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� You now have some experience in solving optimization problems.

� You may have seen that for some problems, we can find the best
solution rather easily.

� For other problems, the solutions that we get seem to be rather bad.

� Why?
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� And used different algorithms to solve them
� Some algorithms worked well, some worked not so well.
� The solution quality we get depends on the algorithm we use.
� Different algorithms deal with the difficulties of optimization tasks
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Why is optimization difficult?

� So let us discuss these topics step-by-step

� We first look into what makes a problem hard in the traditional sense,
for deterministic algorithms.

� Then we discuss what good and bad solutions are.

� Problems where we can only get bad solutions are difficult.

� So we discuss different features that make them difficult.

� And countermeasures!

� A good summary on this topic given in our recent article
“Evolutionary Optimization: Pitfalls and Booby Traps” [1].
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� we want to know:
� How much time will it need?
� How much memory will it consume?

� This usually depends (amongst other things) on the input size:
� How long it takes to solve a TSP depends on number of cities
� Determine whether a number is prime or not – space/time depends on

scale of number

� Of course, the time/space needed does not just depend on the input
size: It is easy to see that there may be hard and easy TSPs with the
same number of cities. . .

� For a given input size, there might be a best, worst, and average case
scenarios.

� Under algorithmic complexity we can thus understand the average,
minimum, or maximum time/space an algorithm needs to finish, as
function on the input size.

Metaheuristic Optimization Thomas Weise 7/72



Types of Functions

� There are different mathematical functions

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� There are different mathematical functions

� Some grow fast, some grow slow with the input size x

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� There are different mathematical functions

� Some grow fast, some grow slow with the input size x

Metaheuristic Optimization Thomas Weise 8/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

Metaheuristic Optimization Thomas Weise 9/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

� Big-O Notation [2–4]

Metaheuristic Optimization Thomas Weise 9/72



Types of Functions

� Classify the growth speed of functions with an asymptotic notation

� Big-O Notation [2–4]

f(x) ∈ O(g(x)) ⇔ ∃x0 ∈ R,m ∈ R
+ : |f(x)| ≤ m|g(x)| ∀x > x0 (1)
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Problem Hardness

� We have discussed how long an algorithm needs to exactly solve a
problem

� Let’s make a statement about the problem in general. . .

� Problem Hardness:
� time/resources required at least to solve a problem
� based on best exact algorithm known for the problem or theoretical

bounds
� depends on the machine solving it

� If we are conservative, we consider the worst case scenarios, since we
cannot really know what problem we will exactly get in practice.

� Can we make this even more general?
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Turing Machines

� Deterministic Turing Machine (DTM) [5]

� Non-Deterministic Turing Machine (NTM)
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2 Problems which can be solved by a DTM (or “normal” computer) in
polynomial time are in class P (algorithm in O(xp) with p ∈ N1)

3 Problems which can be solved by a NTM in polynomial time are in
the class NP [7]

� P ⊆ NP (all problems in P are also in NP)
� NP ⊆ P , i.e., P = NP : research question, probably does not hold
� Algorithm for problem A can also solve problem B: B is not harder

than A, B reduces to A
� All other problems in NP can be reduced to NP-hard problems
� No (worst-case) polynomial-time and -space algorithm known for

NP-hard problems
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� It cannot be guaranteed to always find the globally optimal solution
for such problems in reasonable time.

1 If we try to find the exact globally optimal solution of these problems,
it may take very long in the worst case. . .

2 . . . but it may also be possible in acceptable time (in the best or even
average case).

3 Example: For several pure, classical problems like the TSP, exact
solutions can be found for problems with large scale in reasonable time
(TSP: instances with ≥ 75 000 cities have been solved!).

4 (Meta-)Heuristic algorithms may provide very good approximate
solutions very quickly and often even find the global optimum in a
short time . . . but often cannot make good guarantees neither about
runtime nor solution quality.

5 We need to trade-off runtime vs. solution quality, especially if the
problem is not well-researched.
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� OK, so let us use a randomized algorithm that gives an approximate

solution instead of a deterministic exact algorithm!

� We cannot expect to get the global optimum

� We are interested in the quality of the solutions that we can get

� What features of problems or algorithms allow us to get good
solutions?

