith E. Mathias. Lamarckian evolution, the baldwin effect and function
optimization. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Proceedings of the Third Conference
on Parallel Problem Solving from Nature; International Conference on Evolutionary Computation (PPSN III), volume
866/1994 of Lecture Notes in Computer Science (LNCS), pages 5–15, Jerusalem, Israel, October 9–14, 1994. Berlin,
Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-58484-6 245. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2428 .

74. James Mark Baldwin. A new factor in evolution. The American Naturalist, 30(354):441–451, June 1896. URL
http://www.brocku.ca/MeadProject/Baldwin/Baldwin_1896_h.html .

75. Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide evolution. Complex Systems, 1(3):495–502, 1987. URL
http://htpprints.yorku.ca/archive/00000172/ .

76. Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide evolution. In Richard K. Belew and Melanie Mitchell,
editors, Adaptive Individuals in Evolving Populations: Models and Algorithms, volume 26 of Santa Fe Institue Studies in
the Sciences of Complexity, pages 447–454. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. and
Boulder, CO, USA: Westview Press, January 15, 1996.

77. Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech Concurrent Computation Program C3P 826, Pasadena, CA, USA: California Institute of Technology (Caltech),
Caltech Concurrent Computation Program (C3P), 1989. URL
http://www.each.usp.br/sarajane/SubPaginas/arquivos_aulas_IA/memetic.pdf .

Metaheuristic Optimization Thomas Weise 60/72

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2503
http://www.lamarck.cnrs.fr/ice/ice_book_detail.php?type=text&bdd=lamarck&table=ouvrages_lamarck&bookId=29
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.2428
http://www.brocku.ca/MeadProject/Baldwin/Baldwin_1896_h.html
http://htpprints.yorku.ca/archive/00000172/
http://www.each.usp.br/sarajane/SubPaginas/arquivos_aulas_IA/memetic.pdf


Bibliography XI

78. Michael G. Norman and Pablo Moscato. A competitive and cooperative approach to complex combinatorial search. In
Proceedings of the 20th Informatics and Operations Research Meeting (20th Jornadas Argentinas e Informática e
Investigación Operativa) (JAIIO’91), pages 3.15–3.29, Buenos Aires, Argentina: Centro Cultural General San Mart́ın,
August 20–23, 1991. Also published as Technical Report Caltech Concurrent Computation Program, Report. 790,
California Institute of Technology, Pasadena, California, USA, 1989.

79. Diana Holstein and Pablo Moscato. Memetic algorithms using guided local search: A case study. In David Wolfe Corne,
Marco Dorigo, Fred W. Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli, and Kenneth V. Price, editors, New
Ideas in Optimization, McGraw-Hill’s Advanced Topics In Computer Science Series, pages 235–244. Maidenhead, England,
UK: McGraw-Hill Ltd., May 1999.

80. Luciana Buriol, Paulo M. França, and Pablo Moscato. A new memetic algorithm for the asymmetric traveling salesman
problem. Journal of Heuristics, 10(5):483–506, September 2004. doi: 10.1023/B:HEUR.0000045321.59202.52.
URL http://www.springerlink.com/content/w617486q60mphg88/fulltext.pdf .

81. Maria J. Blesa, Pablo Moscato, and Fatos Xhafa. A memetic algorithm for the minimum weighted k-cardinality tree
subgraph problem. In Mauricio G.C. Resende, Jorge Pinho de Sousa, and Ana Viana, editors, 4th Metaheuristics
International Conference – Metaheuristics: Computer Decision-Making (MIC’01), volume 86 of Applied Optimization,
pages 85–90, Porto, Portugal, July 16–20, 2001. Berlin, Germany: Springer-Verlag GmbH. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.5376 .

82. Pablo Moscato and Carlos Cotta. A gentle introduction to memetic algorithms. In Fred W. Glover and Gary A.
Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research &
Management Science, chapter 5, pages 105–144. Norwell, MA, USA: Kluwer Academic Publishers, Dordrecht,
Netherlands: Springer Netherlands, and Boston, MA, USA: Springer US, 2003. doi: 10.1007/0-306-48056-5 5. URL
http://www.lcc.uma.es/~ccottap/papers/handbook03memetic.pdf .

83. Nicholas J. Radcliffe and Patrick David Surry. Formal memetic algorithms. In Terence Claus Fogarty, editor, Proceedings
of the Workshop on Artificial Intelligence and Simulation of Behaviour, International Workshop on Evolutionary
Computing, Selected Papers (AISB’94), volume 865/1994 of Lecture Notes in Computer Science (LNCS), pages 1–16,
Leeds, UK, April 11–13, 1994. Chichester, West Sussex, UK: Society for the Study of Artificial Intelligence and the
Simulation of Behaviour (SSAISB), Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/3-540-58483-8 1. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9885 .

