
Metaheuristic Optimization
10. Genetic Algorithms

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 2/91

w
eb
si
te

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 3/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive
7 a fraction of these variations are inheritable

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive
7 a fraction of these variations are inheritable
8 individuals less fit are less likely to reproduce, whereas the fittest

individuals will survive and produce offspring more probably

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive
7 a fraction of these variations are inheritable
8 individuals less fit are less likely to reproduce, whereas the fittest

individuals will survive and produce offspring more probably
9 individuals that reproduce will likely pass on their traits to their

offspring

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Darwin’s Idea of Evolution (1859): “On the Origin of Species” [1]

1 individuals possess great fertility and produce more offspring than can
grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive
7 a fraction of these variations are inheritable
8 individuals less fit are less likely to reproduce, whereas the fittest

individuals will survive and produce offspring more probably
9 individuals that reproduce will likely pass on their traits to their

offspring
10 hence, a species will slowly change and adapt to a given environment

Metaheuristic Optimization Thomas Weise 4/91

Introduction

❼ Individuals of a species exist within a population (not alone)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 5/91

Introduction

❼ Individuals of a species exist within a population (not alone)

❼ Here, we consider generations: there is a parent generation, followed
by a child generation (the offspring)

❼

❼

Metaheuristic Optimization Thomas Weise 5/91

Introduction

❼ Individuals of a species exist within a population (not alone)

❼ Here, we consider generations: there is a parent generation, followed
by a child generation (the offspring)

❼ The fitness of each individual determines its probability of survival
during selection

❼

Metaheuristic Optimization Thomas Weise 5/91

Introduction

❼ Individuals of a species exist within a population (not alone)

❼ Here, we consider generations: there is a parent generation, followed
by a child generation (the offspring)

❼ The fitness of each individual determines its probability of survival
during selection

❼ Individuals which survive become the parents of the next generation

Metaheuristic Optimization Thomas Weise 5/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 6/91

Evolution: First Generation

❼ Start with a random set of individuals (or, their genetic codes)

Metaheuristic Optimization Thomas Weise 7/91

Evolution: Genotype-Phenotype Mapping

❼ Live begins with the development from genotype to phenotype

Metaheuristic Optimization Thomas Weise 8/91

Evolution: Evaluation

❼ Test the features of each individual

Metaheuristic Optimization Thomas Weise 9/91

Evolution: Fitness

❼ Fitness is relative, determined/defined as number of offspring

Metaheuristic Optimization Thomas Weise 10/91

Evolution: Selection

❼ Fitter individuals usually survive selection, have more offspring

Metaheuristic Optimization Thomas Weise 11/91

Evolution: Reproduction

❼ Asexual and sexual reproduction

Metaheuristic Optimization Thomas Weise 12/91

Evolution: Next Generation

❼ Cycle starts again with the next “generation”

Metaheuristic Optimization Thomas Weise 13/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 14/91

Introduction

❼ In 1950s, biologists like Barricelli [2–5] and the computer scientist
Fraser [6–8] begin to use computers to simulate evolution

❼

❼

❼

Metaheuristic Optimization Thomas Weise 15/91

Introduction

❼ In 1950s, biologists like Barricelli [2–5] and the computer scientist
Fraser [6–8] begin to use computers to simulate evolution

❼ In the early 1960s, Bremermann [9] and Bledsoe [10–13] use simulated
evolution to solve some optimization problems

❼

❼

Metaheuristic Optimization Thomas Weise 15/91

Introduction

❼ In 1950s, biologists like Barricelli [2–5] and the computer scientist
Fraser [6–8] begin to use computers to simulate evolution

❼ In the early 1960s, Bremermann [9] and Bledsoe [10–13] use simulated
evolution to solve some optimization problems

❼ In the late 1960s/early 1970s, Holland [14–17] formalizes Genetic
Algorithms

❼

Metaheuristic Optimization Thomas Weise 15/91

Introduction

❼ In 1950s, biologists like Barricelli [2–5] and the computer scientist
Fraser [6–8] begin to use computers to simulate evolution

❼ In the early 1960s, Bremermann [9] and Bledsoe [10–13] use simulated
evolution to solve some optimization problems

❼ In the late 1960s/early 1970s, Holland [14–17] formalizes Genetic
Algorithms

❼ De Jong [18] uses them for function optimization

Metaheuristic Optimization Thomas Weise 15/91

Introduction

❼ Idea: Try to emulate the natural process of evolution on a very simple
search space G: the bit strings of length n, i.e., {false, true}n

Metaheuristic Optimization Thomas Weise 16/91

Genetic Algorithms: First Generation

❼ Each genotype is a bit string of length n

❼ Nullary search operation to create initial individuals: create a
population of random bit strings

Metaheuristic Optimization Thomas Weise 17/91

Genetic Algorithms: GPM

❼ Map the genotypes to phenotypes

❼ The GPM is usually problem-dependent

Metaheuristic Optimization Thomas Weise 18/91

Genetic Algorithms: Evaluation

❼ Evaluate the objective function(s)

❼ In the original GA, fitness = objective values. In Multi-Objective
Evolutionary Algorithms, this is not the case

Metaheuristic Optimization Thomas Weise 19/91

Genetic Algorithms: Selection

❼ Select the best individuals with highest probability

❼ Many different selection algorithms exist: Roulette-Wheel Selection,
Tournament Selection, etc.

Metaheuristic Optimization Thomas Weise 20/91

Genetic Algorithms: Crossover

❼ Recombine genotypes: two genotypes are combined to create a new
one (binary search operation); crossover rate cr

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

Metaheuristic Optimization Thomas Weise 21/91

Genetic Algorithms: Mutation

❼ Perform mutation (unary search operation) with probability mr

❼ Slight perturbations to increase diversity in population

Metaheuristic Optimization Thomas Weise 22/91

Genetic Algorithms: Mutation

❼ Perform mutation (unary search operation) with probability mr

❼ Slight perturbations to increase diversity in population

Metaheuristic Optimization Thomas Weise 22/91

Often either mutation

or crossover is used

to create a new geno-

type: 1 = mr + cr

Genetic Algorithms: New Generation

❼ Start with new population in next generation.

Metaheuristic Optimization Thomas Weise 23/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

Metaheuristic Optimization Thomas Weise 24/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

Metaheuristic Optimization Thomas Weise 24/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

3 compute objective value f(p.x) of each candidate solution p.x in pop

Metaheuristic Optimization Thomas Weise 24/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

3 compute objective value f(p.x) of each candidate solution p.x in pop

4 perform selection: put mps individuals into the mating pool
matePool with selection algorithm

Metaheuristic Optimization Thomas Weise 24/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

3 compute objective value f(p.x) of each candidate solution p.x in pop

4 perform selection: put mps individuals into the mating pool
matePool with selection algorithm

5 reproduce the individuals by using crossover and mutation, according
to crossover rate cr

Metaheuristic Optimization Thomas Weise 24/91

Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

3 compute objective value f(p.x) of each candidate solution p.x in pop

4 perform selection: put mps individuals into the mating pool
matePool with selection algorithm

5 reproduce the individuals by using crossover and mutation, according
to crossover rate cr

6 Check the termination criterion (usually done after every objective
function evaluation)

Metaheuristic Optimization Thomas Weise 24/91

Listing: A simple Evolutionary Algorithm

public class EA<G, X> extends OptimizationAlgorithm <G, X> {

public ISelectionAlgorithm selection;

public int ps;

public int mps;

public double cr;

public IBinarySearchOperation <G> binary;

public EA() {

super();

this.cr = 0.3d;

this.ps = 128;

this.mps = 64;

this.selection = TruncationSelection.INSTANCE;

}

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pbest , pcur;

Individual <G, X>[] pop , mate;

int i;

pbest = new Individual <>();

pop = new Individual[this.ps];

mate = new Individual[this.mps];

for (i = pop.length; (--i) >= 0;) {

pop[i] = pcur = new Individual <>();

pcur.g = this.nullary.create(this.random);

}

for (;;) {

for (i = pop.length; (--i) >= 0;) {

pcur = pop[i];

pcur.x = this.gpm.gpm(pcur.g);

pcur.v = f.compute(pcur.x);

if (pcur.v < pbest.v) {

pbest.assign(pcur);

}

if (this.termination.shouldTerminate ()) {

return pbest;

}

}

this.selection.select(pop , mate , this.random);

for (i = pop.length; (--i) >= 0;) {

pop[i] = pcur = new Individual <>();

if (this.random.nextDouble () < this.cr) {

pcur.g = this.binary.recombine(mate[i % mate.length].g,

mate[this.random.nextInt(mate.length)].g, this.random);

} else {

pcur.g = this.unary.mutate(mate[i % mate.length].g, this.random);

}

}

}

}

} Metaheuristic Optimization Thomas Weise 25/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 26/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼

❼

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼ Those individuals not selected are discarted

❼

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼ Those individuals not selected are discarted

❼ Two common, basic approaches to choose mps, independent from
how selection is done:

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼ Those individuals not selected are discarted

❼ Two common, basic approaches to choose mps, independent from
how selection is done:

1 ps > mps: only a few individuals are selected and these have multiple
offspring

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ One of the unclear things so far: What are population, mating pool,
and selection?

❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼ Those individuals not selected are discarted

❼ Two common, basic approaches to choose mps, independent from
how selection is done:

1 ps > mps: only a few individuals are selected and these have multiple
offspring

2 ps = mps: each selected individual has one offspring, an individual can
be selected multiple times

Metaheuristic Optimization Thomas Weise 27/91

Selection

❼ population pop has ps individuals

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼

❼

❼

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼ There exist multiple selection algorithms which can be used for this
purpose

❼

❼

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼ There exist multiple selection algorithms which can be used for this
purpose

❼ General basis for selection: Fitness ν.

❼

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼ There exist multiple selection algorithms which can be used for this
purpose

❼ General basis for selection: Fitness ν.

❼ In the most simple, single-objective case (only one objective function,
i.e., what we did so far):

Metaheuristic Optimization Thomas Weise 28/91

Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼ There exist multiple selection algorithms which can be used for this
purpose

❼ General basis for selection: Fitness ν.

❼ In the most simple, single-objective case (only one objective function,
i.e., what we did so far):

ν(p) = f(p.x) ∀individuals (1)

Metaheuristic Optimization Thomas Weise 28/91

Selection

Listing: The Selection Algorithm: Programmer’s Perspective

package metaheuristicOptimization.algorithms.ea;

import java.util.Random;

import metaheuristicOptimization.Individual;

/** the interface for selection algorithms */

public interface ISelectionAlgorithm {

/**

* Fill the mating pool with selected individuals from the population

*

* @param pop

* the population of the current individuals

* @param mate

* the mating pool to be filled with individuals

* @param r

* the random number generator

*/

public abstract void select(final Individual <?, ?>[] pop , final

Individual <?, ?>[] mate ,

final Random r);

}

Metaheuristic Optimization Thomas Weise 29/91

Traditional: Roulette-Wheel Selection

❼ Traditional method: Roulette-Wheel Selection – Number of offspring
is proportional to fitness (fitness is maximized!) [16, 18, 21–25]

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(2)

Metaheuristic Optimization Thomas Weise 30/91

Traditional: Roulette-Wheel Selection

❼ Traditional selection algorithm.

❼

Metaheuristic Optimization Thomas Weise 31/91

If we had 1000 individuals pi
with fitness i, the expected
number ES(pi) of times indi-
vidual pi enters the mating pool
is. . .

Traditional: Roulette-Wheel Selection

❼ Traditional selection algorithm.

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 31/91

If we had 1000 individuals pi
with fitness i, the expected
number ES(pi) of times indi-
vidual pi enters the mating pool
is. . .

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 32/91

If we had 1000 individuals pi
with fitness (i + 1)3, the ex-
pected number ES(pi) of times
individual pi enters the mating
pool is. . .

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 32/91

If we had 1000 individuals pi
with fitness (i + 1)3, the ex-
pected number ES(pi) of times
individual pi enters the mating
pool is. . .

Selection depends on shape of
objective function – not good!

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 33/91

If we had 1000 individuals pi
with fitness 0.0001i for i ∈
0..998 and 1 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is. . .

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 34/91

If we had 1000 individuals pi
with fitness 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is completely differ-
ent.

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Number of offspring is proportional to
fitness (fitness is maximized!) [16, 18, 21–25]

Metaheuristic Optimization Thomas Weise 34/91

If we had 1000 individuals pi
with fitness 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is completely differ-
ent.

Selection depends on absolute
offset of objective function – not
good!

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼ An optimization algorithm should work good regardless whether we
add an offset to an objective function or use the squared functions. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼ An optimization algorithm should work good regardless whether we
add an offset to an objective function or use the squared functions. . .

❼ . . . but Roulette-Wheel Selection gives different results in these cases!

❼

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼ An optimization algorithm should work good regardless whether we
add an offset to an objective function or use the squared functions. . .

❼ . . . but Roulette-Wheel Selection gives different results in these cases!

❼ Avoid to use this directly

❼

Metaheuristic Optimization Thomas Weise 35/91

Traditional: Roulette-Wheel Selection

❼ Roulette-Wheel Selection: Fitness-proportionate selection

❼ Traditional selection method

❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼ An optimization algorithm should work good regardless whether we
add an offset to an objective function or use the squared functions. . .

❼ . . . but Roulette-Wheel Selection gives different results in these cases!

❼ Avoid to use this directly

❼ Good only if fitness “fits” to this method, as e.g., in Pareto
ranking [19, 26, 27]

Metaheuristic Optimization Thomas Weise 35/91

matePool←− rouletteWheelSelection(pop)mps

Input: pop: the list of individuals to select from
Input: [implicit] ps: the population size
Input: mps: the number of individuals to be placed into the mating pool matePool
Output: matePool: the mating pool

begin
A←− create empty list
max←− −∞
// Initialize fitness array and find extreme fitnesses

for i←− 0 up to ps− 1 do
a←− pop[i].y
A[i]←− a

if a > max then max←− a

sum←− 0
for i←− 0 up to ps− 1 do

sum←− sum+ (max−A[i])
A[i]←− sum

for i←− 0 up to mps− 1 do
a←− {randomly from [0, sum]}
append pop[max{i : A[i] ≤ a}] to matePool

return matePool

Metaheuristic Optimization Thomas Weise 36/91

Selection

Listing: The Roulette-Wheel Selection Algorithm

public class RouletteWheelSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[] mate , final Random r) {

double [] t;

double max , last;

int i, j;

t = this.temp;

if ((t == null) || (t.length < pop.length)) {

this.temp = t = new double[pop.length];

}

max = Double.NEGATIVE_INFINITY;

for (Individual <?, ?> indi : pop) {

max = Math.max(indi.v, max);

}

max = Math.nextUp(max);

last = 0d;

for (i = 0; i < t.length; i++) {

last += (max - pop[i].v);

t[i] = last;

}

t[t.length - 1] = Double.POSITIVE_INFINITY;

for (i = 0; i < mate.length; i++) {

j = Arrays.binarySearch(t, last * r.nextDouble ());

if (j < 0) {

j = ((-j) - 1);

}

mate[i] = pop[j];

}

}

}

Metaheuristic Optimization Thomas Weise 37/91

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼

Metaheuristic Optimization Thomas Weise 38/91

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼ k randomly picked contestants compete for each slot in the mating
pool – the best gets it [22, 28–34]

Metaheuristic Optimization Thomas Weise 38/91

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼ k randomly picked contestants compete for each slot in the mating
pool – the best gets it [22, 28–34]

Metaheuristic Optimization Thomas Weise 38/91

If we had 1000 individuals pi
with fitness i; (i + 1)3; 0.0001i
for i ∈ 0..998 and 1 for i =
1000; or 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is always the same!

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼ k randomly picked contestants compete for each slot in the mating
pool – the best gets it [22, 28–34]

Metaheuristic Optimization Thomas Weise 38/91

If we had 1000 individuals pi
with fitness i; (i + 1)3; 0.0001i
for i ∈ 0..998 and 1 for i =
1000; or 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is always the same!

Selection independent from ob-
jective function shape, big-O
class, or offset

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼ k randomly picked contestants compete for each slot in the mating
pool – the best gets it [22, 28–34]

Metaheuristic Optimization Thomas Weise 38/91

If we had 1000 individuals pi
with fitness i; (i + 1)3; 0.0001i
for i ∈ 0..998 and 1 for i =
1000; or 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is always the same!

Selection independent from ob-
jective function shape, big-O
class, or offset

Does not have the drawbacks
that Roulette-Wheel Selection
has!

Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!

❼ k randomly picked contestants compete for each slot in the mating
pool – the best gets it [22, 28–34]

Metaheuristic Optimization Thomas Weise 38/91

If we had 1000 individuals pi
with fitness i; (i + 1)3; 0.0001i
for i ∈ 0..998 and 1 for i =
1000; or 1 + 0.0001i for i ∈
0..998 and 2 for i = 1000,
the expected number ES(pi) of
times individual pi enters the
mating pool is always the same!

Selection independent from ob-
jective function shape, big-O
class, or offset

Does not have the drawbacks
that Roulette-Wheel Selection
has!