� When/why can we not get good solutions?
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� Sooner or later, every optimization process ends (converges)

Definition (Convergence)

An optimization algorithm has converged if it cannot reach new candidate
solutions anymore or if it keeps on producing candidate solutions from a
small subset of the solution space X. [8, 9]

Definition (multi-modality)

A function/optimization problem is multi-modal if it has more than one
minimum / maximum /optimum. [10–14]
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Premature Convergence

� Premature Convergence = convergence to local optimum [8, 9]
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Non-Uniform Convergence

� Uniformity of convergence: We want a good scan of the potentially
optimal features

Bad convergence, good
spread (uniformity)

Good convergence, bad
spread (non-uniformity)

Good convergence,
good spread (unifor-
mity)

Metaheuristic Optimization Thomas Weise 19/72



Non-Uniform Convergence

� Uniformity of convergence

Bad convergence, good
spread (uniformity) [1, 15]

Good convergence,
bad spread (non-
uniformity) [1, 15]

Good conver-
gence, good spread
(uniformity) [1, 15]
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Exploration versus Exploitation

� So what is the basic reason for unsatisfying convergence?
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� Which should we use more?

� This is called the Exploration versus Exploitation Dilemma [16–23]
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� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]:

� allows for more exploration by putting less pressure to move to better
solutions

� slows down search
� only sometimes [31, 68]
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2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]:

� Clustering: unsupervised machine learning – divide a set of elements
into groups of similar elements

� Here: cluster population, treat every cluster separately
� Allows the population to trace different optima at once
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speed-up) convergence
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Countermeasures

� Countermeasures against Premature Convergence

1 Delay convergence by balancing exploration and exploitation and
remembering diverse candidate solutions [16, 17, 21]

2 Design complete search operators [24–26]

3 Restarting [27, 28]

4 Low selection pressure and/or larger population size [29–31]

5 Sharing, Niching, and Clearing [32–45]

6 Clustering of candidate solutions [46–57]

7 Self-Adaptation [58, 59]

8 Multi-Objectivization [60–67]:

� turn a single-objective problem into an multi-objective one by creating
an artificial objective function targeting one specific aspect of the
solutions

� Pareto-based optimization (see Lesson 15: Multi-Objective

Optimization) then increases diversity
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Ruggedness and Weak Causality

� Why??
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Causality

� Basic assumption behind metaheuristic optimization:
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Causality

� Basic assumption behind metaheuristic optimization:

Definition (Strong Causality)

Small changes to an object should lead to small changes in its behavior /
objective values. [69–71]

� What happens if the causality in a problem is weak?
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Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]:

� Combinations of Evolutionary Algorithms with local search, or
combinations of Evolutionary Algorithms with other concepts from
Machine Learning
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1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]:
� Try to adjust the parameters of a (simple) model M or function so

that it behaves similar to the (points so-far seen from the) objective
function f

� Optimize on this simple model (which has stronger causality)
� After a few steps, go back to original f and test solutions
� Update M , then repeat
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Countermeasures

1 Hybridization of EAs with local search:
� Lamarckian evolution [72, 73]

� Baldwin effect [73–76]

� Memetic Algorithms [77–86]

� other hybrid approaches [87–94]

2 Landscape approximation [95]

3 (2-, n-) Staged optimization [96]:
� First, apply an optimization algorithm with slow convergence, which is

good in exploring the search space and finding the region where the
optimum may reside

� Then, apply an optimization algorithm which is very good at
explotation in that region only
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Deceptiveness

� Gradient and information lead optimizer away from optimum [88, 97, 98]

� Why??
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Countermeasures

� Countermeasures

1 Choose appropriate representation, maybe combine representations [99]

2 Preventing convergence:

� Fitness Uniform Selection Scheme [100–103]

� Novelty Search [104–106]
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Neutrality

� Neutrality: Many candidate solutions have same objective values

� Little or no information gained from sampling the solution space

� Why??
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Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]
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Good and Bad

Definition (Evolvability)

The evolvability of an optimization process in its current state defines how
likely the search operations will lead to candidate solutions with new (and
eventually, better) objectives values. [107–111]

� Neutral networks can connect different places in the search space

premature conver-
gence

small neutral
bridge

wide neutral bridge neutral area too
large
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Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]
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Epistasis: The other root of all evil. . .

