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grow into adulthood

2 under the absence of external influences, the population size of a
species roughly remains constant

3 if no external influences occur, the food resources are limited but stable
4 individuals compete for these limited resources
5 in sexual reproducing species, no two individuals are equal
6 some of the variations between the individuals will affect their fitness

and hence, their ability to survive
7 a fraction of these variations are inheritable
8 individuals less fit are less likely to reproduce, whereas the fittest

individuals will survive and produce offspring more probably
9 individuals that reproduce will likely pass on their traits to their

offspring
10 hence, a species will slowly change and adapt to a given environment
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❼ Individuals of a species exist within a population (not alone)

❼ Here, we consider generations: there is a parent generation, followed
by a child generation (the offspring)

❼ The fitness of each individual determines its probability of survival
during selection

❼ Individuals which survive become the parents of the next generation
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Evolution: First Generation

❼ Start with a random set of individuals (or, their genetic codes)
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Evolution: Genotype-Phenotype Mapping

❼ Live begins with the development from genotype to phenotype
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Evolution: Evaluation

❼ Test the features of each individual
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Evolution: Fitness

❼ Fitness is relative, determined/defined as number of offspring
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Evolution: Selection

❼ Fitter individuals usually survive selection, have more offspring
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Evolution: Reproduction

❼ Asexual and sexual reproduction
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Evolution: Next Generation

❼ Cycle starts again with the next “generation”
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❼ In the early 1960s, Bremermann [9] and Bledsoe [10–13] use simulated
evolution to solve some optimization problems

❼ In the late 1960s/early 1970s, Holland [14–17] formalizes Genetic
Algorithms

❼ De Jong [18] uses them for function optimization
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Introduction

❼ Idea: Try to emulate the natural process of evolution on a very simple
search space G: the bit strings of length n, i.e., {false, true}n
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Genetic Algorithms: First Generation

❼ Each genotype is a bit string of length n

❼ Nullary search operation to create initial individuals: create a
population of random bit strings
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Genetic Algorithms: GPM

❼ Map the genotypes to phenotypes

❼ The GPM is usually problem-dependent
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Genetic Algorithms: Evaluation

❼ Evaluate the objective function(s)

❼ In the original GA, fitness = objective values. In Multi-Objective
Evolutionary Algorithms, this is not the case

Metaheuristic Optimization Thomas Weise 19/91



Genetic Algorithms: Selection

❼ Select the best individuals with highest probability

❼ Many different selection algorithms exist: Roulette-Wheel Selection,
Tournament Selection, etc.

Metaheuristic Optimization Thomas Weise 20/91



Genetic Algorithms: Crossover

❼ Recombine genotypes: two genotypes are combined to create a new
one (binary search operation); crossover rate cr

❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]
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Genetic Algorithms: Mutation

❼ Perform mutation (unary search operation) with probability mr

❼ Slight perturbations to increase diversity in population
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Often either mutation

or crossover is used

to create a new geno-

type: 1 = mr + cr



Genetic Algorithms: New Generation

❼ Start with new population in next generation.
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Genetic Algorithms: Putting it Together
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created with the nullary search operation
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Genetic Algorithms: Putting it Together

1 In the first generation (t = 1), a population pop of ps individuals p is
created with the nullary search operation

2 the genotypes p.g are translated to phenotypes p.x

3 compute objective value f(p.x) of each candidate solution p.x in pop

4 perform selection: put mps individuals into the mating pool
matePool with selection algorithm

5 reproduce the individuals by using crossover and mutation, according
to crossover rate cr

6 Check the termination criterion (usually done after every objective
function evaluation)
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Listing: A simple Evolutionary Algorithm

public class EA<G, X> extends OptimizationAlgorithm <G, X> {

public ISelectionAlgorithm selection;

public int ps;

public int mps;

public double cr;

public IBinarySearchOperation <G> binary;

public EA() {

super();

this.cr = 0.3d;

this.ps = 128;

this.mps = 64;

this.selection = TruncationSelection.INSTANCE;

