
Metaheuristic Optimization
8. Tabu Search

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 2/29

w
e
b
s
it
e

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 3/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼ A local optimum x⋆ is an optimum which is worse than the global
optimum x

⋆⋆ , i.e., f(x⋆) > f(x
⋆⋆) on minimimization problems.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼ A local optimum x⋆ is an optimum which is worse than the global
optimum x

⋆⋆ , i.e., f(x⋆) > f(x
⋆⋆) on minimimization problems.

❼ Hill climbers will get stuck at any optimum, because they will only
move from one solution to a better solution.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼ A local optimum x⋆ is an optimum which is worse than the global
optimum x

⋆⋆ , i.e., f(x⋆) > f(x
⋆⋆) on minimimization problems.

❼ Hill climbers will get stuck at any optimum, because they will only
move from one solution to a better solution.

❼ They are likely to converge to local optimum, i.e., may not give us
the globally optimal solution.

❼

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼ A local optimum x⋆ is an optimum which is worse than the global
optimum x

⋆⋆ , i.e., f(x⋆) > f(x
⋆⋆) on minimimization problems.

❼ Hill climbers will get stuck at any optimum, because they will only
move from one solution to a better solution.

❼ They are likely to converge to local optimum, i.e., may not give us
the globally optimal solution.

❼ Simulated Annealing can avoid this, because it sometimes
(proabilistically) also accepts worse candidate solutions.

❼

Metaheuristic Optimization Thomas Weise 4/29

Introduction

❼ An optimum is a solution which is better than all of its neighboring
solutions.

❼ A “neighboring solution” is a solution which can be reached with a
single application of a unary search operation.

❼ A local optimum x⋆ is an optimum which is worse than the global
optimum x

⋆⋆ , i.e., f(x⋆) > f(x
⋆⋆) on minimimization problems.

❼ Hill climbers will get stuck at any optimum, because they will only
move from one solution to a better solution.

❼ They are likely to converge to local optimum, i.e., may not give us
the globally optimal solution.

❼ Simulated Annealing can avoid this, because it sometimes
(proabilistically) also accepts worse candidate solutions.

❼ Tabu Search, introduced by Glover, Glover [1, 2], is another local search
which introduces another, similar approach.

Metaheuristic Optimization Thomas Weise 4/29

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 5/29

Move to Best Solution

❼ Simulated Annealing, in each step, applies the unary search operation
to create a (often randomly modified) copy of the current solution.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/29

Move to Best Solution

❼ Simulated Annealing, in each step, applies the unary search operation
to create a (often randomly modified) copy of the current solution.

❼ Tabu Search scans the whole neighborhood of the current solution
and picks the best neighboring solution as next solution.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 6/29

Move to Best Solution

❼ Simulated Annealing, in each step, applies the unary search operation
to create a (often randomly modified) copy of the current solution.

❼ Tabu Search scans the whole neighborhood of the current solution
and picks the best neighboring solution as next solution.

❼ It will pick this solution even if it is worse than the current solution.

❼

❼

Metaheuristic Optimization Thomas Weise 6/29

Move to Best Solution

❼ Simulated Annealing, in each step, applies the unary search operation
to create a (often randomly modified) copy of the current solution.

❼ Tabu Search scans the whole neighborhood of the current solution
and picks the best neighboring solution as next solution.

❼ It will pick this solution even if it is worse than the current solution.

❼ Problem: This can easily lead to cycles (if the current solution is a
local optimum, the search will go to a worse solution and then
immediately back to the previous one, the local optimum).

❼

Metaheuristic Optimization Thomas Weise 6/29

Move to Best Solution

❼ Simulated Annealing, in each step, applies the unary search operation
to create a (often randomly modified) copy of the current solution.

❼ Tabu Search scans the whole neighborhood of the current solution
and picks the best neighboring solution as next solution.

❼ It will pick this solution even if it is worse than the current solution.

❼ Problem: This can easily lead to cycles (if the current solution is a
local optimum, the search will go to a worse solution and then
immediately back to the previous one, the local optimum).

❼ Solution: Introduce a tabu criterion which forbids certain solutions to
be visited, to avoid re-visiting already seen solutions.

