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Introduction

❼ There are many optimization algorithms

❼ For solving an optimization problem, we want to use the algorithm
most suitable for it.

❼ What does this mean?
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❼ Results can be different for each run!
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Performance Indicators

❼ Two key parameter [1–3]:

1 Solution quality reached after a certain runtime
2 Runtime to reach a certain solution quality

❼ Measure data samples A containing the results from multiple runs
and estimate key parameters.
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Absolute Runtime

Measure the (absolute) consumed runtime of the algorithm in ms

❼ Advantages:
❼ Results in many works reported in this format
❼ A quantity that makes physical sense
❼ Includes all “hidden complexities” of algorithm

❼ Disadvantages:
❼ Strongly machine dependent
❼ Granularity of about 10ms: many things seem to happen at the same

time
❼ Can be biased by “outside effects”, e.g., OS, scheduling, other

processes, I/O, swapping, . . .
❼ Inherently incomparable

❼ Hardware, software, OS, etc. all have nothing to do with the
optimization algorithm itself and are relevant only in a specific
application. . .
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Function Evaluations: FEs

Measure the number of fully constructed and tested candidate solutions

❼ Advantages:
❼ Results in many works reported in this format (or FEss can be deduced)
❼ Machine-independent measure
❼ Cannot be influenced by “outside effects”
❼ In many optimization problems, computing the objective value is the

most time consuming task

❼ Disadvantages:
❼ No clear relationship to real runtime
❼ Does not contain “hidden complexities” of algorithm
❼ 1 FE: very different costs in different situations!

❼ Relevant for comparing algorithms, but not so much for the practical
application
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Which Indicator is better?

❼ Number FEs needed to reach a certain objective function value

❼ Prefered by Hansen et al. [2]:
❼ Measures a time needed to reach a target function value ⇒ “Algorithm

A is two/ten/hundred times faster than Algorithm B in solving this
problem”

❼ Benchmark Perspective: No interpretable meaning to the fact that
Algorithm A reaches a function value that is two/ten/hundred times
smaller than the one reached by Algorithm B
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Which Indicator is better?

❼ Best objective function value reached after a certain number of FEs

❼ Prefered by many benchmark suites such as [4].

❼ Practice Perspective: Best results achievable with given time budget
wins.

❼ This perspective maybe less suitable for benchmarking, but surely
true in practice.
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Key Parameters

❼ No official consesus on which view is “better”.

❼ This also strongly depends on the situation.

❼ Best approach: Evaluate algorithm according to both methods.
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Determining Target Values

❼ How to determine the right maximum FEs or target function values?

1 From studies in literature regarding similar or the same problem.
2 From experience.
3 From prior, small-scale experiments.
4 Based on known lower bounds
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Important Distinction

❼ Crucial Difference: distribution and sample

❼ A sample is what we measure (10 throws, mean result 4)

❼ A distribution is the asymptotic result of the ideal process
(Expected value: 3.5)

❼ Statistical parameters of the distribution can be estimated from a
sample

❼ Example: Dice Throw

❼ Never foget: All measured parameters are just estimates.
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Arithmetic Mean

Definition (Arithmetic Mean)

The arithmetic mean mean(A) is an estimate of the expected value of a
data sample A = (a1, a2, . . . , an). It is computed as the sum of all n
elements ai in the sample data A divided by the total number of values.

mean(A) =

∑

∀a∈A a

n
=

1

n

n−1
∑

i=0

ai
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Median

Definition (Median)

The median med(X) is the value right in the middle of a sample or
distribution, dividing it into two equal halves.

P (X ≤ med(X)) ≥ 1

2
∧ P (X ≥ med(X)) ≥ 1

2
(1)

❼
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Median

Definition (Median)

The median med(X) is the value right in the middle of a sample or
distribution, dividing it into two equal halves.