Plus we can fine-tune selection
pressure via k

matePool←− tournamentSelection(k, pop,mps)

Input: pop: the list of individuals to select from
Input: [implicit] ps: the population size
Input: mps: the number of individuals to be placed into the mating pool matePool
Input: [implicit] k: the tournament size
Output: matePool: the winners of the tournaments which now form the mating pool

begin
matePool←− create empty list
for i←− 1 up to mps do

a←− {randomly from 0..sum− 1}
for j ←− 1 up to k − 1 do

b←− {randomly from 0..sum− 1}
if pop[b].y < pop[a].y then a←− b

append pop[a] to matePool

return matePool

Metaheuristic Optimization Thomas Weise 39/91

Selection

Listing: The Tournament Selection Algorithm

public class TournamentSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

int i, j;

Individual <?, ?> x, y;

for (i = 0; i < mate.length; i++) {

x = pop[r.nextInt(pop.length)];

for (j = 1; j < this.k; j++) {

y = pop[r.nextInt(pop.length)];

if (y.v < x.v) {

x = y;

}

}

mate[i] = x;

}

}

}

Metaheuristic Optimization Thomas Weise 40/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)

❼

❼

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)

❼ Lässig et al. [42, 43] show that this selection strategy is optimal!

❼

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)

❼ Lässig et al. [42, 43] show that this selection strategy is optimal!

❼ However, the right mating pool size mps is not known. . .

Metaheuristic Optimization Thomas Weise 41/91

Truncation Selection

matePool←− truncationSelection(µ, pop)

Input: pop: the list of individuals to select from (length λ or µ+ λ)
Input: µ: the number of individuals to be placed into the mating pool matePool
Output: matePool: the survivors of the truncation which now form the mating pool

begin
sort the pop according to fitness (best first)
return first µ individuals from pop

Metaheuristic Optimization Thomas Weise 42/91

Truncation Selection

Listing: The Truncation Selection Algorithm

public class TruncationSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

Arrays.sort(pop);

System.arraycopy(pop , 0, mate , 0, mate.length);

}

}

Metaheuristic Optimization Thomas Weise 43/91

Population Treatment

❼ Three different ways of population treatment

Metaheuristic Optimization Thomas Weise 44/91

Population Treatment

❼ Three different ways of population treatment

1 Generational: only the offspring of a generation survive

Metaheuristic Optimization Thomas Weise 44/91

Population Treatment

❼ Three different ways of population treatment

1 Generational: only the offspring of a generation survive
2 steady-state: offspring and older generations compete

Metaheuristic Optimization Thomas Weise 44/91

Population Treatment

❼ Three different ways of population treatment

1 Generational: only the offspring of a generation survive
2 steady-state: offspring and older generations compete
3 Elitism: Either steady-state OR generationals PLUS the best solutions

survive always

Metaheuristic Optimization Thomas Weise 44/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 45/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:
❼ Combine these different (good) features. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:
❼ Combine these different (good) features. . .
❼ . . . and obtain a new, possible better candidate solution

❼

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:
❼ Combine these different (good) features. . .
❼ . . . and obtain a new, possible better candidate solution

❼ There exist different crossover operators

❼

Metaheuristic Optimization Thomas Weise 46/91

Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:
❼ Combine these different (good) features. . .
❼ . . . and obtain a new, possible better candidate solution

❼ There exist different crossover operators

❼ Building Block Hypothesis: Good genes/features will
aggregate [16, 19, 20]

Metaheuristic Optimization Thomas Weise 46/91

Crossover: SPX

Metaheuristic Optimization Thomas Weise 47/91

Crossover: TPX

Metaheuristic Optimization Thomas Weise 48/91

Crossover: MPX

Metaheuristic Optimization Thomas Weise 49/91

Crossover: UX

Metaheuristic Optimization Thomas Weise 50/91

Single-Point Crossover

Listing: Single-Point Crossover

public class BitsBinarySPX implements IBinarySearchOperation <boolean[]> {

public boolean [] recombine(final boolean [] p1, final boolean [] p2, final

Random r) {

final boolean [] g;

final int x;

g = new boolean[p1.length]; // create empty bit string

x = (1 + r.nextInt(g.length - 1)); // select crossover point

System.arraycopy(p1, 0, g, 0, x); // copy from first parent

System.arraycopy(p2, x, g, x, g.length - x);// copy from second parent

return g; // return new bit string

}

}

Metaheuristic Optimization Thomas Weise 51/91

Crossover: MPX

g ←− recombinationMPX(gp1, gp2, k)

begin
// find k crossover points from 0 to n− 1
CP ←− new empty list
for i←− 1 up to k do

repeat
cp←− {randomly from 0..n− 1}+ 1

until cp 6∈ CP

append cp to CP

sort the list CP

// perform the crossover by copying sub-strings

g ←− empty list
s←− 0
b←− true

gu ←− gp1
for i←− 0 up to k do

e←− CP [i]

if b then gu ←− gp1

else gu ←− gp2

append sub-range s..e− 1 of gu to g

b←− ¬b
s←− e

return g

Metaheuristic Optimization Thomas Weise 52/91

Crossover: Uniform Crossover (UX)

g ←− recombinationUXX(gp1, gp2, k)

Input: gp1, gp2 ∈ G: the parental genotypes (n bits)
Data: i: a counter variable
Output: g ∈ G: a new genotype (n bits)

begin
g ←− gp1
for i←− 0 up to n− 1 do

if {randomly from [0, 1]} < 0.5 then g[i]←− gp2[i]

return g

Metaheuristic Optimization Thomas Weise 53/91

Uniform Crossover

Listing: Uniform Crossover

public class BitsBinaryUX implements IBinarySearchOperation <boolean[]> {

public boolean [] recombine(final boolean [] p1, final boolean [] p2, final

Random r) {

final boolean [] g;

g = p1.clone(); // copy first parent string

for (int i = g.length; (--i) >= 0;) { // for all bits ...

if (r.nextBoolean ()) {

g[i] = p2[i];

} // take value from p2 with probability 0.5

}

return g; // return new bit string

}

}

Metaheuristic Optimization Thomas Weise 54/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 55/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents
❼ no now genetic material is created

❼

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents
❼ no now genetic material is created
❼ crossover and selection alone may step by step make the population

converge to one single genotype

❼

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents
❼ no now genetic material is created
❼ crossover and selection alone may step by step make the population

converge to one single genotype

❼ Mutation: introduce some randomnes (in from of new genetic
material) into the population

❼

Metaheuristic Optimization Thomas Weise 56/91

Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents
❼ no now genetic material is created
❼ crossover and selection alone may step by step make the population

converge to one single genotype

❼ Mutation: introduce some randomnes (in from of new genetic
material) into the population

❼ But: not too much, systems with too much and too powerful
mutation cannot converge or exploit local optima sufficiently

Metaheuristic Optimization Thomas Weise 56/91

Mutation: Single Bit

Metaheuristic Optimization Thomas Weise 57/91

Mutation: Multi Bit 1

Metaheuristic Optimization Thomas Weise 58/91

Mutation: Multi Bit 2

Metaheuristic Optimization Thomas Weise 59/91

Mutation: Complete

Metaheuristic Optimization Thomas Weise 60/91

Multi Bit Mutation

g ←− multiBitFlip(gp, η)

Input: gp: the parent individual
Output: g: the new random permutation of the numbers 0 . . . n− 1

begin
g ←− gp
repeat

i←− {randomly from 0..n− 1}
g[i]←− ¬g[i]

until {randomly from [0, 1]} < η

return g

Metaheuristic Optimization Thomas Weise 61/91

Single-Bit Flip Mutation

Listing: The Single-Bit Flip Mutation

public class BitsUnarySingleFlip implements IUnarySearchOperation <boolean[]>

{

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

g = p.clone(); // copy parent string

g[r.nextInt(g.length)] ^= true; // flip the bit

return g; // return new bit string

}

}

Metaheuristic Optimization Thomas Weise 62/91

Multi-Bit Flip Mutation

Listing: The Multi-Bit Flip Mutation

public class BitsUnaryFlip implements IUnarySearchOperation <boolean[]> {

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

g = p.clone(); // copy parent string

do { // at least once , but maybe more often

g[r.nextInt(g.length)] ^= true; // flip the bit

} while (r.nextBoolean ()); // maybe repeat (small chance for

large changes

return g; // return new bit string

}

}

Metaheuristic Optimization Thomas Weise 63/91

Flip a Fraction of the Bits

Listing: Flip a Fraction of the Bits

public class BitsUnaryFractionFlip implements

IUnarySearchOperation <boolean[]> {

/** the fraction to flip */

public final double frac;

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

int f;

g = p.clone(); // copy parent string

f = Math.max(1, Math.min(p.length , ((int) (p.length * this.frac))));

for (; (--f) >= 0;) {// go through the bits

g[r.nextInt(p.length)] ^= true; // flip

}

return g; // return new bit string

}

}

Metaheuristic Optimization Thomas Weise 64/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 65/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ are represented by specific values of specific genes (bits at specific

positions in the genotypes)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ are represented by specific values of specific genes (bits at specific

positions in the genotypes)
❼ there may be different good features, encoded by different parts of the

genotypes

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ are represented by specific values of specific genes (bits at specific

positions in the genotypes)
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ are represented by specific values of specific genes (bits at specific

positions in the genotypes)
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals
❼ but may be combined later by crossover (Building Block Hypothesis,

see later)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals

❼ Interesting “parts” of a genotype are described with blueprints
(masks, schemas)

❼

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals

❼ Interesting “parts” of a genotype are described with blueprints
(masks, schemas)

❼ the Schema Theorem roughly estimates how such schemas multiply,
depending on their average fitness

❼

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Introduction

❼ Schema Theorem makes a statement about how a Genetic Algorithm
progresses and how the fitness of its population may improve

❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals

❼ Interesting “parts” of a genotype are described with blueprints
(masks, schemas)

❼ the Schema Theorem roughly estimates how such schemas multiply,
depending on their average fitness

❼ It tries to answer the question: “How and why does a GA work?”