Metaheuristic Optimization Thomas Weise 6/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼ If we scan a single-bit-flip neighborhood in a MAX-SAT problem, we
simply may forbit the same variable from being flipped again.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼ If we scan a single-bit-flip neighborhood in a MAX-SAT problem, we
simply may forbit the same variable from being flipped again.

❼ More generally: If we reach a new solution pnew via search move move,
we may either forbit the inverse move move or any move touching the
same decision variables.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼ If we scan a single-bit-flip neighborhood in a MAX-SAT problem, we
simply may forbit the same variable from being flipped again.

❼ More generally: If we reach a new solution pnew via search move move,
we may either forbit the inverse move move or any move touching the
same decision variables.

❼ Store features of tt most recently visited solutions tt is called tabu

tenure or tabu list length).

❼

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼ If we scan a single-bit-flip neighborhood in a MAX-SAT problem, we
simply may forbit the same variable from being flipped again.

❼ More generally: If we reach a new solution pnew via search move move,
we may either forbit the inverse move move or any move touching the
same decision variables.

❼ Store features of tt most recently visited solutions tt is called tabu

tenure or tabu list length).

❼ Solutions with features from the tabu list are forbidden.

❼

Metaheuristic Optimization Thomas Weise 7/29

Tabu List

❼ The tabu list stores information about previously visited solutions in
order to avoid visiting them again.

❼ Usually does not store complete solutions, but only features of
solutions.

❼ These features often depend on the search moves:
❼ If we scan an single-edge-exchange neighborhood of a tour for the

Traveling Salesman Problem, we may simply forbid the removed edge
from being inserted again.

❼ If we scan a single-bit-flip neighborhood in a MAX-SAT problem, we
simply may forbit the same variable from being flipped again.

❼ More generally: If we reach a new solution pnew via search move move,
we may either forbit the inverse move move or any move touching the
same decision variables.

❼ Store features of tt most recently visited solutions tt is called tabu

tenure or tabu list length).

❼ Solutions with features from the tabu list are forbidden.

❼ Choice of tt has big influence on performance.

Metaheuristic Optimization Thomas Weise 7/29

Aspiration Criterion

❼ Tabu criterion may also prevent previously unseen solutions from
being explored.

❼

❼

Metaheuristic Optimization Thomas Weise 8/29

Aspiration Criterion

❼ Tabu criterion may also prevent previously unseen solutions from
being explored.

❼ Some of these might be better than the best solution we have found
so far

❼

Metaheuristic Optimization Thomas Weise 8/29

Aspiration Criterion

❼ Tabu criterion may also prevent previously unseen solutions from
being explored.

❼ Some of these might be better than the best solution we have found
so far, i.e., very interesting regardless whether they are tabu or not. . .

❼ Aspiration criteria: criteria that override the tabu criterion and allow
the search to move to a solution even if it is tabu.

Metaheuristic Optimization Thomas Weise 8/29

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We assume a simple Tabu Search
where

❼

❼

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We assume a simple Tabu Search
where

❼ search- and solution space are
the same (G = X)

❼

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We assume a simple Tabu Search
where

❼ search- and solution space are
the same (G = X) and

❼ where the tabu criterion is the
applied search move

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We assume a simple Tabu Search
where

❼ search- and solution space are
the same (G = X) and

❼ where the tabu criterion is the
applied search move and

❼ where the aspiration criterion
is that any solution better than
best currently known solution
pbest will always be accepted

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We start by creating the starting
point of our search (here directly in
form of candidate solution pcur.x).

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We start by creating the starting
point of our search (here directly in
form of candidate solution pcur.x).

❼ This could happen randomly or via
a simple logic (constructive
heuristic)

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We compute the objective value
f(pcur.x) of the initial solution and
remember it in variable pcur.y.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ The initial solution pcur is also the
best solution pbest we know so far.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ Initially, the tabu list tabu is empty,
everything is allowed.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ In every iteration, we first check the
termination criterion whether we
should quit.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We should also stop if all solutions
surrounding our current solution are
tabu and the aspiration criterion
does not hold for any, i.e., if there is
no next solution to move to.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ In each step, we first assume that
there is no solution pnew we can
move to from pcur.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We then scan the complete
neighborhood of pcur.