Metaheuristic Optimization Thomas Weise 61/72

http://www.springerlink.com/content/w617486q60mphg88/fulltext.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.5376
http://www.lcc.uma.es/~ccottap/papers/handbook03memetic.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9885


Bibliography XII

84. Jason Digalakis and Konstantinos Margaritis. A parallel memetic algorithm for solving optimization problems. In
Mauricio G.C. Resende, Jorge Pinho de Sousa, and Ana Viana, editors, 4th Metaheuristics International Conference –
Metaheuristics: Computer Decision-Making (MIC’01), volume 86 of Applied Optimization, pages 121–125, Porto,
Portugal, July 16–20, 2001. Berlin, Germany: Springer-Verlag GmbH. URL
http://citeseer.ist.psu.edu/digalakis01parallel.html .

85. Jason Digalakis and Konstantinos Margaritis. Performance comparison of memetic algorithms. Journal of Applied
Mathematics and Computation, 158:237–252, October 2004. doi: 10.1016/j.amc.2003.08.115. URL
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf .

86. Natalio Krasnogor and James E. Smith. A tutorial for competent memetic algorithms: Model, taxonomy, and design
issues. IEEE Transactions on Evolutionary Computation (IEEE-EC), 9(5):474–488, October 2005. doi:
10.1109/TEVC.2005.850260. URL http://www.cs.nott.ac.uk/~nxk/PAPERS/IEEE-TEC-lastVersion.pdf .

87. David H. Ackley. A Connectionist Machine for Genetic Hillclimbing. PhD thesis, Pittsburgh, PA, USA: Carnegy Mellon
University (CMU), August 31, 1987. URL http://books.google.de/books?id=3ttfAAAAMAAJ .

88. David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0-201-15767-5 and 978-0-201-15767-3. URL
http://books.google.de/books?id=2IIJAAAACAAJ .

89. Martina Gorges-Schleuter. Asparagos: An asynchronous parallel genetic optimization strategy. In James David Schaffer,
editor, Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pages 422–427, Fairfax, VA,
USA: George Mason University (GMU), June 4–7, 1989. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

90. Heinz Mühlenbein. Parallel genetic algorithms, population genetics and combinatorial optimization. In Jörg D. Becker,
Ignaz Eisele, and F. W. Mündemann, editors, Parallelism, Learning, Evolution: Workshop on Evolutionary Models and
Strategies (Neubiberg, Germany, 1989-03-10/11) and Workshop on Parallel Processing: Logic, Organization, and
Technology (Wildbad Kreuth, Germany, 1989-07-24 to 28) (WOPPLOT’89), volume 565/1991 of Lecture Notes in
Computer Science (LNCS), pages 398–406, Germany, 1989. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/3-540-55027-5 23.

91. Heinz Mühlenbein. Parallel genetic algorithms, population genetics and combinatorial optimization. In James David
Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pages 416–421,
Fairfax, VA, USA: George Mason University (GMU), June 4–7, 1989. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Metaheuristic Optimization Thomas Weise 62/72

http://citeseer.ist.psu.edu/digalakis01parallel.html
http://www.complexity.org.au/ci/draft/draft/digala02/digala02s.pdf
http://www.cs.nott.ac.uk/~nxk/PAPERS/IEEE-TEC-lastVersion.pdf
http://books.google.de/books?id=3ttfAAAAMAAJ
http://books.google.de/books?id=2IIJAAAACAAJ


Bibliography XIII

92. Heinz Mühlenbein. How genetic algorithms really work – i. mutation and hillclimbing. In Reinhard Männer and Bernard
Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN II), pages 15–26, Brussels, Belgium,
September 28–30, 1992. Amsterdam, The Netherlands: Elsevier Science Publishers B.V. and Amsterdam, The
Netherlands: North-Holland Scientific Publishers Ltd. URL http://muehlenbein.org/mut92.pdf .

93. Donald E. Brown, Christopher L. Huntley, and Andrew R. Spillane. A parallel genetic heuristic for the quadratic
assignment problem. In James David Schaffer, editor, Proceedings of the Third International Conference on Genetic
Algorithms (ICGA’89), pages 406–415, Fairfax, VA, USA: George Mason University (GMU), June 4–7, 1989. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

94. Lawrence Davis, editor. Handbook of Genetic Algorithms. VNR Computer Library. Stamford, CT, USA: Thomson
Publishing Group, Inc. and New York, NY, USA: Van Nostrand Reinhold Co., January 1991. ISBN 0-442-00173-8,
1850328250, 978-0-442-00173-5, and 978-1850328254. URL http://books.google.de/books?id=vTG5PAAACAAJ .

95. Ko-Hsin Liang, Xin Yao, and Charles S. Newton. Evolutionary search of approximated n-dimensional landscapes.
International Journal of Knowledge-Based and Intelligent Engineering Systems, 4(3):172–183, June 2000. URL
http://sclab.yonsei.ac.kr/courses/03EC/liang00evolutionary.pdf .

96. Yu Wang, Bin Li, and Thomas Weise. Estimation of distribution and differential evolution cooperation for large scale
economic load dispatch optimization of power systems. Information Sciences – Informatics and Computer Science
Intelligent Systems Applications: An International Journal, 180(12):2405–2420, June 2010. doi:
10.1016/j.ins.2010.02.015.