Metaheuristic Optimization Thomas Weise 66/91

Schema Theorem: Some Definitions

❼ For a search space G ⊆ {false, true}n of dimension n. . .

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 67/91

Schema Theorem: Some Definitions

❼ For a search space G ⊆ {false, true}n of dimension n. . .

❼ Mask m is an element of the power set P(0 . . . n− 1) and defines a
set of loci

❼

❼

❼

Metaheuristic Optimization Thomas Weise 67/91

Schema Theorem: Some Definitions

❼ For a search space G ⊆ {false, true}n of dimension n. . .

❼ Mask m is an element of the power set P(0 . . . n− 1) and defines a
set of loci

❼ The order of a mask m is the number of loci defined by it:
order(m) = |m|

❼

❼

Metaheuristic Optimization Thomas Weise 67/91

Schema Theorem: Some Definitions

❼ For a search space G ⊆ {false, true}n of dimension n. . .

❼ Mask m is an element of the power set P(0 . . . n− 1) and defines a
set of loci

❼ The order of a mask m is the number of loci defined by it:
order(m) = |m|

❼ The defined length δ(m) is the maximum distance between two loci
in a mask δ(m) = max{|j − k| ∀j, k ∈ m}

❼

Metaheuristic Optimization Thomas Weise 67/91

Schema Theorem: Some Definitions

❼ For a search space G ⊆ {false, true}n of dimension n. . .

❼ Mask m is an element of the power set P(0 . . . n− 1) and defines a
set of loci

❼ The order of a mask m is the number of loci defined by it:
order(m) = |m|

❼ The defined length δ(m) is the maximum distance between two loci
in a mask δ(m) = max{|j − k| ∀j, k ∈ m}

❼ A Schema H is an equivalence class concerning the values at specific
loci (i.e., values of genotypes according to a mask):
H(j) ∈ {0, 1, *}∀j ∈ 0 . . . n− 1, H(j) = *∀j 6∈ m

Metaheuristic Optimization Thomas Weise 67/91

Schema Theorem: Masks

❼ A Schema H is an equivalence class concerning the values at specific
loci (i.e., values of genotypes according to a mask):
H(j) ∈ {0, 1, *}∀j ∈ 0 . . . n− 1, H(j) = *∀j 6∈ m

Metaheuristic Optimization Thomas Weise 68/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

❼ For each open slot in the mating pool, the chance of an individual
p ∈ pop from the population pop to be copied into this slot is

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

❼ For each open slot in the mating pool, the chance of an individual
p ∈ pop from the population pop to be copied into this slot is:

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(3)

❼ But we do not look at a single individual p ∈ (pop ∩H), we look at
all the individuals in population pop that fit to schema H

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

❼ For each open slot in the mating pool, the chance of an individual
p ∈ pop from the population pop to be copied into this slot is:

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(3)

❼ We look at all the individuals in population pop that fit to schema H

❼ The chance P (select(H)) that one of them is chosen into the slot is1:

P (select(H)) =
∑

∀p∈(pop∩H)

[

f(p.x)
∑

∀p′∈pop f(p
′.x)

]

(4)

1A∩B is the intersection operator, returning a set with only the elements that are in
both A and B

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

❼ For each open slot in the mating pool, the chance of an individual
p ∈ pop from the population pop to be copied into this slot is:

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(3)

❼ We look at all the individuals in population pop that fit to schema H

❼ The chance P (select(H)) that one of them is chosen into the slot is1:

P (select(H)) =
1

∑

∀p′∈pop f(p
′.x)

∑

∀p∈(pop∩H)

f(p.x) (4)

1A∩B is the intersection operator, returning a set with only the elements that are in
both A and B

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection Probability

❼ Holland uses Roulette Wheel Selection in his GA

❼ For each open slot in the mating pool, the chance of an individual
p ∈ pop from the population pop to be copied into this slot is:

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(3)

❼ We look at all the individuals in population pop that fit to schema H

❼ The chance P (select(H)) that one of them is chosen into the slot is1:

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(4)

1A∩B is the intersection operator, returning a set with only the elements that are in
both A and B

Metaheuristic Optimization Thomas Weise 69/91

Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼

Metaheuristic Optimization Thomas Weise 70/91

Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
population2:

f(pop) =
1

ps

∑

∀p′∈pop

f(p′.x) f(pop ∩H) =
1

|pop ∩H|

∑

∀p∈(pop∩H)

f(p.x) (6)

2|A| is the set size of A, the number of elements in A.
Metaheuristic Optimization Thomas Weise 70/91

Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
population2:

ps ∗ f(pop) =
∑

∀p′∈pop

f(p′.x) |pop ∩H| ∗ f(pop ∩H) =
∑

∀p∈(pop∩H)

f(p.x)

(6)

2|A| is the set size of A, the number of elements in A.
Metaheuristic Optimization Thomas Weise 70/91

Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
population:

ps ∗ f(pop) =
∑

∀p′∈pop

f(p′.x) |pop ∩H| ∗ f(pop ∩H) =
∑

∀p∈(pop∩H)

f(p.x)

(6)

❼ Now we put this into the first equation:

P (select(H)) =
|pop ∩H| ∗ f(pop ∩H)

ps ∗ f(pop)
(7)

Metaheuristic Optimization Thomas Weise 70/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ Holland assumes that the size mps of the mating pool is the same as
the size ps of the population, so this is applied ps times

❼

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ Holland assumes that the size mps of the mating pool is the same as
the size ps of the population, so this is applied ps times

❼ The expected number of offspring of the schema’s instances, i.e., its
expected occurences E(|matePoolt ∩H|) in the mating pool, are:

E(|matePoolt ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(9)

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ Holland assumes that the size mps of the mating pool is the same as
the size ps of the population, so this is applied ps times

❼ The expected number of offspring of the schema’s instances, i.e., its
expected occurences E(|matePoolt ∩H|) in the mating pool

E(|matePoolt ∩H|)

|popt ∩H|
=

f(popt ∩H)

f(popt)
(9)

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ The expected number of offspring of the schema’s instances, i.e., its
expected occurences E(|matePoolt ∩H|) in the mating pool

E(|matePoolt ∩H|)

|popt ∩H|
=

f(popt ∩H)

f(popt)
(9)

❼ If f(popt ∩H) > f(popt), then E(|matePoolt ∩H|) > |popt ∩H|

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ The expected number of offspring of the schema’s instances, i.e., its
expected occurences E(|matePoolt ∩H|) in the mating pool

E(|matePoolt ∩H|)

|popt ∩H|
=

f(popt ∩H)

f(popt)
(9)

❼ The number of offsprings of a schema with above-average fitness will
be higher than the current number of its instances in the population

❼

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Expected Selections

❼ Under Roulette-Wheel Selection, the chance P (select(H)) to select
an instance of schema H from the population popt (at generation t)
for one slot in the mating pool is

P (select(H)) =
|popt ∩H| ∗ f(popt ∩H)

ps ∗ f(popt)
(8)

❼ The expected number of offspring of the schema’s instances, i.e., its
expected occurences E(|matePoolt ∩H|) in the mating pool

E(|matePoolt ∩H|)

|popt ∩H|
=

f(popt ∩H)

f(popt)
(9)

❼ The number of instances of a schema with above average fitness will
increase

Metaheuristic Optimization Thomas Weise 71/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool. . .

❼ . . . without including the influence of crossover and mutation!

❼

❼

❼

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool. . .

❼ . . . without including the influence of crossover and mutation!

❼ Both crossover and mutation may change the genetic material

❼

❼

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool. . .

❼ . . . without including the influence of crossover and mutation!

❼ Both crossover and mutation may change the genetic material

❼ If the genetic material is changed, an offspring of a schema instance
may not be a schema instance!

❼

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool. . .

❼ . . . without including the influence of crossover and mutation!

❼ Both crossover and mutation may change the genetic material

❼ If the genetic material is changed, an offspring of a schema instance
may not be a schema instance!