P (X ≤ med(X)) ≥ 1

2
∧ P (X ≥ med(X)) ≥ 1

2
(1)

❼ The probability of drawing an element less than or equal to med(X)
is 50%

❼ The probability of drawing an element greater than or equal to
med(X) is 50%

❼ For a sorted data sample A = (a1, a2, . . . , an) of n elements the
median med(A) can be estimated as:

med(A) =

{

an−1
2

+1
if n is odd

1

2

(

an
2
+ an

2
+1

)

otherwise
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Example for Data Samples

❼ Two sets of data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 10008
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4 B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 10008
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Arithmetic Mean: Example

❼ Two data samples A and B with na = nb = 19 values.

mean(A) =
1

19

19
∑

i=1

ai =
133

19
= 7 mean(b) =

1

19

19
∑

i=1

bi =
10 127

19
= 533
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Median: Example

❼ Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14) ⇒ med(A) = 6

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008) ⇒ med(B) = 6

1 2 3 4 5 7 8 9 10 11 12 13 14 10008

1

2

3

4 B

1 2 3 4 5 8 9 10 11 12 13 14 10008

1
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4 A

7

outlier

6

6
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Mean vs. Median

❼ When describing a random process, we should always use the median
instead of the mean. [5–8]
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Mean vs. Median

❼ When describing a random process, we should always use the median
instead of the mean. [5–8], because

1 the median is more robust towards outliers,
2 the mean is useful (only) for symmetric distributions and badly

represents skewed distributions.

❼ The median is the first statistic we should take a look at!
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Standard Deviation

Definition (Standard Deviation)

The statistical estimate stddev(A) of the standard deviation of a data
sample A = (a1, a2, . . . , an) is the square root of the estimated variance
var(A).

var(A) =
1

n− 1

n−1
∑

i=0

(ai −mean(A))2

stddev(A) =
√

var(A)
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Quantiles

Definition (Quantile)

The q-quantiles divide a sorted data sample A = (a1, a2, . . . , an) into q
parts Ti which contain the same amounts of elements

❼
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t =
k ∗ n
q
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Definition (Quantile)

The q-quantiles divide a sorted data sample A = (a1, a2, . . . , an) into q
parts Ti which contain the same amounts of elements (i.e., quantiles are a
generalized median).
The kth q-quantile of A, i.e., quantilekq (A), can be estimated as follows:

t =
k ∗ n
q

quantilekq (A) =

{

1

2
(at + at+1) if t is integer

a⌈t⌉ otherwise

❼ The quantile12(A) is the median of A

❼ 4-quantiles are called quartiles.
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Standard Deviation: Example

❼ Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

mean(A) = 7

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

mean(B) = 533
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mean(B) = 533

var(A) =
1

19− 1

19
∑

i=1

(ai −mean(a))2 =
198

18
= 11

var(B) =
1

19− 1

19
∑

i=1

(bi −mean(b))2 =
94 763 306

18
≈ 5 264 628.1

stddev(A) =
√

var(A) =
√
11 ≈ 3.316 624 79

stddev(B) =
√

var(B) =

√

94 763 306

18
≈ 2 294.477 743
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Quantiles: Example

❼ Two data samples A and B with na = nb = 19 values.

A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10 008)
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Further Example
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measured result objective value
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re
d arithmetic mean mean(A)

median med(A)
mean(A) - stddev(A)

mean(A) + stddev(A)

10% quantile = quantile1
10

90% quantile = quantile9
10

mean - stddev is outside
the measured data range!

Standard deviation here
is not useful here to
represent span of data.



Robust Statistics

❼ Robust statistic measures are:

1 Median
2 Quantiles

❼
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Robust Statistics

❼ Robust statistic measures are:

1 Median
2 Quantiles

❼ Only if necessary, compute the estimates of the

1 Arithmetic Mean
2 Standard Deviation
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Introduction

❼ We can now e.g., perform 20 runs each with two different
optimization algorithms on one problem and compute the median of
one of the two performance measures.
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Introduction

❼ We can now e.g., perform 20 runs each with two different
optimization algorithms on one problem and compute the median of
one of the two performance measures.

❼ Likely, they will be different.

❼ For one of the two algorithms, the results will be better.