❼

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We then scan the complete
neighborhood of pcur.

❼ This neighborhood is defined by
possible search moves move that
can be applied to the current
candidate solution pcur.x (again,
here we assume that G = X).

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We then scan the complete
neighborhood of pcur.

❼ This neighborhood is defined by
possible search moves move that
can be applied to the current
candidate solution pcur.x (again,
here we assume that G = X).

❼ For example, if our candidate
solutions are strings of n bits, a
neighborhood could be any string
that can be reached by flipping a
single bit in pcur.x (and this
neighborhood would contain n

other solutions ptest.x).

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ We compute the objective value
f(ptest.x) of the initial solution and
remember it in variable ptest.y.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ ptest would be a candidate for the
next step of our search

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ ptest would be a candidate for the
next step of our search if and only if

1 the move move leading to it
from pcur is not tabu

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ ptest would be a candidate for the
next step of our search if and only if

1 the move move leading to it
from pcur is not tabu and

1 it is better than the
currently best acceptable
neighbor pnew

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ ptest would be a candidate for the
next step of our search if and only if

1 the move move leading to it
from pcur is not tabu and

1 it is better than the
currently best acceptable
neighbor pnew or

2 it is the first acceptable
neighbor.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ ptest would be a candidate for the
next step of our search if and only if

1 the move move leading to it
from pcur is not tabu and

1 it is better than the
currently best acceptable
neighbor pnew or

2 it is the first acceptable
neighbor.

2 or the aspiration criterion kicks
in, which here means that it is
better than the best solution
pbest we have ever seen.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ In this case, we

❼ remember it in variable pnew

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ In this case, we

❼ remember it in variable pnew
and

❼ store the move leading to it
(coming from pcur) in variable
moveb.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ After we have scanned the whole
neighborhood of pcur, we store the
best discovered acceptable solution
pnew in pcur. (This could also be
nothing ∅. . .)

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ If we actually found new acceptable
point pcur

❼

❼

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ If we actually found new acceptable
point pcur

❼ We check if it is better than
the best solution pbest we have
ever found and, if so, store it
in pbest.

❼

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ If we actually found new acceptable
point pcur

❼ We store the inverse moveb of
the move moveb leading from
the “old” pcur to the “new”
pcur in the tabu list tabu to
prevent us from going back to
the “old” pcur in the next tt
iterations.

❼

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ If we actually found new acceptable
point pcur

❼ We store the inverse moveb of
the move moveb leading from
the “old” pcur to the “new”
pcur in the tabu list tabu to
prevent us from going back to
the “old” pcur in the next tt
iterations.

❼ If the tabu list tabu is now
longer than the tabu tenure tt,
we delete the oldest element
from it.

❼

Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest

Metaheuristic Optimization Thomas Weise 9/29

❼ Finally, if we have met the
termination criterion
shouldTerminate or there simply is
no acceptable solution to go to
anymore, we return the best
solution pbest we found so far.

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 10/29

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼ SAT Goal: find a setting for these variables so that B becomes true

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

Example: MAX-SAT

❼ Maximum Satisfiability Problems (SAT) [4]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼ MAX-SAT Goal [4]: minimize objective function
f(~x) = number of clauses which are false.

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

Example: MAX-SAT

❼ Maximum Satisfiability Problems (SAT) [4]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼ MAX-SAT Goal [4]: minimize objective function
f(~x) = number of clauses which are false.

❼ f(~x) = 0 =⇒ all clauses are true, SAT problem solved

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1

Example: MAX-SAT

❼ Maximum Satisfiability Problems (SAT) [4]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼ MAX-SAT Goal [4]: minimize objective function
f(~x) = number of clauses which are false.

❼ f(~x) = 0 =⇒ all clauses are true, SAT problem solved

❼ Candidate solution: string of n bits.