}

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pbest , pcur;

Individual <G, X>[] pop , mate;

int i;

pbest = new Individual <>();

pop = new Individual[this.ps];

mate = new Individual[this.mps];

for (i = pop.length; (--i) >= 0;) {

pop[i] = pcur = new Individual <>();

pcur.g = this.nullary.create(this.random);

}

for (;;) {

for (i = pop.length; (--i) >= 0;) {

pcur = pop[i];

pcur.x = this.gpm.gpm(pcur.g);

pcur.v = f.compute(pcur.x);

if (pcur.v < pbest.v) {

pbest.assign(pcur);

}

if (this.termination.shouldTerminate ()) {

return pbest;

}

}

this.selection.select(pop , mate , this.random);

for (i = pop.length; (--i) >= 0;) {

pop[i] = pcur = new Individual <>();

if (this.random.nextDouble () < this.cr) {

pcur.g = this.binary.recombine(mate[i % mate.length ].g,

mate[this.random.nextInt(mate.length)].g, this.random);

} else {

pcur.g = this.unary.mutate(mate[i % mate.length ].g, this.random);

}

}

}

}

} Metaheuristic Optimization Thomas Weise 25/91
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and selection?
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❼ The population pop is the set of the ps solutions currently tested

❼ We want that some of the best ones can reproduce

❼ The mps individuals that can reproduce are placed into the mating
pool matePool

❼ Selection is the process of choosing which individuals from pop can
entermatePool

❼ Those individuals not selected are discarted

❼ Two common, basic approaches to choose mps, independent from
how selection is done:

1 ps > mps: only a few individuals are selected and these have multiple
offspring

2 ps = mps: each selected individual has one offspring, an individual can
be selected multiple times
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Selection

❼ population pop has ps individuals

❼ We want to keep and modify only some of them

❼ We will select mps individuals and put them into the mating pool
matePool

❼ There exist multiple selection algorithms which can be used for this
purpose

❼ General basis for selection: Fitness ν.

❼ In the most simple, single-objective case (only one objective function,
i.e., what we did so far):

ν(p) = f(p.x) ∀individuals (1)
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Selection

Listing: The Selection Algorithm: Programmer’s Perspective

package metaheuristicOptimization.algorithms.ea;

import java.util.Random;

import metaheuristicOptimization.Individual;

/** the interface for selection algorithms */

public interface ISelectionAlgorithm {

/**

* Fill the mating pool with selected individuals from the population

*

* @param pop

* the population of the current individuals

* @param mate

* the mating pool to be filled with individuals

* @param r

* the random number generator

*/

public abstract void select(final Individual <?, ?>[] pop , final

Individual <?, ?>[] mate ,

final Random r);

}

Metaheuristic Optimization Thomas Weise 29/91



Traditional: Roulette-Wheel Selection

❼ Traditional method: Roulette-Wheel Selection – Number of offspring
is proportional to fitness (fitness is maximized!) [16, 18, 21–25]

P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(2)
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the expected number ES(pi) of
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offset of objective function – not
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❼ Not robust! Influenced on:

1 shape of objective function
2 big-O class of objective function
3 absolute offset of function

❼ An optimization algorithm should work good regardless whether we
add an offset to an objective function or use the squared functions. . .

❼ . . . but Roulette-Wheel Selection gives different results in these cases!