❼ What does this mean?

❼ It means that one of the two algorithms is better with a certain
probability

❼ If we say “A is better than B”, we have a certain chance α to be
wrong.

❼ The statement “A is better than B” makes only sense if we can give
an upper bound α for the error probability!
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Statistical Tests

❼ Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and
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Statistical Tests

❼ Compare two data samples A = (a1, a2, . . . ) and B = (b1, b2, . . . ) and

❼ Get a result (e.g., “The median of A is bigger than the median of
B”) together with an error probability p that the conclusion is wrong.

❼ If p is less than a significance level (upper bound) α, we can accept
the the conclusion.

❼ Otherwise, the observation is not significant.
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Underlying General Idea

❼ We observe some ongoing process P and make some kind of
observation O.
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Underlying General Idea

❼ We observe some ongoing process P and make some kind of
observation O.

❼ Question: Can we say: “The observation O is a good approximation
of what process P does”?

❼ Question: How likely is this observation O in the case that it is NOT
an approximation of P.

❼ In other words: What is the probability that O occurs if it does not
represent the statistical distribution of the sampled process P?

Metaheuristic Optimization Thomas Weise 35/74



Example for Underlying Idea

❼ Coin flip game: We flip a coin. If it is heads, I give you 1 EUR, if it is
tails, you give me 1 EUR.

❼
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❼ Assumption: I cheat. (alternative hypothesis H1)

❼ It is impossible to compute my winning probability if I cheated. . .

❼ Counter-Assumption: I did not cheat. (null hypothesis H0)

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

Metaheuristic Optimization Thomas Weise 36/74



Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 37/74



Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼ In this case, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 37/74



Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼ In this case, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

❼ Flipping a coin n times is a Bernoulli Process [9–11]

❼

❼

Metaheuristic Optimization Thomas Weise 37/74



Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼ In this case, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

❼ Flipping a coin n times is a Bernoulli Process [9–11]

❼ The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
(

n

k

)

0.5k ∗ (1− 0.5)n−k =

(

n

k

)

0.5k ∗ 0.5n−k =

(

n

k

)

1

2n

❼

Metaheuristic Optimization Thomas Weise 37/74



Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?
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q = P (head) = P (tail) = 0.5.

❼ Flipping a coin n times is a Bernoulli Process [9–11]

❼ The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:

P (k|n) =
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0.5k ∗ (1− 0.5)n−k =

(

n
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)

0.5k ∗ 0.5n−k =

(
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k

)

1

2n

❼ For winning at least z = 180 times, we need to compute:1

P (k ≥ z|n) =

n
∑

i=z

P (i|n)

1For the large n and k computation, I used the websites [12, 13].
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❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼ In this case, the probabilities for heads and tails are
q = P (head) = P (tail) = 0.5.

❼ Flipping a coin n times is a Bernoulli Process [9–11]

❼ The probability P (k|n) to flip k ∈ 0..n times heads (or tails) is thus:
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2200

200
∑

i=180

(

200

i

)

≈ 1.8125 ➲ 1027

1.6069 ➲ 1063

≈ 1.279 ➲ 10−33
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Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?
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Example for Underlying Idea

❼ Question: How likely is it that I win at least 180 times if I did not
cheat?

❼ If the coin was an ideal coin, the chance that I win at least 180 out of
200 times is about 1 ➲ 10−33.

❼ If you claim that I cheat, your chance to be wrong is about 1 ➲ 10−33.

❼ Thus, if we cannot accept a chance p to be wrong higher than a
significance level α = 1%, we can still say:

The observation is significant, I did likely cheat.
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Statistical Tests: General Idea

❼ Compare two datasets A = (a1, a2, . . . ) and B = (b1, b2, . . . )

❼ sampled from two distributions DA and DB

❼ according to some statistical measure γ (e.g., mean, median, . . . ).

❼ We observe that the (sample-based estimates of the) statistical
measures are different: γ(A) 6= γ(B).

❼ Question: If the observed difference in terms of γ representative for
the real difference of DA and DB in terms of γ?