❼ ξ be the probability that an instance of H is destroyed during
reproduction

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Probability of Destruction

❼ The number of instances of a schema with above average fitness will
increase. . .

❼ . . . but: We only considered the number of instances in the mating
pool. . .

❼ . . . without including the influence of crossover and mutation!

❼ Both crossover and mutation may change the genetic material

❼ If the genetic material is changed, an offspring of a schema instance
may not be a schema instance!

❼ ξ be the probability that an instance of H is destroyed during
reproduction, so we get:

E(|popt+1 ∩H|) = (1− ξ)E(|matePoolt ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

(10)

Metaheuristic Optimization Thomas Weise 72/91

Schema Theorem: Schema Destruction

❼ Single-Point Crossover:

ξc =
δ(m)

n− 1
(11)

❼

❼

Metaheuristic Optimization Thomas Weise 73/91

Schema Theorem: Schema Destruction

❼ Single-Point Crossover:

ξc =
δ(m)

n− 1
⇒ short schemas are favored (11)

❼

❼

Metaheuristic Optimization Thomas Weise 73/91

Schema Theorem: Schema Destruction

❼ Single-Point Crossover:

ξc =
δ(m)

n− 1
⇒ short schemas are favored (11)

❼ Single Bit Flip Mutation:

ξm =
order(m)

n
(12)

❼

Metaheuristic Optimization Thomas Weise 73/91

Schema Theorem: Schema Destruction

❼ Single-Point Crossover:

ξc =
δ(m)

n− 1
⇒ short schemas are favored (11)

❼ Single Bit Flip Mutation:

ξm =
order(m)

n
⇒ schemas with many don’t cares are favored

(12)

❼

Metaheuristic Optimization Thomas Weise 73/91

Schema Theorem: Schema Destruction

❼ Single-Point Crossover:

ξc =
δ(m)

n− 1
⇒ short schemas are favored (11)

❼ Single Bit Flip Mutation:

ξm =
order(m)

n
⇒ schemas with many don’t cares are favored

(12)

❼ For either-mutation-or-crossover-GAs, we get:

ξ ≤ ξc ∗ cr + ξm ∗mr = cr
δ(m)

n− 1
+mr

order(m)

n
(13)

Metaheuristic Optimization Thomas Weise 73/91

Schema Theorem: Instance Increase

❼ ξ be the probability that an instance of H is destroyed during
reproduction, so we get:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼ For either-mutation-or-crossover-GAs, we get:

ξ ≤ ξc ∗ cr + ξm ∗mr = cr
δ(m)

n− 1
+mr

order(m)

n

❼

Metaheuristic Optimization Thomas Weise 74/91

Schema Theorem: Instance Increase

❼ ξ be the probability that an instance of H is destroyed during
reproduction, so we get:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼ For either-mutation-or-crossover-GAs, we get:

ξ ≤ ξc ∗ cr + ξm ∗mr = cr
δ(m)

n− 1
+mr

order(m)

n

❼ Hence:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

ft(popt)

(

1− cr
δ(m)

n− 1
+mr

order(m)

n

)

(14)

Metaheuristic Optimization Thomas Weise 74/91

Schema Theorem

❼ Let’s go back to:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼

❼

Metaheuristic Optimization Thomas Weise 75/91

Schema Theorem

❼ Let’s go back to:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼ We can expect an increase of instances if:

f(popt ∩H) >
f(popt)

1− ξ
(15)

❼

Metaheuristic Optimization Thomas Weise 75/91

Schema Theorem

❼ Let’s go back to:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼ We can expect an increase of instances if:

f(popt ∩H) >
f(popt)

1− ξ
(15)

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances

Metaheuristic Optimization Thomas Weise 75/91

Schema Theorem

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances

Metaheuristic Optimization Thomas Weise 76/91

Schema Theorem

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances, but

1 if number of instances of H increase, f(pop) increases too

Metaheuristic Optimization Thomas Weise 76/91

Schema Theorem

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances, but

1 if number of instances of H increase, f(pop) increases too
2 population is finite

Metaheuristic Optimization Thomas Weise 76/91

Schema Theorem

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances, but

1 if number of instances of H increase, f(pop) increases too
2 population is finite
3 actually, only f(popt ∩H) is not known (samples of H), not f(H)

=⇒ new instances of H may actually be very bad

Metaheuristic Optimization Thomas Weise 76/91

Building Block Hypothesis

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 77/91

Building Block Hypothesis

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼ If there exist some low-order, low-defining length schemata with
above-average fitness. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 77/91

Building Block Hypothesis

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼ If there exist some low-order, low-defining length schemata with
above-average fitness. . .

❼ . . . these schemata are combined step by step by the Genetic
Algorithm in order to form larger and better strings.

❼

❼

Metaheuristic Optimization Thomas Weise 77/91

Building Block Hypothesis

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼ If there exist some low-order, low-defining length schemata with
above-average fitness. . .

❼ . . . these schemata are combined step by step by the Genetic
Algorithm in order to form larger and better strings.

❼ No proof for this exists so far!

❼

Metaheuristic Optimization Thomas Weise 77/91

Building Block Hypothesis

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼ If there exist some low-order, low-defining length schemata with
above-average fitness. . .

❼ . . . these schemata are combined step by step by the Genetic
Algorithm in order to form larger and better strings.

❼ No proof for this exists so far!

❼ Consider the criticism of Schema Theorem

Metaheuristic Optimization Thomas Weise 77/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼ genes with similar alleles remain, different alleles are “randomized”

❼

Metaheuristic Optimization Thomas Weise 78/91

Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼ genes with similar alleles remain, different alleles are “randomized”

❼ useful gene sequences which step-by-step are built by mutation

Metaheuristic Optimization Thomas Weise 78/91

Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 79/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼ Why do we need a population? Why can’t we use a probabilistic model
instead? (EDAs) [69–72]

❼

Metaheuristic Optimization Thomas Weise 80/91

Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼ Why do we need a population? Why can’t we use a probabilistic model
instead? (EDAs) [69–72]

❼ Why not including a local search (such as Hill Climbers) to refine the
results? (MAs) [73, 74]

Metaheuristic Optimization Thomas Weise 80/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼ Schema theorem

❼

Metaheuristic Optimization Thomas Weise 81/91

Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼ Schema theorem

❼ Many extensions

Metaheuristic Optimization Thomas Weise 81/91

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 82/91

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 83/91

Bibliography I

1. Charles Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the
Struggle for Life. London, UK: John Murray, 6th edition, November 24, 1859. URL
http://www.gutenberg.org/etext/1228.

2. Nils Aaall Barricelli. Esempi numerici di processi di evoluzione. Methodos, 6(21–22):45–68, 1954.
3. Nils Aaall Barricelli. Symbiogenetic evolution processes realized by artificial methods. Methodos, 9(35–36):143–182, 1957.
4. Nils Aaall Barricelli. Numerical testing of evolution theories. part i. theroetical introduction and basic tests. Acta

Biotheoretica, 16(1/2):69–98, March 1962. doi: 10.1007/BF01556771. Received: 27 November 1961.
5. Nils Aaall Barricelli. Numerical testing of evolution theories. part ii. preliminary tests of performance. symbiogenesis and

terrestrial life. Acta Biotheoretica, 16(3/4):99–126, September 1963. doi: 10.1007/BF01556602. Received: 27
November 1961.

6. Alex S. Fraser. Simulation of genetic systems by automatic digital computers. i. introduction. Australian Journal of
Biological Science (AJBS), 10:484–491, 1957.

7. Alex S. Fraser. Simulation of genetic systems by automatic digital computers. ii. effects of linkage or rates of advance
under selection. Australian Journal of Biological Science (AJBS), 10:484–491, 1957.

8. David B. Fogel. In memoriam – alex s. fraser. Evolutionary Computation, 6(5):429–430, October 2002. doi:
10.1109/TEVC.2002.805212.

9. Hans J. Bremermann. Optimization through evolution and recombination. In Marshall C. Yovits, George T. Jacobi, and
Gordon D. Goldstein, editors, Self-Organizing Systems (Proceedings of the conference sponsored by the Information
Systems Branch of the Office of Naval Research and the Armour Research Foundation of the Illinois Institute of
Technology.), pages 93–103, Chicago, IL, USA, May 22–24, 1962. Washington, DC, USA: Spartan Books. URL
http://holtz.org/Library/Natural%20Science/Physics/.

10. Woodrow “Woody” Wilson Bledsoe. Lethally dependent genes using instant selection. Technical Report PRI 1, Palo Alto,
CA, USA: Panoramic Research, Inc., 1961.

11. Woodrow “Woody” Wilson Bledsoe. The use of biological concepts in the analytical study of systems. Technical Report
PRI 2, Palo Alto, CA, USA: Panoramic Research, Inc., 1961. Presented at ORSA-TIMS National Meeting, San Francisco,
California, November 10, 1961.