❼ Avoid to use this directly

❼ Good only if fitness “fits” to this method, as e.g., in Pareto
ranking [19, 26, 27]
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matePool←− rouletteWheelSelection(pop)mps

Input: pop: the list of individuals to select from
Input: [implicit] ps: the population size
Input: mps: the number of individuals to be placed into the mating pool matePool
Output: matePool: the mating pool

begin
A←− create empty list
max←− −∞
// Initialize fitness array and find extreme fitnesses

for i←− 0 up to ps− 1 do
a←− pop[i].y
A[i]←− a

if a > max then max←− a

sum←− 0
for i←− 0 up to ps− 1 do

sum←− sum+ (max−A[i])
A[i]←− sum

for i←− 0 up to mps− 1 do
a←− {randomly from [0, sum]}
append pop[max{i : A[i] ≤ a}] to matePool

return matePool
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Selection

Listing: The Roulette-Wheel Selection Algorithm

public class RouletteWheelSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[] mate , final Random r) {

double [] t;

double max , last;

int i, j;

t = this.temp;

if ((t == null) || (t.length < pop.length)) {

this.temp = t = new double[pop.length ];

}

max = Double.NEGATIVE_INFINITY;

for (Individual <?, ?> indi : pop) {

max = Math.max(indi.v, max);

}

max = Math.nextUp(max);

last = 0d;

for (i = 0; i < t.length; i++) {

last += (max - pop[i].v);

t[i] = last;

}

t[t.length - 1] = Double.POSITIVE_INFINITY;

for (i = 0; i < mate.length; i++) {

j = Arrays.binarySearch(t, last * r.nextDouble ());

if (j < 0) {

j = ((-j) - 1);

}

mate[i] = pop[j];

}

}

}
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Tournament Selection

❼ Tournament Selection: k individuals compete to produce 1 offspring,
the best wins!
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that Roulette-Wheel Selection
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Plus we can fine-tune selection
pressure via k



matePool←− tournamentSelection(k, pop,mps)

Input: pop: the list of individuals to select from
Input: [implicit] ps: the population size
Input: mps: the number of individuals to be placed into the mating pool matePool
Input: [implicit] k: the tournament size
Output: matePool: the winners of the tournaments which now form the mating pool

begin
matePool←− create empty list
for i←− 1 up to mps do

a←− {randomly from 0..sum− 1}
for j ←− 1 up to k − 1 do

b←− {randomly from 0..sum− 1}
if pop[b].y < pop[a].y then a←− b

append pop[a] to matePool

return matePool
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Selection

Listing: The Tournament Selection Algorithm

public class TournamentSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

int i, j;

Individual <?, ?> x, y;

for (i = 0; i < mate.length; i++) {

x = pop[r.nextInt(pop.length)];

for (j = 1; j < this.k; j++) {

y = pop[r.nextInt(pop.length)];

if (y.v < x.v) {

x = y;

}

}

mate[i] = x;

}

}

}
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Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91



Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91



Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/91



Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)

❼

❼

Metaheuristic Optimization Thomas Weise 41/91



Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)
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Truncation Selection

❼ Choose the mps best individuals from the population pop into the
mating pool matePool

❼ Here, the mating pool matePool is always smaller than the
population pop (mps < ps)

❼ Extremely simple to implement

❼ Also used in Evolution Strategies [35–41] (see Lesson 12: Evolution
Strategies)

❼ Lässig et al. [42, 43] show that this selection strategy is optimal!

❼ However, the right mating pool size mps is not known. . .
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Truncation Selection

matePool←− truncationSelection(µ, pop)

Input: pop: the list of individuals to select from (length λ or µ+ λ)
Input: µ: the number of individuals to be placed into the mating pool matePool
Output: matePool: the survivors of the truncation which now form the mating pool

begin
sort the pop according to fitness (best first)
return first µ individuals from pop
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Truncation Selection

Listing: The Truncation Selection Algorithm

public class TruncationSelection implements ISelectionAlgorithm {

public void select(final Individual <?, ?>[] pop , final Individual <?, ?>[]

mate , final Random r) {

Arrays.sort(pop);

System.arraycopy(pop , 0, mate , 0, mate.length);

}

}
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Population Treatment

❼ Three different ways of population treatment

1 Generational: only the offspring of a generation survive
2 steady-state: offspring and older generations compete
3 Elitism: Either steady-state OR generationals PLUS the best solutions

survive always
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Crossover

❼ Genetic Algorithms: crossover is a binary search operation

❼ Idea:
❼ two individuals have been selected (as parents)
❼ thus, we can assume that both have good features
❼ if the population is diverse, then the two selected individuals probably

have different features

❼ Goal:
❼ Combine these different (good) features. . .
❼ . . . and obtain a new, possible better candidate solution