97. Albert Donally Bethke. Genetic Algorithms as Function Optimizers. PhD thesis, Ann Arbor, MI, USA: University of
Michigan, 1980. National Science Foundation Grant No. MCS76-04297.

98. Gunar E. Liepins and Michael D. Vose. Deceptiveness and genetic algorithm dynamics. In Bruce M. Spatz and Gregory
J. E. Rawlins, editors, Proceedings of the First Workshop on Foundations of Genetic Algorithms (FOGA’90), pages 36–50,
Bloomington, IN, USA: Indiana University, Bloomington Campus, July 15–18, 1990. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. URL http://www.osti.gov/bridge/servlets/purl/6445602-CfqU6M/ .

99. Thorsten Schnier and Xin Yao. Using multiple representations in evolutionary algorithms. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC’00), volume 1, pages 479–486, La Jolla, CA, USA: La Jolla Marriott Hotel,
July 16–19, 2000. Piscataway, NJ, USA: IEEE Computer Society. doi: 10.1109/CEC.2000.870335. URL
http://www.cs.bham.ac.uk/~txs/publications/2000/SchnierYaoCEC2000.pdf .

Metaheuristic Optimization Thomas Weise 63/72

http://muehlenbein.org/mut92.pdf
http://books.google.de/books?id=vTG5PAAACAAJ
http://sclab.yonsei.ac.kr/courses/03EC/liang00evolutionary.pdf
http://www.osti.gov/bridge/servlets/purl/6445602-CfqU6M/
http://www.cs.bham.ac.uk/~txs/publications/2000/SchnierYaoCEC2000.pdf


Bibliography XIV

100. Shane Legg, Marcus Hutter, and Akshat Kumar. Tournament versus fitness uniform selection. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC’04), pages 2144–2151, Portland, OR, USA, June 20–23, 2004. Los
Alamitos, CA, USA: IEEE Computer Society Press. doi: 10.1109/CEC.2004.1331162. URL
http://arxiv.org/abs/cs/0403038v1 .

101. Marcus Hutter. Fitness uniform selection to preserve genetic diversity. In David B. Fogel, Mohamed A. El-Sharkawi, Xin
Yao, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of the IEEE Congress on Evolutionary
Computation (CEC’02), 2002 IEEE World Congress on Computation Intelligence (WCCI’02), volume 1-2, pages 783–788,
Honolulu, HI, USA: Hilton Hawaiian Village Hotel (Beach Resort & Spa), May 12–17, 2002. Piscataway, NJ, USA: IEEE
Computer Society, Los Alamitos, CA, USA: IEEE Computer Society Press. doi: 10.1109/CEC.2002.1007025. URL
http://arxiv.org/abs/cs/0103015 . Also: Technical Report IDSIA-01-01, 17 January 2001.

102. Marcus Hutter and Shane Legg. Fitness uniform optimization. IEEE Transactions on Evolutionary Computation
(IEEE-EC), 10(5):568–589, October 2006. doi: 10.1109/TEVC.2005.863127. URL
http://arxiv.org/abs/cs/0610126v1 .

103. Shane Legg and Marcus Hutter. Fitness uniform deletion: A simple way to preserve diversity. In Hans-Georg Beyer,
Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantú-Paz, Dipankar
Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llorà, Spiros Mancoridis, Martin
Pelikan, Günther R. Raidl, Terence Soule, Jean-Paul Watson, and Eckart Zitzler, editors, Proceedings of Genetic and
Evolutionary Computation Conference (GECCO’05), pages 1271–1278, Washington, DC, USA: Loews L’Enfant Plaza
Hotel, June 25–27, 2005. New York, NY, USA: ACM Press. doi: 10.1145/1068009.1068216. URL
http://arxiv.org/abs/cs/0504035v1 .

104. Joel Lehman and Kenneth Owen Stanley. Exploiting open-endedness to solve problems through the search for novelty. In
Seth Bullock, Jason Noble, Richard A. Watson, and Mark A. Bedau, editors, Proceedings of the Eleventh International
Conference on the Simulation and Synthesis of Living Systems (Artificial Life XI), pages 329–336, Winchester, Hampshire,
UK, August 5–8, 2008. Cambridge, MA, USA: MIT Press. URL
http://eplex.cs.ucf.edu/papers/lehman_alife08.pdf .

105. Joel Lehman and Kenneth Owen Stanley. Abandoning objectives: Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, Summer 2011. doi: 10.1162/EVCO a 00025. URL
http://eplex.cs.ucf.edu/papers/lehman_ecj10.pdf .

Metaheuristic Optimization Thomas Weise 64/72

http://arxiv.org/abs/cs/0403038v1
http://arxiv.org/abs/cs/0103015
http://arxiv.org/abs/cs/0610126v1
http://arxiv.org/abs/cs/0504035v1
http://eplex.cs.ucf.edu/papers/lehman_alife08.pdf
http://eplex.cs.ucf.edu/papers/lehman_ecj10.pdf


Bibliography XV

106. Joel Lehman and Kenneth Owen Stanley. Evolving a diversity of virtual creatures through novelty search and local
competition. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’11), pages 211–218,
Dublin, Ireland, July 12–16, 2011. doi: 10.1145/2001576.2001606. URL
http://eplex.cs.ucf.edu/papers/lehman_gecco11.pdf .