❼ In other words: How likely am I to observe an experimental outcome
at least as extreme as what I saw if actually DA = DB (null
hypothesis H0)?
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Statistical Tests: General Idea

❼ Assumption: Observed difference in γ(A) and γ(B) are significant,
i.e., likely to occur (H1).
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Statistical Tests: General Idea

❼ Assumption: Observed difference in γ(A) and γ(B) are significant,
i.e., likely to occur (H1).

❼ Counter-Assumption: Observed differences are result of random fluke
(H0). . . . DA = DB (and hence γ(DA) = γ(DB))

❼ Compute the probability p of making an observation at least as
extreme as γ(A) or γ(B) if H0 is true

❼ If p is less than a significance level α (usually 1% or 2%), we can
reject H0 and accept H1.

❼ In this case, the optimization algorithm which produced the better set
of key parameter measurements is significantly better.

❼ Otherwise, there is no difference
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A More Specific Example for Tests

❼ Let’s do a small, simple example:

A = (2, 5, 6, 7, 9, 10)

B = (1, 3, 4, 8)
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❼ Question: Is the difference between mean(a) and mean(b) significant
at α = 2%?

❼ Null Hypothesis H0: A and B come from the same process, the
difference is due to the random character of sampling

❼ Idea: If A and B are from the same distribution, then
1 We actually have one big sample O = A∪B from the same distribution
2 The observed division into A and B occured by accident or chance!
3 Any division C into two sets with 4 and 6 elements has the same

probability

O = A ∪B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
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Listing: Small tester program. . .

public class EnumerateAtLeastAsExtremeScenarios {

public static void main(String [] args) {

int meanLowerOrEqualTo4 = 0; //how often did we find a mean <= 4

int totalCombinations = 0; //total number of tested combinations

for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10

for (int j = (i - 1); j > 0; j--) { // we can conveniently iterate

for (int k = (j - 1); k > 0; k--) { // over all 4-element combos

for (int l = (k - 1); l > 0; l--) { // with 4 such nested loops

if (((i + j + k + l) / 4.0) <= 4) { // check for the extreme cases

meanLowerOrEqualTo4 ++; } // count the extreme case

totalCombinations ++; // add up combos , to verify

} } } }

System.out.println(meanLowerOrEqualTo4 + " " + totalCombinations);

}

}
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❼ Any division C into two sets with 4 and 6 elements has the same
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❼ |O| = 10

❼ There are
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❼ If H0 holds, all have the same probability

❼ There are 27 such combinations with a mean of less or equal 4.

❼ The probability p to observe a constallation at least as extreme as A
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p =
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A More Specific Example

❼ Extreme cases into the other direction are the same:
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❼ So we could have also done the test the other way around with the
same result!
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A More Specific Example
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p =
#cases C : mean(c) ≤ mean(b)

#all cases
=

27
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=

9
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≈ 0.1286

❼ If we claim that A and B are from distributions with different
means. . .

❼ . . . we are wrong with probability p ≈ 0.13

❼ At a significance level of α = 2%, the means of A and B are not
significantly different! (2% < 0.13)

❼ This was an example on how statistical tests work APPROXIMATELY

❼ The method here is only feasible for small sample sets, real tests are
more sophisticated
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❼ The distribution of the data we measure is unknown. . .
❼ . . . and usually not normal, see further example on statistical measures.
❼ The condition for using such tests cannot be met (known distribution)
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Statistical Tests: Types

❼ Two types of tests:

1 Parametric Tests
2 Non-Parametric Tests

❼ Make no assumption about the distribution from which the data was
sampled.

❼ Examples [5]: Mann-Whitney U Test [15–18], Fisher’s Exact Test [19],
Sign Test [16, 20], Randomization Test [21–24],
Wilcoxon’s Signed Rank Test [25].