❼ There exist different crossover operators

❼ Building Block Hypothesis: Good genes/features will
aggregate [16, 19, 20]
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Crossover: SPX
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Crossover: TPX
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Crossover: MPX
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Crossover: UX
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Single-Point Crossover

Listing: Single-Point Crossover

public class BitsBinarySPX implements IBinarySearchOperation <boolean[]> {

public boolean [] recombine(final boolean [] p1, final boolean [] p2, final

Random r) {

final boolean [] g;

final int x;

g = new boolean[p1.length ]; // create empty bit string

x = (1 + r.nextInt(g.length - 1)); // select crossover point

System.arraycopy(p1, 0, g, 0, x); // copy from first parent

System.arraycopy(p2, x, g, x, g.length - x);// copy from second parent

return g; // return new bit string

}

}
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Crossover: MPX

g ←− recombinationMPX(gp1, gp2, k)

begin
// find k crossover points from 0 to n− 1
CP ←− new empty list
for i←− 1 up to k do

repeat
cp←− {randomly from 0..n− 1}+ 1

until cp 6∈ CP

append cp to CP

sort the list CP

// perform the crossover by copying sub-strings

g ←− empty list
s←− 0
b←− true

gu ←− gp1
for i←− 0 up to k do

e←− CP [i]

if b then gu ←− gp1

else gu ←− gp2

append sub-range s..e− 1 of gu to g

b←− ¬b
s←− e

return g
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Crossover: Uniform Crossover (UX)

g ←− recombinationUXX(gp1, gp2, k)

Input: gp1, gp2 ∈ G: the parental genotypes (n bits)
Data: i: a counter variable
Output: g ∈ G: a new genotype (n bits)

begin
g ←− gp1
for i←− 0 up to n− 1 do

if {randomly from [0, 1]} < 0.5 then g[i]←− gp2[i]

return g
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Uniform Crossover

Listing: Uniform Crossover

public class BitsBinaryUX implements IBinarySearchOperation <boolean[]> {

public boolean [] recombine(final boolean [] p1, final boolean [] p2, final

Random r) {

final boolean [] g;

g = p1.clone(); // copy first parent string

for (int i = g.length; (--i) >= 0;) { // for all bits ...

if (r.nextBoolean ()) {

g[i] = p2[i];

} // take value from p2 with probability 0.5

}

return g; // return new bit string

}

}
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Mutation

❼ Mutation corresponds to the unary search operators we already know

❼ There exist different mutation operators

❼ Crossover reduces the diversity in the population:
❼ different genotypes are combined
❼ all genes of the new individual already existed in one of its parents
❼ no now genetic material is created
❼ crossover and selection alone may step by step make the population

converge to one single genotype

❼ Mutation: introduce some randomnes (in from of new genetic
material) into the population

❼ But: not too much, systems with too much and too powerful
mutation cannot converge or exploit local optima sufficiently
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Mutation: Single Bit
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Mutation: Multi Bit 1

Metaheuristic Optimization Thomas Weise 58/91



Mutation: Multi Bit 2
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Mutation: Complete
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Multi Bit Mutation

g ←− multiBitFlip(gp, η)

Input: gp: the parent individual
Output: g: the new random permutation of the numbers 0 . . . n− 1

begin
g ←− gp
repeat

i←− {randomly from 0..n− 1}
g[i]←− ¬g[i]

until {randomly from [0, 1]} < η

return g
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Single-Bit Flip Mutation