107. Lee Altenberg. Fitness distance correlation analysis: An instructive counterexample. In Thomas Bäck, editor, Proceedings
of The Seventh International Conference on Genetic Algorithms (ICGA’97), pages 57–64, East Lansing, MI, USA:
Michigan State University, July 19–23, 1997. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://dynamics.org/Altenberg/PAPERS/FDCAAIC/ .

108. Lee Altenberg. The schema theorem and price’s theorem. In L. Darrell Whitley and Michael D. Vose, editors, Proceedings
of the Third Workshop on Foundations of Genetic Algorithms (FOGA 3), pages 23–49, Estes Park, CO, USA, July
31–August 2, 1994. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://dynamics.org/Altenberg/FILES/LeeSTPT.pdf .

109. Gwoing Tina Yu. Program evolvability under environmental variations and neutrality. In Fernando Almeida e Costa,
Lúıs Mateus Rocha, Ernesto Jorge Fernandes Costa, Inman Harvey, and António Coutinho, editors, Proceedings of the 9th
European Conference on Advances in Artificial Life (ECAL’07), volume 4648/2007 of Lecture Notes in Computer Science
(LNCS), pages 835–844, Lisbon, Portugal, September 10–14, 2007. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/978-3-540-74913-4 84.

110. Andreas Wagner. Robustness, evolvability, and neutrality. FEBS Letters, 579(8):1772–1778, March 21, 2005. doi:
10.1016/j.febslet.2005.01.063.

111. Richard Dawkins. The evolution of evolvability. In Christopher Gale Langdon, editor, The Proceedings of an
Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (Artificial Life’87), volume 6 of Santa Fe
Institue Studies in the Sciences of Complexity, pages 201–220, Los Alamaos, NM, USA: Oppenheimer Study Center,
September 21, 1987. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. and Boulder, CO, USA: Westview
Press.

112. Yuval Davidor. Epistasis variance: A viewpoint on ga-hardness. In Bruce M. Spatz and Gregory J. E. Rawlins, editors,
Proceedings of the First Workshop on Foundations of Genetic Algorithms (FOGA’90), pages 23–35, Bloomington, IN,
USA: Indiana University, Bloomington Campus, July 15–18, 1990. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Metaheuristic Optimization Thomas Weise 65/72

http://eplex.cs.ucf.edu/papers/lehman_gecco11.pdf
http://dynamics.org/Altenberg/PAPERS/FDCAAIC/
http://dynamics.org/Altenberg/FILES/LeeSTPT.pdf


Bibliography XVI

113. Lee Altenberg. Nk fitness landscapes. In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors, Handbook of
Evolutionary Computation, Computational Intelligence Library, chapter B2.7.2. New York, NY, USA: Oxford University
Press, Inc., Dirac House, Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP), and Boca Raton, FL,
USA: CRC Press, Inc., January 1, 1997. URL http://www.cmi.univ-mrs.fr/~pardoux/LeeNKFL.pdf .

114. Bart Naudts and Alain Verschoren. Epistasis on finite and infinite spaces. In 8th International Conference on Systems
Research, Informatics and Cybernetics (InterSymp’96), pages 19–23, Baden-Baden, Baden-Württemberg, Germany,
August 14–18, 1996. Tecumseh, ON, Canada: International Institute for Advanced Studies in Systems Research and
Cybernetic (IIAS). URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6455 .

115. Colin R. Reeves and Christine C. Wright. Epistasis in genetic algorithms: An experimental design perspective. In Larry J.
Eshelman, editor, Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), pages 217–224,
Pittsburgh, PA, USA: University of Pittsburgh, July 15–19, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.29 .

116. William Bateson. Mendel’s Principles of Heredity. Kessinger Publishing’s® Rare Reprints. Cambridge, UK: Cambridge
University Press, 1909. ISBN 1428648194 and 9781428648197. URL http://books.google.de/books?id=WWZfDQljn8gC .

117. Sir Ronald Aylmer Fisher. The correlations between relatives on the supposition of mendelian inheritance. Philosophical
Transactions of the Royal Society of Edinburgh, 52:399–433, October 1, 1918. URL
http://www.library.adelaide.edu.au/digitised/fisher/9.pdf .

118. Patrick C. Phillips. The language of gene interaction. Genetics, 149(3):1167–1171, July 1998. URL
http://www.genetics.org/cgi/reprint/149/3/1167.pdf .

119. Jay L. Lush. Progeny test and individual performance as indicators of an animal’s breeding value. Journal of Dairy Science
(JDS), 18(1):1–19, January 1935. URL http://jds.fass.org/cgi/reprint/18/1/1 .