12. Woodrow “Woody” Wilson Bledsoe. An analysis of genetic populations. Technical report, Palo Alto, CA, USA: Panoramic
Research, Inc., 1962.

13. Woodrow “Woody” Wilson Bledsoe. The evolutionary method in hill climbing: Convergence rates. Technical report, Palo
Alto, CA, USA: Panoramic Research, Inc., 1962.

Metaheuristic Optimization Thomas Weise 84/91

http://www.gutenberg.org/etext/1228
http://holtz.org/Library/Natural%20Science/Physics/

Bibliography II

14. John Henry Holland. Outline for a logical theory of adaptive systems. Journal of the Association for Computing Machinery
(JACM), 9(3):297–314. doi: 10.1145/321127.321128.

15. John Henry Holland. Adaptive plans optimal for payoff-only environments. In Proceedings of the Second Hawaii
International Conference on System Sciences (HICSS’69), pages 917–920, Honolulu, HI, USA: University of Hawaii at
Manoa, January 22–24, 1969. Amsterdam, The Netherlands: North-Holland Scientific Publishers Ltd. DTIC Accession
Number: AD0688839.

16. John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. Ann Arbor, MI, USA: University of Michigan Press, 1975. ISBN 0-472-08460-7 and
978-0-472-08460-9. URL http://books.google.de/books?id=JE5RAAAAMAAJ.

17. John Henry Holland. Nonlinear environments permitting efficient adaptation. In Julius T. Tou, editor, Proceedings of the
Symposium on Computer and Information Sciences II, pages 147–164, Columbus, OH, USA, August 22–24, 1966. London,
New York: Academic Press.

18. Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Ann Arbor, MI,
USA: University of Michigan, August 1975. URL http://cs.gmu.edu/~eclab/kdj_thesis.html.

19. David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0-201-15767-5 and 978-0-201-15767-3. URL
http://books.google.de/books?id=2IIJAAAACAAJ.

20. Melanie Mitchell, Stephanie Forrest, and John Henry Holland. The royal road for genetic algorithms: Fitness landscapes
and ga performance. In Francisco J. Varela and Paul Bourgine, editors, Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference on Artificial Life (Actes de la Première Conférence Européenne sur la Vie
Artificielle) (ECAL’91), Bradford Books, pages 245–254, Paris, France, December 11–13, 1991. Cambridge, MA, USA: MIT
Press. URL http://web.cecs.pdx.edu/~mm/ecal92.pdf.

21. David Edward Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic algorithms. In
Bruce M. Spatz and Gregory J. E. Rawlins, editors, Proceedings of the First Workshop on Foundations of Genetic
Algorithms (FOGA’90), pages 69–93, Bloomington, IN, USA: Indiana University, Bloomington Campus, July 15–18, 1990.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf.

22. Anne F. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, Edmonton, Alberta, Canada: University of
Alberta, 1980. Technical Report TR81-2.

Metaheuristic Optimization Thomas Weise 85/91

http://books.google.de/books?id=JE5RAAAAMAAJ
http://cs.gmu.edu/~eclab/kdj_thesis.html
http://books.google.de/books?id=2IIJAAAACAAJ
http://web.cecs.pdx.edu/~mm/ecal92.pdf
http://www.cse.unr.edu/~sushil/class/gas/papers/Select.pdf

Bibliography III

23. Lashon Bernard Booker. Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis, Ann Arbor, MI, USA:
University of Michigan. URL http://hdl.handle.net/2027.42/3746. Technical Report No. 243.

24. James E. Baker. Reducing bias and inefficiency in the selection algorithm. In John J. Grefenstette, editor, Proceedings of
the Second International Conference on Genetic Algorithms and their Applications (ICGA’87), pages 14–21, Cambridge,
MA, USA: Massachusetts Institute of Technology (MIT), July 28–31, 1987. Mahwah, NJ, USA: Lawrence Erlbaum
Associates, Inc. (LEA).

25. John J. Grefenstette and James E. Baker. How genetic algorithms work: A critical look at implicit parallelism. In
James David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms (ICGA’89), pages
20–27, Fairfax, VA, USA: George Mason University (GMU), June 4–7, 1989. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

26. Haiming Lu. State-of-the-Art Multiobjective Evolutionary Algorithms – Pareto Ranking, Density Estimation and Dynamic
Population. PhD thesis, Stillwater, OK, USA: Oklahoma State University, Faculty of the Graduate College, August 2002.
URL http://www.lania.mx/~ccoello/EMOO/thesis_lu.pdf.gz.

27. Garrison W. Greenwood, Xiaobo Sharon Hu, and Joseph G. D’Ambrosio. Fitness functions for multiple objective
optimization problems: Combining preferences with pareto rankings. In Richard K. Belew and Michael D. Vose, editors,
Proceedings of the 4th Workshop on Foundations of Genetic Algorithms (FOGA’96), pages 437–455, San Diego, CA, USA:
University of San Diego, August 5, 1996. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

28. A. Wetzel. Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial Optimization. Pittsburgh, PA, USA:
University of Pittsburgh, 1983. Unpublished manuscript, technical report.

29. Tobias Blickle and Lothar Thiele. A mathematical analysis of tournament selection. In Larry J. Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), pages 9–16, Pittsburgh, PA, USA:
University of Pittsburgh, July 15–19, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.handshake.de/user/blickle/publications/tournament.ps.

30. Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary algorithms. Evolutionary
Computation, 4(4):361–394, Winter 1996. doi: 10.1162/evco.1996.4.4.361. URL
http://www.handshake.de/user/blickle/publications/ECfinal.ps.

31. Brad L. Miller and David Edward Goldberg. Genetic algorithms, selection schemes, and the varying effects of noise.
Evolutionary Computation, 4(2):113–131, Summer 1996. doi: 10.1162/evco.1996.4.2.113. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3449.

Metaheuristic Optimization Thomas Weise 86/91

http://hdl.handle.net/2027.42/3746
http://www.lania.mx/~ccoello/EMOO/thesis_lu.pdf.gz
http://www.handshake.de/user/blickle/publications/tournament.ps
http://www.handshake.de/user/blickle/publications/ECfinal.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3449

Bibliography IV

32. S. Lee, S. Soak, K. Kim, H. Park, and M. Jeon. Statistical properties analysis of real world tournament selection in genetic
algorithms. Applied Intelligence – The International Journal of Artificial Intelligence, Neural Networks, and Complex
Problem-Solving Technologies, 28(2):195–205, April 2008. doi: 10.1007/s10489-007-0062-2.

33. Kumara Sastry and David Edward Goldberg. Modeling tournament selection with replacement using apparent added noise.
IlliGAL Report 2001014, Urbana-Champaign, IL, USA: University of Illinois at Urbana-Champaign, Department of
Computer Science, Department of General Engineering, Illinois Genetic Algorithms Laboratory (IlliGAL), January 2001.
URL http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2001014.ps.Z.

34. Christopher K. Oei, David Edward Goldberg, and Shau-Jin Chang. Tournament selection, niching, and the preservation of
diversity. IlliGAL Report 91011, Urbana-Champaign, IL, USA: University of Illinois at Urbana-Champaign, Department of
Computer Science, Department of General Engineering, Illinois Genetic Algorithms Laboratory (IlliGAL), December 1991.
URL http://www.illigal.uiuc.edu/pub/papers/IlliGALs/91011.ps.Z.

35. Hans-Georg Beyer. The Theory of Evolution Strategies. Natural Computing Series. New York, NY, USA: Springer New
York, May 27, 2001. ISBN 3-540-67297-4 and 978-3-540-67297-5. URL
http://books.google.de/books?id=8tbInLufkTMC.

36. Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem. Farnborough, Hampshire, UK: Royal Aircraft
Establishment, August 1965. Library Translation 1122.

37. Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD
thesis, Berlin, Germany: Technische Universität Berlin, 1971. URL http://books.google.de/books?id=QcNNGQAACAAJ.

38. Ingo Rechenberg. Evolutionsstrategie ’94, volume 1 of Werkstatt Bionik und Evolutionstechnik. Bad Cannstadt, Stuttgart,
Baden-Württemberg, Germany: Frommann-Holzboog Verlag, 1994. ISBN 3-7728-1642-8 and 978-3-772-81642-0. URL
http://books.google.de/books?id=savAAAACAAJ.

39. Hans-Paul Schwefel. Kybernetische evolution als strategie der exprimentellen forschung in der strömungstechnik. Master’s
thesis, Berlin, Germany: Technische Universität Berlin, 1965.

40. Hans-Paul Schwefel. Experimentelle optimierung einer zweiphasendüse teil i. Technical Report 35, Berlin, Germany: AEG
Research Institute, 1968. Project MHD–Staustrahlrohr 11.034/68.