Metaheuristic Optimization Thomas Weise 11/29

Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/29

Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼ Neighborhood of candidate solution x: other bit strings assignments
which differ in exactly one bit

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/29

Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼ Neighborhood of candidate solution x: other bit strings assignments
which differ in exactly one bit

❼ Tabu feature: variables

❼

❼

Metaheuristic Optimization Thomas Weise 12/29

Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼ Neighborhood of candidate solution x: other bit strings assignments
which differ in exactly one bit

❼ Tabu feature: variables

❼ Tabu criterion: flipping the same variable again is forbidden for tt
iterations

❼

Metaheuristic Optimization Thomas Weise 12/29

Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼ Neighborhood of candidate solution x: other bit strings assignments
which differ in exactly one bit

❼ Tabu feature: variables

❼ Tabu criterion: flipping the same variable again is forbidden for tt
iterations

❼ Aspiration criterion: if flipping the variable would lead to a new
best-so-far solution, we will accept it even if it is tabu

Metaheuristic Optimization Thomas Weise 12/29

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 13/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Problem instance defined as:
❼ set V of nv nodes v ∈ V

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Problem instance defined as:
❼ set V of nv nodes v ∈ V , e.g., V = {A, B, C, D, E, F, G, H, I}

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of edges e = vi vj

❼

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

(with cost(A B) = cost(B A))

❼

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes,
e.g., x = (A,B,C,D,E,F,G,H,I)

❼

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes

❼ Objective function f is the total tour cost

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes

❼ Objective function f is the total tour cost:

f(x) =

nv−1
∑

i=1

cost(xi xi+1) (1)

Metaheuristic Optimization Thomas Weise 14/29

Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes

❼ Objective function f is the total tour cost:

f(x) =

nv−1
∑

i=1

cost(xi xi+1) + cost(xnv
x1) (1)

Metaheuristic Optimization Thomas Weise 14/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼

❼

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ swap(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ swap(x, 3, 7) = (A,B,G,D,E,F,C,H,I)

❼

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ swap(x, 3, 7) = (A,B,G,D,E,F,C,H,I)

❼ Possible 4-opt move

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ swap(x, 3, 7) = (A,B,G,D,E,F,C,H,I)

❼ Possible 4-opt move: delete four edges

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 1: Swap Operator

❼ swap(x, i, j): swap the element at index i in permutation x with
element at index j [9–14]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ swap(x, 3, 7) = (A,B,G,D,E,F,C,H,I)

❼ Possible 4-opt move: delete four edges and add four edges

Metaheuristic Optimization Thomas Weise 15/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse1(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse1(x, 3, 7) = (A,B,G,F,E,D,C,H,I)

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse1(x, 3, 7) = (A,B,G,F,E,D,C,H,I)

❼ Possible 2-opt move [19–21]

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse1(x, 3, 7) = (A,B,G,F,E,D,C,H,I)

❼ Possible 2-opt move [19–21]: delete two edges

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): reverse the subsequence between indexes i and j in
permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse1(x, 3, 7) = (A,B,G,F,E,D,C,H,I)

❼ Possible 2-opt move [19–21]: delete two edges and add two edges

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): Two ways to reverse the subsequence between
indexes i and j in permutation x

[9, 15–19]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): Two ways to reverse the subsequence between
indexes i and j in permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse2(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): Two ways to reverse the subsequence between
indexes i and j in permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse2(x, 3, 7) = (I,H,G,D,E,F,C,B,A)

❼

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): Two ways to reverse the subsequence between
indexes i and j in permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse2(x, 3, 7) = (I,H,G,D,E,F,C,B,A)

❼ Possible 2-opt move [19–21]: delete two edges and add two edges

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 2: Reverse Operator

❼ reverse(x, i, j): Two ways to reverse the subsequence between
indexes i and j in permutation x

[9, 15–19]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ reverse2(x, 3, 7) = (I,H,G,D,E,F,C,B,A)

❼ Possible 2-opt move [19–21]: delete two edges and add two edges

Metaheuristic Optimization Thomas Weise 16/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateLeft1(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateLeft1(x, 3, 7) = (A,B,D,E,F,G,C,H,I)

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateLeft1(x, 3, 7) = (A,B,D,E,F,G,C,H,I)

❼ Possible 3-opt move

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateLeft1(x, 3, 7) = (A,B,D,E,F,G,C,H,I)