120. Ke Tang, Xin Yao, Ponnuthurai Nagaratnam Suganthan, Cara MacNish, Ying-Ping Chen, Chih-Ming Chen, and Zhenyu
Yang. Benchmark functions for the cec’2008 special session and competition on large scale global optimization. Technical
report, Hefei, Anhui, China: University of Science and Technology of China (USTC), School of Computer Science and
Technology, Nature Inspired Computation and Applications Laboratory (NICAL), 2007. URL
http://sci2s.ugr.es/programacion/workshop/Tech.Report.CEC2008.LSGO.pdf .

121. George Hadley. Nonlinear and Dynamics Programming. World Student. Reading, MA, USA: Addison-Wesley Professional,
December 1964. ISBN 0201026643 and 978-0201026641.

Metaheuristic Optimization Thomas Weise 66/72

http://www.cmi.univ-mrs.fr/~pardoux/LeeNKFL.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6455
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.29
http://books.google.de/books?id=WWZfDQljn8gC
http://www.library.adelaide.edu.au/digitised/fisher/9.pdf
http://www.genetics.org/cgi/reprint/149/3/1167.pdf
http://jds.fass.org/cgi/reprint/18/1/1
http://sci2s.ugr.es/programacion/workshop/Tech.Report.CEC2008.LSGO.pdf


Bibliography XVII

122. Domingo Ortiz-Boyer, César Hervás-Mart́ınez, and Carlos A. Reyes Garćıa. Cixl2: A crossover operator for evolutionary
algorithms based on population features. Journal of Artificial Intelligence Research (JAIR), 24:1–48, July 2005. URL
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/Ortiz-Boyer.html .

123. Ke Tang, Xiaodong Li, Ponnuthurai Nagaratnam Suganthan, Zhenyu Yang, and Thomas Weise. Benchmark functions for
the cec’2010 special session and competition on large-scale global optimization. Technical report, Hefei, Anhui, China:
University of Science and Technology of China (USTC), School of Computer Science and Technology, Nature Inspired
Computation and Applications Laboratory (NICAL), January 8, 2010.

124. Thomas Weise and Ke Tang. Evolving distributed algorithms with genetic programming. IEEE Transactions on
Evolutionary Computation (IEEE-EC), 16(2):242–265, April 2012. doi: 10.1109/TEVC.2011.2112666.

125. Thomas Weise, Michael Zapf, and Kurt Geihs. Rule-based genetic programming. In Proceedings of the 2nd International
Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS’07), pages 8–15,
Budapest, Hungary: Radisson SAS Beke Hotel, December 10–13, 2007. Piscataway, NJ, USA: IEEE Computer Society.
doi: 10.1109/BIMNICS.2007.4610073.

126. Thomas Weise and Michael Zapf. Evolving distributed algorithms with genetic programming: Election. In Lihong Xu,
Erik D. Goodman, and Yongsheng Ding, editors, Proceedings of the First ACM/SIGEVO Summit on Genetic and
Evolutionary Computation (GEC’09), pages 577–584, Shanghai, China: Hua-Ting Hotel & Towers, June 12–14, 2009.
New York, NY, USA: ACM Press. doi: 10.1145/1543834.1543913.

127. Thomas Weise. Evolving Distributed Algorithms with Genetic Programming. PhD thesis, Kassel, Hesse, Germany:
University of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed Systems Group, May 4, 2009. Won the
Dissertation Award of The Association of German Engineers (Verein Deutscher Ingenieure, VDI).

128. Masaya Shinkai, Arturo Hernández Aguirre, and Kiyoshi Tanaka. Mutation strategy improves gas performance on epistatic
problems. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors,
Proceedings of the IEEE Congress on Evolutionary Computation (CEC’02), 2002 IEEE World Congress on Computation
Intelligence (WCCI’02), volume 1, pages 968–973, Honolulu, HI, USA: Hilton Hawaiian Village Hotel (Beach Resort &
Spa), May 12–17, 2002. Piscataway, NJ, USA: IEEE Computer Society, Los Alamitos, CA, USA: IEEE Computer Society
Press. doi: 10.1109/CEC.2002.1007056.

129. Georges Raif Harik. Learning Gene Linkage to Efficiently Solve Problems of Bounded Difficulty using Genetic Algorithms.
PhD thesis, Ann Arbor, MI, USA: University of Michigan, 1997. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7092 .

Metaheuristic Optimization Thomas Weise 67/72

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/Ortiz-Boyer.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7092


Bibliography XVIII

130. Masaharu Munetomo and David Edward Goldberg. Linkage identification by non-monotonicity detection for overlapping
functions. Evolutionary Computation, 7(4):377–398, Winter 1999. doi: 10.1162/evco.1999.7.4.377.

131. Ying-Ping Chen. Extending the Scalability of Linkage Learning Genetic Algorithms – Theory & Practice, volume 190/2006
of Studies in Fuzziness and Soft Computing. Berlin, Germany: Springer-Verlag GmbH, 2004. ISBN 3-540-28459-1 and
978-3-540-28459-8. doi: 10.1007/b102053. URL http://books.google.de/books?id=kKr3rKhPU7oC .