Definition (Epistasis)

One gene influences the behavior (contribution to the objective function)
of other genes [39, 112–119]

Definition (Pleiotropy)

One gene is responsible for multiple phenotypical traits [108]

Definition (Separability)

A function of n variables is separable if it can be rewritten as a sum of n
functions of just one variable [120–123]

� non-epistatic (separable) problems can be solved efficiently by
decomposition
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Epistasis / Pleiotropy
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Epistasis in Bin Packing
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Influence of Epistasis
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1 See countermeasures for ruggedness, neutrality, multi-modality. . .

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together
� Try to change these genes only together, consider them as a unit

Metaheuristic Optimization Thomas Weise 38/72



Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]:
� Try to find out which genes (components of the genotype) are

(epistatically) linked together
� Try to change these genes only together, consider them as a unit
� For example: In crossover, try to always pass such genes together to

the offspring and to not separate them
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Countermeasures

1 See countermeasures for ruggedness, neutrality, multi-modality. . .

2 Choose appropriate representation [124–127] and search operators [128]

3 Parameter Tweaking [128]

4 Linkage learning [129–135] and Variable Interaction Learning [136]

5 If epistasis is limited: cooperative-coevolution approach [136–138] (see
later)
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Scalability

� Time required for solving NP-hard problems grows exponential with
input size

� Metaheuristic optimization: approximately solve NP-hard problems
in feasible time

� . . . but their time requirement also grows with problem size. . .

� “Curse of Dimensionality”: solution space volume increases
exponentially with number of decision variables (genes) [139, 140]

� Example: search in (1 . . . 10)n

� any algorithm (for non-trivial problems) takes longer for larger
inputs. . .
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� Countermeasures
1 Parallelization and distribution:

� sub-linear speed-up can be achieved [149]

� Parallelization: Use multi-core CPU + multiple threads or GPUs [150–155]

� Distribution: Use multiple computers in a network [156, 157], a cluster, or a
grid
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� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]:

� Genotypes are small, search space is smaller, can be explored more
easily

� They are mapped to larger, more complex phenotypes by a simple
functional GPM

� Utilizes/assumes symmetries in the phenotypes
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2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]:

� Similar to generative mapping, the search space is smaller
� But: GPM is more complex, a simulation which incorporates feedback

from an environment or the objective function
� Better behavior than generative mappings
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Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]:

� Try to divide the problem into (almost) unrelated problems with
smaller search spaces

� Solve them more or less separately, combine solutions to get overall
solution, and repeat

� Cooperative Coevolution [136, 138]: Use an EA that can find our how to
divide the problem by itself and then applies the above
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Countermeasures

� Countermeasures

1 Parallelization and distribution
2 Indirect Representation 1: Generative [141, 142]

3 Indirect Representation 2: Development [143, 144]

4 Exploiting Separability, e.g., with coevolution [136–138, 145, 146]

5 Using multiple algorithms at once [147] or portfolios [148]
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No Free Lunch Theorem

� Question: Can an optimization algorithm A be better than algorithm
B?

� Question: Can an optimization algorithm A be better than a Random
Walk?

� Wolpert and Macready [158] – No Free Lunch Theorem: Over all
optimization problems φ over finite domains, the sum of the
probabilities to reach a certain objective value y after m steps with
algorithm A is the same as with algorithm B

∑

∀φ

P (y|φ,m,A) =
∑

∀φ

P (y|φ,m,B) (2)
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No Free Lunch Theorem

� Different algorithms are good for different problems
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No Free Lunch Theorem

� Different algorithms are good for different problems and not all
possible problems actually occur in practice [1, 15, 39]
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Summary

� Optimization is difficult: This was the first batch of problems

� Many problems can only be solved exactly with algorithms of high
complexity

� Metaheuristic optimizers may converge prematurely or non-uniformly

� Ruggedness is not good

� Deceptiveness is not good

� Neutrality can be good or bad

� Epistasis is always bad – and often a representation issue!

� No Free Lunch Theorem
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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National des Télécommunications, 1997. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1131 .

44. Simon Ronald, John Asenstorfer, and Millist Vincent. Representational redundancy in evolutionary algorithms. In Second
IEEE International Conference on Evolutionary Computation (CEC’95), volume 2, pages 631–637, Perth, WA, Australia:
University of Western Australia, November 29–December 1, 1995. Los Alamitos, CA, USA: IEEE Computer Society Press.
doi: 10.1109/ICEC.1995.487457.