Listing: The Single-Bit Flip Mutation

public class BitsUnarySingleFlip implements IUnarySearchOperation <boolean[]>

{

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

g = p.clone(); // copy parent string

g[r.nextInt(g.length)] ^= true; // flip the bit

return g; // return new bit string

}

}
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Multi-Bit Flip Mutation

Listing: The Multi-Bit Flip Mutation

public class BitsUnaryFlip implements IUnarySearchOperation <boolean[]> {

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

g = p.clone(); // copy parent string

do { // at least once , but maybe more often

g[r.nextInt(g.length)] ^= true; // flip the bit

} while (r.nextBoolean ()); // maybe repeat (small chance for

large changes

return g; // return new bit string

}

}
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Flip a Fraction of the Bits

Listing: Flip a Fraction of the Bits

public class BitsUnaryFractionFlip implements

IUnarySearchOperation <boolean[]> {

/** the fraction to flip */

public final double frac;

public boolean [] mutate(final boolean [] p, final Random r) {

final boolean [] g;

int f;

g = p.clone(); // copy parent string

f = Math.max(1, Math.min(p.length , ((int) (p.length * this.frac))));

for (; (--f) >= 0;) {// go through the bits

g[r.nextInt(p.length)] ^= true; // flip

}

return g; // return new bit string

}

}
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❼ It was first stated by Holland back in 1975 [16, 18, 44]

❼ One of the ideas behind GAs and its binary search operator crossover
was:

❼ good features of the phenotype
❼ there may be different good features, encoded by different parts of the

genotypes
❼ these different good parts may be in different individuals

❼ Interesting “parts” of a genotype are described with blueprints
(masks, schemas)

❼ the Schema Theorem roughly estimates how such schemas multiply,
depending on their average fitness

❼ It tries to answer the question: “How and why does a GA work?”
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P (select(p)) =
f(p.x)

∑

∀p′∈pop f(p
′.x)

(3)

❼ But we do not look at a single individual p ∈ (pop ∩H), we look at
all the individuals in population pop that fit to schema H
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∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
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Metaheuristic Optimization Thomas Weise 70/91



Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
population2:

ps ∗ f(pop) =
∑

∀p′∈pop

f(p′.x) |pop ∩H| ∗ f(pop ∩H) =
∑

∀p∈(pop∩H)

f(p.x)

(6)

2|A| is the set size of A, the number of elements in A.
Metaheuristic Optimization Thomas Weise 70/91



Schema Theorem: Selection + Mean Fitness

P (select(H)) =

∑

∀p∈(pop∩H) f(p.x)
∑

∀p′∈pop f(p
′.x)

(5)

❼ Consider the mean fitness f(pop) of all individuals in the population
and the mean fitness f(pop ∩H) of all instances of H in the
population:

ps ∗ f(pop) =
∑

∀p′∈pop
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∑
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❼ Now we put this into the first equation:
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❼ . . . without including the influence of crossover and mutation!

❼ Both crossover and mutation may change the genetic material

❼ If the genetic material is changed, an offspring of a schema instance
may not be a schema instance!

❼ ξ be the probability that an instance of H is destroyed during
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order(m)
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❼ ξ be the probability that an instance of H is destroyed during
reproduction, so we get:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)

f(popt)
(1− ξ)

❼ For either-mutation-or-crossover-GAs, we get:

ξ ≤ ξc ∗ cr + ξm ∗mr = cr
δ(m)

n− 1
+mr

order(m)

n

❼ Hence:

E(|popt+1 ∩H|) =
|popt ∩H| ∗ f(popt ∩H)
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Schema Theorem

❼ If the relation between f(popt ∩H) and f(popt) remains constant
and positive over multiple generations, we have exponential growth of
number of schema instances, but

1 if number of instances of H increase, f(pop) increases too
2 population is finite
3 actually, only f(popt ∩H) is not known (samples of H), not f(H)

=⇒ new instances of H may actually be very bad
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❼ Building Block Hypothesis: Good genes will aggregate [16, 19, 20]

❼ If there exist some low-order, low-defining length schemata with
above-average fitness. . .