132. Kalyanmoy Deb, Ankur Sinha, and Saku Kukkonen. Multi-objective test problems, linkages, and evolutionary
methodologies. In Maarten Keijzer and Mike Cattolico, editors, Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation (GECCO’06), pages 1141–1148, Seattle, WA, USA: Renaissance Seattle Hotel, July 8–12,
2006. New York, NY, USA: ACM Press. doi: 10.1145/1143997.1144179.

133. David Edward Goldberg, Kalyanmoy Deb, and Bradley Korb. Messy genetic algorithms: Motivation, analysis, and first
results. Complex Systems, 3(5):493–530, 1989. URL http://www.complex-systems.com/pdf/03-5-5.pdf .

134. Martin Pelikan, David Edward Goldberg, and Erick Cantú-Paz. Boa: The bayesian optimization algorithm. In Wolfgang
Banzhaf, Jason M. Daida, Ágoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark J. Jakiela, and Robert Elliott Smith,
editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), pages 525–532, Orlando, FL,
USA, July 13–17, 1999. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
https://eprints.kfupm.edu.sa/28537/ .

135. Erick Cantú-Paz, Martin Pelikan, and David Edward Goldberg. Linkage problem, distribution estimation, and bayesian
networks. Evolutionary Computation, 8(3):311–340, Fall 2000. doi: 10.1162/106365600750078808. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.236 .

136. Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. Large-scale global optimization using cooperative
coevolution with variable interaction learning. In Robert Schaefer, Carlos Cotta, Joanna Ko lodziej, and Günter Rudolph,
editors, Proceedings of the 11th International Conference on Parallel Problem Solving From Nature, Part 2 (PPSN’10-2),
volume 6239 of Lecture Notes in Computer Science (LNCS), pages 300–309, Kraków, Poland: AGH University of Science
and Technology, September 11–15, 2010. Berlin, Germany: Springer-Verlag GmbH. doi:
10.1007/978-3-642-15871-1 31.

Metaheuristic Optimization Thomas Weise 68/72

http://books.google.de/books?id=kKr3rKhPU7oC
http://www.complex-systems.com/pdf/03-5-5.pdf
https://eprints.kfupm.edu.sa/28537/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.236


Bibliography XIX

137. Mitchell A. Potter and Kenneth Alan De Jong. A cooperative coevolutionary approach to function optimization. In Yuval
Davidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Proceedings of the Third Conference on Parallel Problem
Solving from Nature; International Conference on Evolutionary Computation (PPSN III), volume 866/1994 of Lecture
Notes in Computer Science (LNCS), pages 249–257, Jerusalem, Israel, October 9–14, 1994. Berlin, Germany:
Springer-Verlag GmbH. doi: 10.1007/3-540-58484-6 269. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7033 .

138. Mitchell A. Potter and Kenneth Alan De Jong. Cooperative coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29, Spring 2000. doi: 10.1162/106365600568086. URL
http://mitpress.mit.edu/journals/pdf/evco_8_1_1_0.pdf .

139. Richard Ernest Bellman. Dynamic Programming. Dover Books on Mathematics. Princeton, NJ, USA: Princeton University
Press, 1957. ISBN 0486428095 and 978-0486428093. URL http://books.google.de/books?id=fyVtp3EMxasC .

140. Richard Ernest Bellman. Adaptive Control Processes: A Guided Tour. Princeton, NJ, USA: Princeton University Press,
1961. ISBN 0691079013 and 978-0691079011. URL http://books.google.de/books?id=8wY3PAAACAAJ .

141. Conor Ryan, John James Collins, and Michael O’Neill. Grammatical evolution: Evolving programs for an arbitrary
language. In Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence Claus Fogarty, editors, Proceedings of the
First European Workshop on Genetic Programming (EuroGP’98), volume 1391/1998 of Lecture Notes in Computer
Science (LNCS), pages 83–95, Paris, France, April 14–15, 1998. Berlin, Germany: Springer-Verlag GmbH. URL
http://www.grammatical-evolution.org/papers/eurogp98.ps .

142. Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary
Language, volume 4 of Genetic Programming Series. New York, NY, USA: Springer Science+Business Media, Inc., 2003.
ISBN 1402074441 and 978-1-4020-7444-8. URL http://books.google.de/books?id=yVx5dg_opRIC .

143. Alexandre Devert, Thomas Weise, and Ke Tang. A study on scalable representations for evolutionary optimization of
ground structures. Evolutionary Computation, 20(3):453–472, Fall 2012. doi: 10.1162/EVCO a 00054. URL
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf .

144. Alexandre Devert. Building Processes Optimization: Toward an Artificial Ontogeny based Approach. PhD thesis, Paris,
France: Université Paris-Sud, Ecole Doctorale d’Informatique and Orsay, France: Institut National de Recherche en
Informatique et en Automatique (INRIA), Centre de Recherche Saclay – Île-de-France, May 2009.