41. Hans-Paul Schwefel. Evolutionsstrategie und numerische Optimierung. PhD thesis, Berlin, Germany: Technische
Universität Berlin, Institut für Meß- und Regelungstechnik, Institut für Biologie und Anthropologie, 1975.

Metaheuristic Optimization Thomas Weise 87/91

http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2001014.ps.Z
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/91011.ps.Z
http://books.google.de/books?id=8tbInLufkTMC
http://books.google.de/books?id=QcNNGQAACAAJ
http://books.google.de/books?id=savAAAACAAJ

Bibliography V

42. Jörg Lässig, Karl Heinz Hoffmann, and Mihaela Enăchescu. Threshold selecting: Best possible probability distribution for
crossover selection in genetic algorithms. In Maarten Keijzer, Giuliano Antoniol, Clare Bates Congdon, Kalyanmoy Deb,
Benjamin Doerr, Nikolaus Hansen, John H. Holmes, Gregory S. Hornby, Daniel Howard, James Kennedy, Sanjeev P. Kumar,
Fernando G. Lobo, Julian Francis Miller, Jason H. Moore, Frank Neumann, Martin Pelikan, Jordan B. Pollack, Kumara
Sastry, Kenneth Owen Stanley, Adrian Stoica, El-Ghazali Talbi, and Ingo Wegener, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO’08), pages 2181–2185, Atlanta, GA, USA: Renaissance Atlanta Hotel
Downtown, July 12–16, 2008. New York, NY, USA: ACM Press. doi: 10.1145/1388969.1389044.

43. Jörg Lässig and Achim G. Hoffmann. Threshold-selecting strategy for best possible ground state detection with genetic
algorithms. Physical Review E, 79(4):046702–046702–8, April 2009. doi: 10.1103/PhysRevE.79.046702.

44. John Henry Holland. Genetic algorithms – computer programs that “evolve“ in ways that resemble natural selection can
solve complex problems even their creators do not fully understand. Scientific American, 267(1):44–50, July 1992. URL
http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm.

45. Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – a comprehensive introduction. Natural Computing: An
International Journal, 1(1):3–52, March 2002. doi: 10.1023/A:1015059928466. URL
http://www.cs.bham.ac.uk/~pxt/NIL/es.pdf.

46. Hans-Georg Beyer. An alternative explanation for the manner in which genetic algorithms operate. Biosystems, 41(1):1–15,
January 1997. doi: 10.1016/S0303-2647(96)01657-7. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.307.

47. Thomas Weise. Global Optimization Algorithms – Theory and Application. Germany: it-weise.de (self-published), 2009.
URL http://www.it-weise.de/projects/book.pdf.

48. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Handbook of Evolutionary Computation. Computational
Intelligence Library. New York, NY, USA: Oxford University Press, Inc., Dirac House, Temple Back, Bristol, UK: Institute of
Physics Publishing Ltd. (IOP), and Boca Raton, FL, USA: CRC Press, Inc., January 1, 1997. ISBN 0-7503-0392-1,
0-7503-0895-8, 978-0-7503-0392-7, and 978-0-7503-0895-3. URL http://books.google.de/books?id=n5nuiIZvmpAC.

49. Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors. Variants of Evolutionary Algorithms for Real-World
Applications. Berlin/Heidelberg: Springer-Verlag, 2011. ISBN 978-3-642-23423-1 and 978-3-642-23424-8. doi:
10.1007/978-3-642-23424-8. URL http://books.google.de/books?id=B2ONePP40MEC.

50. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computation 1: Basic Algorithms and
Operators. Dirac House, Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP), January 2000. ISBN
0750306645 and 9780750306645. URL http://books.google.de/books?id=4HMYCq9US78C.

Metaheuristic Optimization Thomas Weise 88/91

http://www2.econ.iastate.edu/tesfatsi/holland.gaintro.htm
http://www.cs.bham.ac.uk/~pxt/NIL/es.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.307
http://www.it-weise.de/projects/book.pdf
http://books.google.de/books?id=n5nuiIZvmpAC
http://books.google.de/books?id=B2ONePP40MEC
http://books.google.de/books?id=4HMYCq9US78C

Bibliography VI

51. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors. Evolutionary Computation 2: Advanced Algorithms and
Operators. Dirac House, Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP), November 2000. ISBN
0750306653 and 9780750306652.

52. Dumitru (Dan) Dumitrescu, Beatrice Lazzerini, Lakhmi C. Jain, and A. Dumitrescu. Evolutionary Computation, volume 18
of International Series on Computational Intelligence. Boca Raton, FL, USA: CRC Press, Inc., June 2000. ISBN
0-8493-0588-8 and 978-0-8493-0588-7. URL http://books.google.de/books?id=MSU9ep79JvUC.

53. Ágoston E. Eiben, editor. Evolutionary Computation. Theoretical Computer Science. Amsterdam, The Netherlands: IOS
Press, 1999. ISBN 4-274-90269-2, 90-5199-471-0, 978-4-274-90269-7, and 978-90-5199-471-1. URL
http://books.google.de/books?id=8LVAGQAACAAJ. This is the book edition of the journal Fundamenta Informaticae,
Volume 35, Nos. 1-4, 1998.

54. David Wolfe Corne, Marco Dorigo, Fred W. Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli, and Kenneth V.
Price, editors. New Ideas in Optimization. McGraw-Hill’s Advanced Topics In Computer Science Series. Maidenhead,
England, UK: McGraw-Hill Ltd., May 1999. ISBN 0-07-709506-5 and 978-0-07-709506-2. URL
http://books.google.de/books?id=nC35AAAACAAJ.

55. Ashish Ghosh and Shigeyoshi Tsutsui, editors. Advances in Evolutionary Computing – Theory and Applications. Natural
Computing Series. New York, NY, USA: Springer New York, November 22, 2002. ISBN 3-540-43330-9 and
978-3-540-43330-9. URL http://books.google.de/books?id=OGMEMC9P3vMC.

56. Riccardo Poli, William Benjamin Langdon, and Nicholas Freitag McPhee. A Field Guide to Genetic Programming. London,
UK: Lulu Enterprises UK Ltd, March 2008. ISBN 1-4092-0073-6 and 978-1-4092-0073-4. URL
http://www.lulu.com/items/volume_63/2167000/2167025/2/print/book.pdf. With contributions by John R. Koza.

57. John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Bradford Books.
Cambridge, MA, USA: MIT Press, December 1992. ISBN 0-262-11170-5 and 978-0-262-11170-6. URL
http://books.google.de/books?id=Bhtxo60BV0EC. 1992 first edition, 1993 second edition.

58. Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Programming: An Introduction – On
the Automatic Evolution of Computer Programs and Its Applications. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. and Heidelberg, Germany: dpunkt.verlag, November 30, 1997. ISBN 1-558-60510-X, 3-920993-58-6, and
978-1-558-60510-7. URL http://books.google.de/books?id=1697qefFdtIC.

59. Peter John Angeline and Kenneth E. Kinnear, Jr, editors. Advances in Genetic Programming II. Bradford Books.
Cambridge, MA, USA: MIT Press, October 26, 1996. ISBN 0-262-01158-1 and 978-0-262-01158-7. URL
http://books.google.de/books?id=c3G7QgAACAAJ.

Metaheuristic Optimization Thomas Weise 89/91

http://books.google.de/books?id=MSU9ep79JvUC
http://books.google.de/books?id=8LVAGQAACAAJ
http://books.google.de/books?id=nC35AAAACAAJ
http://books.google.de/books?id=OGMEMC9P3vMC
http://www.lulu.com/items/volume_63/2167000/2167025/2/print/book.pdf
http://books.google.de/books?id=Bhtxo60BV0EC
http://books.google.de/books?id=1697qefFdtIC
http://books.google.de/books?id=c3G7QgAACAAJ

Bibliography VII

60. Lee Spector, William Benjamin Langdon, Una-May O’Reilly, and Peter John Angeline, editors. Advances in Genetic
Programming III. Bradford Books. Cambridge, MA, USA: MIT Press, July 16, 1996. ISBN 0-262-19423-6 and
978-0-262-19423-5. URL http://books.google.de/books?id=5Qwbal3AY6oC.

61. John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza. Genetic
Programming IV: Routine Human-Competitive Machine Intelligence, volume 5 of Genetic Programming Series. New York,
NY, USA: Springer Science+Business Media, Inc., 2003. ISBN 0-387-25067-0, 0-387-26417-5, 1402074468, 6610611831,
978-0-387-25067-0, 978-0-387-26417-2, 978-1402074462, and 9786610611836. URL
http://books.google.de/books?id=YQxWzAEnINIC.

62. Branko Souček and IRIS Group, editors. Dynamic, Genetic, and Chaotic Programming: The Sixth-Generation. Sixth
Generation Computer Technologies. Chichester, West Sussex, UK: Wiley Interscience, April 1992. ISBN 047155717X and
978-0471557173. URL
http://www.amazon.com/gp/reader/047155717X/ref=sib_dp_pt/002-6076954-4198445#reader-link.