❼ . . . these schemata are combined step by step by the Genetic
Algorithm in order to form larger and better strings.

❼ No proof for this exists so far!

❼ Consider the criticism of Schema Theorem
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❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
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Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,

❼

❼

Metaheuristic Optimization Thomas Weise 78/91



Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼

❼

Metaheuristic Optimization Thomas Weise 78/91



Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼ genes with similar alleles remain, different alleles are “randomized”

❼

Metaheuristic Optimization Thomas Weise 78/91



Alternative Hypothesis

❼ Alternative Hypothesis [45, 46]: Genetic Repair & Similarity Extraction
by Beyer [46]

❼ Assume uniform crossover (UX)

1 If a gene has the same allele in both parents, it will be inherited
2 Otherwise, one parent has allele 1 and the other has 0 in the gene, . . .
3 . . . i.e., , the allele in the child will be 0 with 50% chance or 1 with

50% chance,
4 i.e., effectively be “randomized”

❼ genes with similar alleles remain, different alleles are “randomized”

❼ useful gene sequences which step-by-step are built by mutation

Metaheuristic Optimization Thomas Weise 78/91



Section Outline

1 Introduction

2 Evolution

3 Genetic Algorithm

4 Selection

5 Crossover

6 Mutation

7 Schema Theorem

8 Outlook & Summary
Metaheuristic Optimization Thomas Weise 79/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼ Why do we need a population? Why can’t we use a probabilistic model
instead? (EDAs) [69–72]

❼

Metaheuristic Optimization Thomas Weise 80/91



Extension to Evolutionary Algorithms

❼ Evolutionary Algorithms (EAs) are the generalization of Genetic
Algorithms to different search spaces and problem types [47–55]

❼ They are the most successful branch of metaheuristic optimization

❼ Examples:
❼ Strings in GAs do not need to have a fixed length. Why not using

variable-length strings? [47]

❼ Why bit strings? Why not permutations?
❼ Why not vector of real numbers? (ES) [35–41, 47]

❼ Search space does not need to be strings. Why not tree data
structures? (GP) [47, 56–63]

❼ Why a single objective function? Why not multiple? (MOEAs) [64–66]

❼ Why is recombination binary? Why not ternary? (DE) [67, 68]

❼ Why do we need a population? Why can’t we use a probabilistic model
instead? (EDAs) [69–72]

❼ Why not including a local search (such as Hill Climbers) to refine the
results? (MAs) [73, 74]

Metaheuristic Optimization Thomas Weise 80/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼ Schema theorem

❼

Metaheuristic Optimization Thomas Weise 81/91



Summary

❼ Genetic Algorithms are population-based metaheuristics inspired by
natural evolution

❼ They proceed in a cycle of GPM, evaluation, selection, and
reproduction

❼ Originally: bit-string based search spaces

❼ Different selection methods: Tournament better than Roulette-Wheel

❼ Crossover: different algorithms

❼ Mutation: Multi-point is good

❼ Schema theorem

❼ Many extensions

Metaheuristic Optimization Thomas Weise 81/91



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 82/91

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

Metaheuristic Optimization Thomas Weise 83/91



Bibliography I

1. Charles Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the
Struggle for Life. London, UK: John Murray, 6th edition, November 24, 1859. URL
http://www.gutenberg.org/etext/1228.

2. Nils Aaall Barricelli. Esempi numerici di processi di evoluzione. Methodos, 6(21–22):45–68, 1954.
3. Nils Aaall Barricelli. Symbiogenetic evolution processes realized by artificial methods. Methodos, 9(35–36):143–182, 1957.
4. Nils Aaall Barricelli. Numerical testing of evolution theories. part i. theroetical introduction and basic tests. Acta

Biotheoretica, 16(1/2):69–98, March 1962. doi: 10.1007/BF01556771. Received: 27 November 1961.
5. Nils Aaall Barricelli. Numerical testing of evolution theories. part ii. preliminary tests of performance. symbiogenesis and

terrestrial life. Acta Biotheoretica, 16(3/4):99–126, September 1963. doi: 10.1007/BF01556602. Received: 27
November 1961.