Metaheuristic Optimization Thomas Weise 69/72

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7033
http://mitpress.mit.edu/journals/pdf/evco_8_1_1_0.pdf
http://books.google.de/books?id=fyVtp3EMxasC
http://books.google.de/books?id=8wY3PAAACAAJ
http://www.grammatical-evolution.org/papers/eurogp98.ps
http://books.google.de/books?id=yVx5dg_opRIC
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf


Bibliography XX

145. Phil Husbands and Frank Mill. Simulated co-evolution as the mechanism for emergent planning and scheduling. In
Richard K. Belew and Lashon Bernard Booker, editors, Proceedings of the Fourth International Conference on Genetic
Algorithms (ICGA’91), pages 264–270, San Diego, CA, USA: University of California (UCSD), July 13–16, 1991. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.informatics.sussex.ac.uk/users/philh/pubs/icga91Husbands.pdf .

146. Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooperative coevolution. Information
Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal, 178(15), August
1, 2008. doi: 10.1016/j.ins.2008.02.017. URL http://nical.ustc.edu.cn/papers/yangtangyao_ins.pdf .

147. Antonio LaTorre, José Maŕıa Peña, Santiago Muelas, and Manuel Zaforas. Hybrid evolutionary algorithms for large scale
continuous problems. In Franz Rothlauf, Günther R. Raidl, Anna Isabel Esparcia-Alcázar, Ying-Ping Chen, Gabriela
Ochoa, Ender Ozcan, Marc Schoenauer, Anne Auger, Hans-Georg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros,
L. Darrell Whitley, Garnett Wilson, Simon Harding, William Benjamin Langdon, Man Leung Wong, Laurence D. Merkle,
Frank W. Moore, Sevan G. Ficici, William Rand, Rick L. Riolo, Nawwaf Kharma, William R. Buckley, Julian Francis
Miller, Kenneth Owen Stanley, Jaume Bacardit i Peñarroya, Will N. Browne, Jan Drugowitsch, Nicola Beume, Mike
Preuß, Stephen Frederick Smith, Stefano Cagnoni, Alexandru Floares, Aaron Baughman, Steven Matt Gustafson, Maarten
Keijzer, Arthur Kordon, and Clare Bates Congdon, editors, Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO’09), pages 1863–1864, Montréal, QC, Canada: Delta Centre-Ville Hotel, July 8–12,
2009. New York, NY, USA: Association for Computing Machinery (ACM). doi: 10.1145/1569901.1570205.

148. Fei Peng, Ke Tang, Guoliang Chen, and Xin Yao. Population-based algorithm portfolios for numerical optimization. IEEE
Transactions on Evolutionary Computation (IEEE-EC), 14(5):782–800, March 29, 2010. doi:
10.1109/TEVC.2010.2040183.

149. Gene M. Amdahl. Validity of the single processor approach to achieving large-scale computing capabilities. In American
Federation of Information Processing Societies: Proceedings of the Spring Joint Computer Conference (AFIPS), pages
483–485, Atlantic City, NJ, USA, April 18–20, 1967. New York, NY, USA: Association for Computing Machinery (ACM)
and London, New York: Academic Press. doi: 10.1145/1465482.1465560. URL
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf .

Metaheuristic Optimization Thomas Weise 70/72

http://www.informatics.sussex.ac.uk/users/philh/pubs/icga91Husbands.pdf
http://nical.ustc.edu.cn/papers/yangtangyao_ins.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf


Bibliography XXI

150. Simon Harding and Wolfgang Banzhaf. Fast genetic programming on gpus. In Marc Ebner, Michael O’Neill, Anikó Ekárt,
Leonardo Vanneschi, and Anna Isabel Esparcia-Alcázar, editors, Proceedings of the 10th European Conference on Genetic
Programming (EuroGP’07), volume 4445/2007 of Lecture Notes in Computer Science (LNCS), pages 90–101, València,
Spain, April 11–13, 2007. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-540-71605-1 9. URL
http://www.cs.mun.ca/~banzhaf/papers/eurogp07.pdf .

151. William Benjamin Langdon. A simd interpreter for genetic programming on gpu graphics cards. Computer Science
Technical Report CSM-470, Wivenhoe Park, Colchester, Essex, UK: University of Essex, Departments of Mathematical
and Biological Sciences, July 3, 2007. URL http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf .

152. William Benjamin Langdon and Wolfgang Banzhaf. A simd interpreter for genetic programming on gpu graphics cards. In
Michael O’Neill, Leonardo Vanneschi, Steven Matt Gustafson, Anna Isabel Esparcia-Alcázar, Ivanoe de Falco, Antonio
Della Cioppa, and Ernesto Tarantino, editors, Genetic Programming – Proceedings of the 11th European Conference on
Genetic Programming (EuroGP’08), volume 4971/2008 of Lecture Notes in Computer Science (LNCS), pages 73–85,
Naples, Italy, March 26–28, 2008. Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-540-78671-9 7.
URL http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html .

153. Weihang Zhu. A study of parallel evolution strategy – pattern search on a gpu computing platform. In Lihong Xu, Erik D.
Goodman, and Yongsheng Ding, editors, Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary
Computation (GEC’09), pages 765–771, Shanghai, China: Hua-Ting Hotel & Towers, June 12–14, 2009. New York, NY,
USA: ACM Press. doi: 10.1145/1543834.1543939.