63. Markus F. Brameier and Wolfgang Banzhaf. Linear Genetic Programming, volume 1 of Genetic Algorithms and
Evolutionary Computation. Boston, MA, USA: Springer US and Norwell, MA, USA: Kluwer Academic Publishers,
December 11, 2006. ISBN 0-387-31029-0, 0-387-31030-4, 978-0-387-31029-9, and 978-0-387-31030-5. doi:
10.1007/978-0-387-31030-5. Series Editor: David L. Goldberg, John R. Koza.

64. Carlos Artemio Coello Coello, Gary B. Lamont, and David A. van Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems, volume 5 of Genetic Algorithms and Evolutionary Computation. Boston, MA, USA: Springer US
and Norwell, MA, USA: Kluwer Academic Publishers, 2nd edition, 2002. ISBN 0306467623, 0387332545, 978-0306467622,
978-0-387-33254-3, and 978-0-387-36797-2. doi: 10.1007/978-0-387-36797-2. URL
http://books.google.de/books?id=sgX_Cst_yTsC.

65. Joshua D. Knowles, David Wolfe Corne, and Kalyanmoy Deb. Multiobjective Problem Solving from Nature – From
Concepts to Applications. Natural Computing Series. New York, NY, USA: Springer New York, 2008. ISBN 3-540-72963-1,
978-3-540-72963-1, and 978-3-540-72964-8. doi: 10.1007/978-3-540-72964-8. URL
http://books.google.de/books?id=pzq8t9rCKC8C.

66. Ajith Abraham, Lakhmi C. Jain, and Robert Goldberg, editors. Evolutionary Multiobjective Optimization – Theoretical
Advances and Applications. Advanced Information and Knowledge Processing. Berlin, Germany: Springer-Verlag GmbH.
ISBN 1852337877 and 978-1-85233-787-2. URL http://books.google.de/books?id=Ei7q1YSjiSAC.

Metaheuristic Optimization Thomas Weise 90/91

http://books.google.de/books?id=5Qwbal3AY6oC
http://books.google.de/books?id=YQxWzAEnINIC
http://www.amazon.com/gp/reader/047155717X/ref=sib_dp_pt/002-6076954-4198445#reader-link
http://books.google.de/books?id=sgX_Cst_yTsC
http://books.google.de/books?id=pzq8t9rCKC8C
http://books.google.de/books?id=Ei7q1YSjiSAC

Bibliography VIII

67. Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution – A Practical Approach to Global
Optimization. Natural Computing Series. Basel, Switzerland: Birkhäuser Verlag, 2005. ISBN 3-540-20950-6,
3-540-31306-0, 978-3-540-20950-8, and 978-3-540-31306-9. URL http://books.google.de/books?id=S67vX-KqVqUC.

68. Vitaliy Feoktistov. Differential Evolution – In Search of Solutions, volume 5 of Springer Optimization and Its Applications.
New York, NY, USA: Springer New York, December 2006. ISBN 0-387-36895-7, 0-387-36896-5, 978-0-387-36895-5, and
978-0-387-36896-2. URL http://books.google.de/books?id=kG7aP_v-SU4C.

69. Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz, editors. Scalable Optimization via Probabilistic Modeling – From
Algorithms to Applications, volume 33 of Studies in Computational Intelligence. Berlin/Heidelberg: Springer-Verlag, 2006.
ISBN 3-540-34953-7 and 978-3-540-34953-2. doi: 10.1007/978-3-540-34954-9. URL
http://books.google.de/books?id=znzGDXPh6NAC.

70. Pedro Larrañaga and José Antonio Lozano, editors. Estimation of Distribution Algorithms – A New Tool for Evolutionary
Computation, volume 2 of Genetic Algorithms and Evolutionary Computation. Boston, MA, USA: Springer US and
Norwell, MA, USA: Kluwer Academic Publishers, 2001. ISBN 0-7923-7466-5 and 978-0-7923-7466-4. URL
http://books.google.de/books?id=o0llxS4u93wC.

71. José Antonio Lozano, Pedro Larrañaga, Iñaki Inza, and Endika Bengoetxea, editors. Towards a New Evolutionary
Computation – Advances on Estimation of Distribution Algorithms, volume 192/2006 of Studies in Fuzziness and Soft
Computing. Berlin, Germany: Springer-Verlag GmbH, 2006. ISBN 3-540-29006-0 and 978-3-540-29006-3. doi:
10.1007/11007937. URL http://books.google.de/books?id=0dku9OKxl6AC.

72. Martin Pelikan. Hierarchical Bayesian Optimization Algorithm – Toward a New Generation of Evolutionary Algorithms,
volume 170/2005 of Studies in Fuzziness and Soft Computing. Berlin, Germany: Springer-Verlag GmbH, 2005. ISBN
3-540-23774-7 and 978-3-540-23774-7. doi: 10.1007/b10910. URL http://books.google.de/books?id=_R0QHqcaTfIC.

73. William Eugene Hart, Natalio Krasnogor, and James E. Smith, editors. Recent Advances in Memetic Algorithms, volume
166/2005 of Studies in Fuzziness and Soft Computing. Berlin, Germany: Springer-Verlag GmbH, 2005. ISBN 3-540-22904-3
and 978-3-540-22904-9. doi: 10.1007/3-540-32363-5. URL http://books.google.de/books?id=LYf7YW4DmkUC.

74. Crina Grosan, Ajith Abraham, and Hisao Ishibuchi, editors. Hybrid Evolutionary Algorithms, volume 75/2007 of Studies in
Computational Intelligence. Berlin/Heidelberg: Springer-Verlag, 2007. ISBN 3-540-73296-9 and 978-3-540-73296-9. doi:
10.1007/978-3-540-73297-6. URL http://books.google.de/books?id=II7LCqiGFlEC.

Metaheuristic Optimization Thomas Weise 91/91

http://books.google.de/books?id=S67vX-KqVqUC
http://books.google.de/books?id=kG7aP_v-SU4C
http://books.google.de/books?id=znzGDXPh6NAC
http://books.google.de/books?id=o0llxS4u93wC
http://books.google.de/books?id=0dku9OKxl6AC
http://books.google.de/books?id=_R0QHqcaTfIC
http://books.google.de/books?id=LYf7YW4DmkUC
http://books.google.de/books?id=II7LCqiGFlEC

	Outline
	Introduction
	Section Outline
	Introduction
	Introduction

	Evolution
	Section Outline
	Evolution: First Generation
	Evolution: Genotype-Phenotype Mapping
	Evolution: Evaluation
	Evolution: Fitness
	Evolution: Selection
	Evolution: Reproduction
	Evolution: Next Generation

	Genetic Algorithm
	Section Outline
	Introduction
	Introduction
	Genetic Algorithms: First Generation
	Genetic Algorithms: GPM
	Genetic Algorithms: Evaluation
	Genetic Algorithms: Selection
	Genetic Algorithms: Crossover
	Genetic Algorithms: Mutation
	Genetic Algorithms: New Generation
	Genetic Algorithms: Putting it Together

	Selection
	Section Outline
	Selection
	Selection
	Selection
	Traditional: Roulette-Wheel Selection
	Traditional: Roulette-Wheel Selection
	Traditional: Roulette-Wheel Selection
	Traditional: Roulette-Wheel Selection
	Traditional: Roulette-Wheel Selection
	Traditional: Roulette-Wheel Selection
	Selection
	Tournament Selection
	Selection
	Truncation Selection
	Truncation Selection
	Truncation Selection
	Population Treatment

	Crossover
	Section Outline
	Crossover
	Crossover: SPX
	Crossover: TPX
	Crossover: MPX
	Crossover: UX
	Single-Point Crossover
	Crossover: MPX
	Crossover: Uniform Crossover (UX)
	Uniform Crossover

	Mutation
	Section Outline
	Mutation
	Mutation: Single Bit
	Mutation: Multi Bit 1
	Mutation: Multi Bit 2
	Mutation: Complete
	Multi Bit Mutation
	Single-Bit Flip Mutation
	Multi-Bit Flip Mutation
	Flip a Fraction of the Bits

	Schema Theorem
	Section Outline
	Schema Theorem: Introduction
	Schema Theorem: Some Definitions
	Schema Theorem: Masks
	Schema Theorem: Selection Probability
	Schema Theorem: Selection + Mean Fitness
	Schema Theorem: Expected Selections
	Schema Theorem: Probability of Destruction
	Schema Theorem: Schema Destruction
	Schema Theorem: Instance Increase
	Schema Theorem
	Schema Theorem
	Building Block Hypothesis
	Alternative Hypothesis

	Outlook & Summary
	Section Outline
	Extension to Evolutionary Algorithms
	Summary

	Presentation End
	Bibliography