❼ These tests are more robust (less assumptions)
❼ This is the kind of test we want to use!
❼ They work similar to the previous test example, but with larger sample

sizes
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Compare N ≥ 2 Algorithms

❼ For comparing N ≥ 2 algorithms, we can compare any two algorithms
with each other

❼ N Algorithms ⇒ k = N(N − 1)/2 statistical tests

❼ k tests and each with error proability α =⇒ total probability E to
make error E = 1− ((1− α)k)

❼ Correction needed: Bonferroni correction [26] or (better) post-hoc
methods [27, 28]

❼ Idea of Bonferroni correction: Use α′ = α/k as significance level
instead of α, then the overall probability E to make an error will
remain E ≤ α.
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Compare N ≥ 2 Algorithms

❼ So now we can compare N datasets.

❼ Most common representation of results: Table

P1 P2 P3 P4 P5 P6 P7 P8

P1 + + + + + 0 +

P2 0 + 0 0 - +

P3 + - 0 - 0

P4 - - - -

P5 0 - 0

P6 - +

P7 +

❼ + in the ith row and jth column means that process Pi has significantly better
outputs than process Pj

❼ - stands for significantly worse outputs

❼ 0 symbolizes that no significant difference could be detected
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The question of termination
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Problem” [29–31]

❼ Problem: Papers often use a different termination criterion

❼ Anytime Algorithms [32]: Always have approximate solution, refine it
iteratively

❼ One measure point per run or instance does not tell the whole story!

❼

❼

Metaheuristic Optimization Thomas Weise 50/74



The question of termination

❼ Literature usually reports tuples “(instance, result, runtime)”
❼ Example: “8th DIMACS Challenge: The Traveling Salesman

Problem” [29–31]

❼ Problem: Papers often use a different termination criterion

❼ Anytime Algorithms [32]: Always have approximate solution, refine it
iteratively

❼ One measure point per run or instance does not tell the whole story!

❼ Using statistical tests cannot solve this issue (still: at one point in
time).

❼

Metaheuristic Optimization Thomas Weise 50/74



The question of termination

❼ Literature usually reports tuples “(instance, result, runtime)”
❼ Example: “8th DIMACS Challenge: The Traveling Salesman

Problem” [29–31]

❼ Problem: Papers often use a different termination criterion

❼ Anytime Algorithms [32]: Always have approximate solution, refine it
iteratively

❼ One measure point per run or instance does not tell the whole story!

❼ Using statistical tests cannot solve this issue (still: at one point in
time).

❼ We Should have the “whole curves”!

Metaheuristic Optimization Thomas Weise 50/74



The question of termination

❼ Literature usually reports tuples “(instance, result, runtime)”
❼ Example: “8th DIMACS Challenge: The Traveling Salesman

Problem” [29–31]

❼ Problem: Papers often use a different termination criterion

❼ Anytime Algorithms [32]: Always have approximate solution, refine it
iteratively

❼ One measure point per run or instance does not tell the whole story!

❼ Using statistical tests cannot solve this issue (still: at one point in
time).

❼ We Should have the “whole curves”! . . . ideally median curves over
several runs!
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Progress Diagrams

❼ Plot the median of the best objective value reached over time, over
all runs, on a given benchmark instance or aggregated over several
instances

❼ The smaller the value, the better
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Benchmarking

❼ Don’t apply algorithms to just a single problem instance!

❼ Apply algorithm to multiple different instances.

❼ Apply algorithm to different problems.

❼ Best: Use existing benchmark suite ⇒ results can easily be compared
with literature.

❼ Of course, results cannot simply be “added”

1 Evaluation by discussion
2 Evaluation with value-neutral point system, e.g., the point system of

Formula 1 car racing
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Benchmark Suites
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❼ Bit Strings
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Benchmark Suites

❼ Combinatorial Problems
❼ Traveling Salesman Problem [33–36]

❼ CARPLib [37] (Capacitated Arc Routing Problems)
❼ Bin Packing [34–36, 38]

❼ SATLIB [39] (Satisfiability Problems)
❼ Vehicle routing Problem [40–42]

❼ general combinatorial Operations Research problems [43]