154. Shigeyoshi Tsutsui and Yoshiji Fujimoto. Solving quadratic assignment problems by genetic algorithms with gpu
computation: A case study. In Franz Rothlauf, Günther R. Raidl, Anna Isabel Esparcia-Alcázar, Ying-Ping Chen, Gabriela
Ochoa, Ender Ozcan, Marc Schoenauer, Anne Auger, Hans-Georg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros,
L. Darrell Whitley, Garnett Wilson, Simon Harding, William Benjamin Langdon, Man Leung Wong, Laurence D. Merkle,
Frank W. Moore, Sevan G. Ficici, William Rand, Rick L. Riolo, Nawwaf Kharma, William R. Buckley, Julian Francis
Miller, Kenneth Owen Stanley, Jaume Bacardit i Peñarroya, Will N. Browne, Jan Drugowitsch, Nicola Beume, Mike
Preuß, Stephen Frederick Smith, Stefano Cagnoni, Alexandru Floares, Aaron Baughman, Steven Matt Gustafson, Maarten
Keijzer, Arthur Kordon, and Clare Bates Congdon, editors, Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO’09), pages 2523–2530, Montréal, QC, Canada: Delta Centre-Ville Hotel, July 8–12,
2009. New York, NY, USA: Association for Computing Machinery (ACM). doi: 10.1145/1570256.1570355. URL
http://www2.hannan-u.ac.jp/~tsutsui/ps/gecco/wk3006-tsutsui.pdf .

Metaheuristic Optimization Thomas Weise 71/72

http://www.cs.mun.ca/~banzhaf/papers/eurogp07.pdf
http://cswww.essex.ac.uk/technical-reports/2007/csm_470.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2008_eurogp.html
http://www2.hannan-u.ac.jp/~tsutsui/ps/gecco/wk3006-tsutsui.pdf


Bibliography XXII

155. Kamil Rocki and Reiji Suda. An efficient gpu implementation of a multi-start tsp solver for large problem instances. In
Terence Soule and Jason H. Moore, editors, Companion Material Proceedings Genetic and Evolutionary Computation
Conference (GECCO’12), pages 1441–1442, Philadelphia, PA, USA: Doubletree by Hilton Hotel Philadelphia Center City,
July 7–11, 2012. New York, NY, USA: Association for Computing Machinery (ACM). doi: 10.1145/2330784.2330978.

156. Thomas Weise and Kurt Geihs. Dgpf – an adaptable framework for distributed multi-objective search algorithms applied
to the genetic programming of sensor networks. In Bogdan Filipič and Jurij Šilc, editors, Proceedings of the Second
International Conference on Bioinspired Optimization Methods and their Applications (BIOMA’06), Informacijska Družba
(Information Society), pages 157–166, Ljubljana, Slovenia: Jožef Stefan International Postgraduate School, October 9–10,
2006. Ljubljana, Slovenia: Jožef Stefan Institute.

157. Thomas Weise, Kurt Geihs, and Philipp Andreas Baer. Genetic programming for proactive aggregation protocols. In
Bart lomiej Beliczyński, Andrzej Dzieliński, Marcin Iwanowski, and Bernardete Ribeiro, editors, Proceedings of the 8th
International Conference on Adaptive and Natural Computing Algorithms, Part I (ICANNGA’07), volume 4431/2007 of
Lecture Notes in Computer Science (LNCS), pages 167–173, Warsaw, Poland: Warsaw University, April 11–17, 2007.
Berlin, Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-540-71618-1 19.

158. David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 1(1):67–82, April 1997. doi: 10.1109/4235.585893. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.6926 .

Metaheuristic Optimization Thomas Weise 72/72

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.6926

	Outline
	Why is optimization difficult?
	Why is optimization difficult?
	Why is optimization difficult?
	Complexity
	Section Outline
	Algorithmic Complexity
	Types of Functions
	Types of Functions
	Problem Hardness
	Turing Machines
	-Hardness
	Solving  Problems

	Unsatisfying Convergence
	Section Outline
	Preface
	Convergence
	Premature Convergence
	Premature Convergence
	Non-Uniform Convergence
	Non-Uniform Convergence
	Exploration versus Exploitation
	Countermeasures

	Ruggedness & Causality
	Section Outline
	Ruggedness and Weak Causality
	Causality
	Countermeasures

	Deceptiveness
	Section Outline
	Deceptiveness
	Countermeasures

	Neutrality
	Section Outline
	Neutrality
	Good and Bad

	Epistasis
	Section Outline
	Epistasis: The other root of all evil…
	Epistasis / Pleiotropy
	Epistasis in Bin Packing
	Influence of Epistasis
	Countermeasures

	Scalability
	Section Outline
	Scalability
	Countermeasures

	No Free Lunch Theorem
	Section Outline
	No Free Lunch Theorem
	No Free Lunch Theorem
	No Free Lunch Theorem
	No Free Lunch Theorem

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