6. Alex S. Fraser. Simulation of genetic systems by automatic digital computers. i. introduction. Australian Journal of
Biological Science (AJBS), 10:484–491, 1957.

7. Alex S. Fraser. Simulation of genetic systems by automatic digital computers. ii. effects of linkage or rates of advance
under selection. Australian Journal of Biological Science (AJBS), 10:484–491, 1957.

8. David B. Fogel. In memoriam – alex s. fraser. Evolutionary Computation, 6(5):429–430, October 2002. doi:
10.1109/TEVC.2002.805212.

9. Hans J. Bremermann. Optimization through evolution and recombination. In Marshall C. Yovits, George T. Jacobi, and
Gordon D. Goldstein, editors, Self-Organizing Systems (Proceedings of the conference sponsored by the Information
Systems Branch of the Office of Naval Research and the Armour Research Foundation of the Illinois Institute of
Technology.), pages 93–103, Chicago, IL, USA, May 22–24, 1962. Washington, DC, USA: Spartan Books. URL
http://holtz.org/Library/Natural%20Science/Physics/.

10. Woodrow “Woody” Wilson Bledsoe. Lethally dependent genes using instant selection. Technical Report PRI 1, Palo Alto,
CA, USA: Panoramic Research, Inc., 1961.

11. Woodrow “Woody” Wilson Bledsoe. The use of biological concepts in the analytical study of systems. Technical Report
PRI 2, Palo Alto, CA, USA: Panoramic Research, Inc., 1961. Presented at ORSA-TIMS National Meeting, San Francisco,
California, November 10, 1961.

12. Woodrow “Woody” Wilson Bledsoe. An analysis of genetic populations. Technical report, Palo Alto, CA, USA: Panoramic
Research, Inc., 1962.

13. Woodrow “Woody” Wilson Bledsoe. The evolutionary method in hill climbing: Convergence rates. Technical report, Palo
Alto, CA, USA: Panoramic Research, Inc., 1962.

Metaheuristic Optimization Thomas Weise 84/91

http://www.gutenberg.org/etext/1228
http://holtz.org/Library/Natural%20Science/Physics/


Bibliography II

14. John Henry Holland. Outline for a logical theory of adaptive systems. Journal of the Association for Computing Machinery
(JACM), 9(3):297–314. doi: 10.1145/321127.321128.

15. John Henry Holland. Adaptive plans optimal for payoff-only environments. In Proceedings of the Second Hawaii
International Conference on System Sciences (HICSS’69), pages 917–920, Honolulu, HI, USA: University of Hawaii at
Manoa, January 22–24, 1969. Amsterdam, The Netherlands: North-Holland Scientific Publishers Ltd. DTIC Accession
Number: AD0688839.

16. John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. Ann Arbor, MI, USA: University of Michigan Press, 1975. ISBN 0-472-08460-7 and
978-0-472-08460-9. URL http://books.google.de/books?id=JE5RAAAAMAAJ.

17. John Henry Holland. Nonlinear environments permitting efficient adaptation. In Julius T. Tou, editor, Proceedings of the
Symposium on Computer and Information Sciences II, pages 147–164, Columbus, OH, USA, August 22–24, 1966. London,
New York: Academic Press.

18. Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Ann Arbor, MI,
USA: University of Michigan, August 1975. URL http://cs.gmu.edu/~eclab/kdj_thesis.html.

19. David Edward Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0-201-15767-5 and 978-0-201-15767-3. URL
http://books.google.de/books?id=2IIJAAAACAAJ.

20. Melanie Mitchell, Stephanie Forrest, and John Henry Holland. The royal road for genetic algorithms: Fitness landscapes
and ga performance. In Francisco J. Varela and Paul Bourgine, editors, Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference on Artificial Life (Actes de la Première Conférence Européenne sur la Vie
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