❼ Bit Strings

❼ Numerical Problems

❼ Multi-Objective Optimization

❼ Dynamic Optimization

❼ Data Mining

❼ Genetic Programming
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings
❼ NK-Landscapes [44–49] and similar [50–52]

❼ Royal Road [53–62]

❼ Tunable Benchmark Model [63]

❼ Long Path Problems [64, 65]

❼ Spin-Glass Models [66]

❼ BinInt Problem [67]

❼ OneMax Problem [68–74]

❼ Numerical Problems

❼ Multi-Objective Optimization

❼ Dynamic Optimization

❼ Data Mining

❼ Genetic Programming
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings

❼ Numerical Problems
❼ BBOB [2, 3] (Black-Box Continuous Optimization)
❼ CEC SS on Real-Valued Optimization [75, 76]

❼ CEC SS on Large-Scale Optimization [4, 77]

❼ Multi-Objective Optimization

❼ Dynamic Optimization

❼ Data Mining
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings

❼ Numerical Problems

❼ Multi-Objective Optimization
❼ CEC SS Multi-Objective Optimization [78, 79]

❼ CEC SS Constraint Optimization [80]

❼ Problems by Deb et al. [81]

❼ Dynamic Optimization

❼ Data Mining

❼ Genetic Programming
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings

❼ Numerical Problems

❼ Multi-Objective Optimization

❼ Dynamic Optimization
❼ Moving Peaks Benchmark [82] (real-valued)

❼ Data Mining

❼ Genetic Programming
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings

❼ Numerical Problems

❼ Multi-Objective Optimization

❼ Dynamic Optimization

❼ Data Mining
❼ UCI Machine Learning Repository [83] contains e.g.,
❼ Iris Dataset [84, 85]

❼ Wisconsin Breast Cancer Dataset [86]

❼ Heart Disease Dataset [87]

❼ Genetic Programming
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Benchmark Suites

❼ Combinatorial Problems

❼ Bit Strings

❼ Numerical Problems

❼ Multi-Objective Optimization

❼ Dynamic Optimization

❼ Data Mining

❼ Genetic Programming
❼ Artificial Ant [88–90],
❼ Lawn Mower, Symbolic Regression [90]

❼ Greatest Common Divisor Problem [5, 91]

❼ Royal Tree Problem [92]

❼ . . . and others [93]
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Summary

❼ The optimization algorithms we consider in this lecture are
randomized.

❼ Comparing them must be done in a statistical way using data from
multiple runs

❼ Two key performance indicators:

1 best result after fixed number of FEs/runtime
2 number of FEs/runtime needed to get certain result

❼ For every single algorithm/configuration, compute:

1 median of key performance indicators
2 quartiles or top/bottom 1% quantile
3 don’t trust arithmetic mean or standard deviation

❼ Do not only collect one data sample per run, try to plot progress
curves

❼ For given problem class: Look for well-known benchmarks!
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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28. Salvador Garćıa and Francisco Herrera Triguero. An extension on “statistical comparisons of classifiers over multiple data
sets” for all pairwise comparisons. Journal of Machine Learning Research (JMLR), 9:2677–2694, December 2008. URL
http://jmlr.csail.mit.edu/papers/volume9/garcia08a/garcia08a.pdf.

29. David Stifler Johnson and Lyle A. McGeoch. 8th dimacs implementation challenge: The traveling salesman problem,
December 12, 2008. URL http://www2.research.att.com/~dsj/chtsp/.

30. David Stifler Johnson and Lyle A. McGeoch. Experimental analysis of heuristics for the stsp. In Gregory Z. Gutin and
Abraham P. Punnen, editors, The Traveling Salesman Problem and its Variations, volume 12 of Combinatorial
Optimization, chapter 9, pages 369–443. Norwell, MA, USA: Kluwer Academic Publishers, 2002. doi:
10.1007/0-306-48213-4 9. URL http://www2.research.att.com/~dsj/papers/stspchap.pdf.