45. Paul J. Darwen and Xin Yao. Every niching method has its niche: Fitness sharing and implicit sharing compared. In
Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and Hans-Paul Schwefel, editors, Proceedings of the 4th
International Conference on Parallel Problem Solving from Nature (PPSN IV), volume 1141/1996 of Lecture Notes in
Computer Science (LNCS), pages 398–407, Berlin, Germany, September 22–24, 1996. Berlin, Germany: Springer-Verlag
GmbH. doi: 10.1007/3-540-61723-X 1004. URL sclab.yonsei.ac.kr/courses/03EC/darwen96every.pdf .

46. Thomas Weise, Stefan Niemczyk, Raymond Chiong, and Mingxu Wan. A framework for multi-model edas with model
recombination. In Proceedings of the 4th European Event on Bio-Inspired Algorithms for Continuous Parameter
Optimisation (EvoNUM’11), Applications of Evolutionary Computation – Proceedings of EvoApplications 2011:
EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Part 1 (EvoAPPLICATIONS’11),
volume 6624 of Lecture Notes in Computer Science (LNCS), pages 304–313, Torino, Italy, April 27–29, 2011. Berlin,
Germany: Springer-Verlag GmbH. doi: 10.1007/978-3-642-20525-5 31.

47. Stefan Niemczyk and Thomas Weise. A general framework for multi-model estimation of distribution algorithms.
Technical report, Kassel, Hesse, Germany: University of Kassel, Fachbereich 16: Elektrotechnik/Informatik, Distributed
Systems Group, March 10, 2010.

48. David Wallin and Conor Ryan. Maintaining diversity in edas for real-valued optimisation problems. In Frontiers in the
Convergence of Bioscience and Information Technologies (FBIT’07), pages 795–800, Jeju City, South Korea, October
11–13, 2007. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics Engineers). doi:
10.1109/FBIT.2007.132.
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Pelikan, Günther R. Raidl, Terence Soule, Jean-Paul Watson, and Eckart Zitzler, editors, Proceedings of Genetic and
Evolutionary Computation Conference (GECCO’05), pages 663–670, Washington, DC, USA: Loews L’Enfant Plaza Hotel,
June 25–27, 2005. New York, NY, USA: ACM Press. doi: 10.1145/1068009.1068122.

58. Günter Rudolph. Self-adaptation and global convergence: A counter-example. In Peter John Angeline, Zbigniew
Michalewicz, Marc Schoenauer, Xin Yao, and Ali M. S. Zalzala, editors, Proceedings of the IEEE Congress on
Evolutionary Computation (CEC’99), volume 1, pages 646–651, Washington, DC, USA: Mayflower Hotel, July 6–9, 1999.
Piscataway, NJ, USA: IEEE Computer Society. doi: 10.1109/CEC.1999.781994. URL
http://ls11-www.cs.uni-dortmund.de/people/rudolph/publications/papers/CEC99.pdf .

59. Günter Rudolph. Self-adaptive mutations may lead to premature convergence. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 5(4):410–414, 2001. doi: 10.1109/4235.942534.

60. Darrell F. Lochtefeld and Frank William Ciarallo. Multiobjectivization via helper-objectives with the tunable objectives
problem. IEEE Transactions on Evolutionary Computation (IEEE-EC), 16(3):373–395, June 2012. doi:
10.1109/TEVC.2011.2136345.

61. Darrell F. Lochtefeld and Frank William Ciarallo. Helper-objective optimization strategies for the job-shop scheduling
problem. Applied Soft Computing, 11(6):4161–4174, September 2011. doi: 10.1016/j.asoc.2011.03.007.

62. Joshua D. Knowles, Richard A. Watson, and David Wolfe Corne. Reducing local optima in single-objective problems by
multi-objectivization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos Artemio Coello Coello, and David Wolfe
Corne, editors, Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO’01),
volume 1993/2001 of Lecture Notes in Computer Science (LNCS), pages 269–283, Zürich, Switzerland: Eidgenössische
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France: Université Paris-Sud, Ecole Doctorale d’Informatique and Orsay, France: Institut National de Recherche en
Informatique et en Automatique (INRIA), Centre de Recherche Saclay – Île-de-France, May 2009.
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