31. David Stifler Johnson, Gregory Z. Gutin, Lyle A. McGeoch, Anders Yeo, Weixiong Zhang, and Alexei Zverovitch.
Experimental analysis of heuristics for the atsp. In Gregory Z. Gutin and Abraham P. Punnen, editors, The Traveling
Salesman Problem and its Variations, volume 12 of Combinatorial Optimization, chapter 10, pages 445–487. Norwell, MA,
USA: Kluwer Academic Publishers, 2002. doi: 10.1007/0-306-48213-4 10. URL
http://www2.research.att.com/~dsj/papers/atspchap.pdf.

32. Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking:
Experimental setup. Technical report, Orsay, France: Université Paris Sud, Institut National de Recherche en Informatique
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Standard Normal Distribution

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
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Appendix Outline

Mann-Whitney U Test

Metaheuristic Optimization Thomas Weise 71/74



Mann-Whitney U Test

❼ Mann-Whitney U Test [15–18]:

❼ Compares two datasets A = (a1, a2, . . . ) and B = (b1, b2, . . . ).

❼ There are na = |A| elements in A and nb = |B| elements in B.

❼ In total, there are n = na + nb elements.
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Example Data

a b

2 2
3 5
3 5
3 5
4 6
5 6

7
7

med(a) = 3 med(b) = 5.5

na = 6 nb = 8
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 The elements ai and bi are mixed together and sorted.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

Row a b
1 2
2 2
3 3
4 3
5 3
6 4
7 5
8 5
9 5

10 5
11 6
10 6
13 7
14 7

med(a) = 3 med(b) = 5.5

na = 6 nb = 8
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Mann-Whitney U Test

1 Mixing and sorting.

2 Each element receives a rank corresponding to its position in the list.

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Each element receives a rank corresponding to its position in the list.
Elements which have the same value receive the same rank:

ri = ri+1 = · · · = ri+m =
i+ (i+ 1) + · · ·+ (i+m)

m+ 1
=

m

2
+ i

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant

Metaheuristic Optimization Thomas Weise 74/74



Mann-Whitney U Test

Row a b Ranks ra Ranks rb

1 2 1.5
2 2 1.5
3 3 4.0
4 3 4.0
5 3 4.0
6 4 6.0
7 5 8.5
8 5 8.5
9 5 8.5

10 5 8.5
11 6 11.5
12 6 11.5
13 7 13.5
14 7 13.5

med(a) = 3 med(b) = 5.5

na = 6 nb = 8
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 The rank sums Ra and Rb are computed:

Ra =
∑

∀ai∈A

r(ai)

Rb =
∑

∀bi∈B

r(bi)

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 The rank sums Ra and Rb are computed:

Ra =
∑

∀ai∈A

r(ai)= 28

Rb =
∑

∀bi∈B

r(bi)= 77

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

Row a b Ranks ra Ranks rb

1 2 1.5
2 2 1.5
3 3 4.0
4 3 4.0
5 3 4.0
6 4 6.0
7 5 8.5
8 5 8.5
9 5 8.5

10 5 8.5
11 6 11.5
12 6 11.5
13 7 13.5
14 7 13.5

med(a) = 3 med(b) = 5.5 Ra = 28 Rb = 77

na = 6 nb = 8
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 The rank sums Ra and Rb are computed:

Ra =
∑

∀ai∈A

r(ai)= 28

Rb =
∑

∀bi∈B

r(bi)= 77

For these sums, the following always holds:

Ra +Rb =
n(n+ 1)

2

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}
6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 The rank sums Ra and Rb are computed:

Ra =
∑

∀ai∈A

r(ai)= 28

Rb =
∑

∀bi∈B

r(bi)= 77

For these sums, the following always holds:

Ra +Rb =
n(n+ 1)

2
⇒ 28 + 77 =

14 ∗ 15
2

= 105

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}
6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 The sample statistics are then given as:

Ua = Ra − na(na + 1)

2

Ub = Rb −
nb(nb + 1)

2

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 The sample statistics are then given as:

Ua = Ra − na(na + 1)

2
= 28− 21 = 7

Ub = Rb −
nb(nb + 1)

2
= 77− 36 = 41

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 The sample statistics are then given as:

Ua = Ra − na(na + 1)

2
= 28− 21 = 7

Ub = Rb −
nb(nb + 1)

2
= 77− 36 = 41

where the following always holds

Ua + Ub = nanb

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 The sample statistics are then given as:

Ua = Ra − na(na + 1)

2
= 28− 21 = 7

Ub = Rb −
nb(nb + 1)

2
= 77− 36 = 41

where the following always holds

Ua + Ub = nanb ⇒ 7 + 41 = 6 ∗ 8 = 48

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 The smaller of the two values is used as statistic U :

U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 The smaller of the two values is used as statistic U :

U = min{Ua, Ub}= min{7, 41} = 7

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 For the significance level α the critical Uα values can be computed for the
two-sided test as

Uα =
nanb

2
− z

(

1− α

2

)

√

nanb (na + nb + 1)

12

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 For the significance level α the critical Uα values can be computed for the
two-sided test as

Uα =
nanb

2
− z

(

1− α

2

)

√

nanb (na + nb + 1)

12
= 24− z

(

1− α

2

)√
60

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 For the significance level α the critical Uα values can be computed for the
two-sided test as

Uα =
nanb

2
− z

(

1− α

2

)

√

nanb (na + nb + 1)

12
= 24− z

(

1− α

2

)√
60

where z is the probit function, the inverse cumulative distribution function of the
standard normal distribution.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 For the significance level α the critical Uα values can be computed for the
two-sided test as

Uα =
nanb

2
− z

(

1− α

2

)

√

nanb (na + nb + 1)

12
= 24− z

(

1− α

2

)√
60

where z is the probit function, the inverse cumulative distribution function of the
standard normal distribution.
The values of z can be looked up in the Standard Normal Distribution table in the
appendix.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}
6 For the significance level α the critical Uα values can be computed for the

two-sided test as

Uα =
nanb

2
− z

(

1− α

2

)

√

nanb (na + nb + 1)

12
= 24− z

(

1− α

2

)√
60

where z is the probit function, the inverse cumulative distribution function of the
standard normal distribution.

The values of z can be looked up in the Standard Normal Distribution table in the

appendix.

❼ For α = 0.05 we get z
(

1− α
2

)

= z(0.975) ≈ 1.96
❼ For α = 0.01, we find z

(

1− α
2

)

= z(0.995) ≈ 2.575.

❼ Hence, U0.05 ≈ 24− 1.96
√
60 ≈ 8.82 and U0.01 ≈ 24− 2.575

√
60 ≈ 4.05.

7 U < Uα ⇒ diference between Ua and Ub significant
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 Compare U with Uα:
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Mann-Whitney U Test

1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub
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❼ The difference between Ua and Ub is significant at an error level α only if U
is smaller than Uα

❼ If U < Uα and Ua < Ub: A is from a distribution with a smaller median than
B (this is wrong with a probability of no more than α)

❼ If U < Uα and Ua > Ub: A is from a distribution with a larger median than
B (this is wrong with a probability of no more than α)

❼ If U ≥ Uα: If we make a statement about the relationship of A and B, the
chance to be wrong is greater than α. There is no significant difference
between A and B at level α.
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5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 ❼ Ua = 7 and Ub = 41, i.e., Ua < Ub

❼ U < U0.05 holds since 7 < 8.82 ⇒ We can state that the samples in A
tend to be significantly smaller than those in B (with a probability to
err of less than 5%).

❼ ¬(U < U0.01) since 7 > 4.05 ⇒ If we would say that A is different
from B, the probability to be wrong is more than 1%, i.e., at α = 0.01,
the difference between A and B is insignificant
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1 Mixing and sorting.

2 Ranking

3 Compute rank sums Ra, Rb.

4 Compute sample statistics Ua, Ub

5 Set U = min{Ua, Ub}

6 Compute critical Uα values.

7 U < Uα ⇒ diference between Ua and Ub significant
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