❼ Possible 3-opt move: delete three edges

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): rotate the subsequence between indexes i and j

in permutation x one step to the left [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateLeft1(x, 3, 7) = (A,B,D,E,F,G,C,H,I)

❼ Possible 3-opt move: delete three edges and add three edges

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the left [9, 11, 14, 22]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 3: Rotate-Left Operator

❼ rotateLeft(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the left [9, 11, 14, 22]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ rotateLeft2(x, 3, 7) = (B,C,G,D,E,F,H,I,A)

❼

Metaheuristic Optimization Thomas Weise 17/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move: delete three edges

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move: delete three edges and add three edges

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the right [9, 11, 14, 22]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the right [9, 11, 14, 22]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ rotateRight2(x, 3, 7) = (I,A,B,D,E,F,C,G,H)

❼

Metaheuristic Optimization Thomas Weise 18/29

Neighborhoods Summary

❼ For a candidate solution x

❼

❼

Metaheuristic Optimization Thomas Weise 19/29

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼

❼

Metaheuristic Optimization Thomas Weise 19/29

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1)

❼

Metaheuristic Optimization Thomas Weise 19/29

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x)

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x) = −cost(deleted edges)

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x) = −cost(deleted edges) + cost(added edges)

Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼ So if we choose one of these neighborhoods for our Tabu Search, we
can scan the neighborhood of a solution by testing all indices i, j and
for each neighbor (which is in O

(

n2
v

)

), we get the corresponding tour
length/objective value basically for free. . .

Metaheuristic Optimization Thomas Weise 19/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3:
❼ Tabu feature: objective value

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3:
❼ Tabu feature: objective value
❼ Tabu criterion: creating a tour with the same length as a previously

visited one is not allowed

❼

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3:
❼ Tabu feature: objective value
❼ Tabu criterion: creating a tour with the same length as a previously

visited one is not allowed

❼ Many ideas are possible. . .

❼

Metaheuristic Optimization Thomas Weise 20/29

Tabu Search for the TSP

❼ Let us consider a Tabu Search method for the Traveling Salesman
Problem.

❼ We can choose one of the four discussed neighborhoods, or even
multiple neighborhoods.

❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3:
❼ Tabu feature: objective value
❼ Tabu criterion: creating a tour with the same length as a previously

visited one is not allowed

❼ Many ideas are possible. . .

❼ Aspiration criterion: if the new tour would be a new best-so-far
solution, we will accept it even if it is tabu

Metaheuristic Optimization Thomas Weise 20/29

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 21/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course)

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼ This is a common method for local search, not just for Tabu Search.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼ This is a common method for local search, not just for Tabu Search.

❼ It can also be applied to Simulated Annealing, or to Hill Climbers if,
e.g., they do not find improvements for several steps.

❼

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼ This is a common method for local search, not just for Tabu Search.

❼ It can also be applied to Simulated Annealing, or to Hill Climbers if,
e.g., they do not find improvements for several steps.

❼ Such searches are called Iterated Local Search (ILS) [4]

❼

Metaheuristic Optimization Thomas Weise 22/29

Iterated Local Search

❼ We have seen that it might happen that the Tabu Search finds no
acceptable solution to go to anymore.

❼ What can we do in this case?:
❼ Restart the algorithm at a new (random?) solution pcur (while

remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼ This is a common method for local search, not just for Tabu Search.

❼ It can also be applied to Simulated Annealing, or to Hill Climbers if,
e.g., they do not find improvements for several steps.

❼ Such searches are called Iterated Local Search (ILS) [4]

❼ They have astonishingly great performance, and several of the best
application-specific optimization methods are based on them [4, 23].

Metaheuristic Optimization Thomas Weise 22/29

Section Outline

1 Introduction

2 Tabu Search

3 Example 1: MAX-SAT

4 Example 2: Traveling Salesman Problem

5 Iterated Local Search

6 Summary

Metaheuristic Optimization Thomas Weise 23/29

Summary

❼ Tabu Search is another highly efficient local search.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 24/29

Summary

❼ Tabu Search is another highly efficient local search.

❼ It is based on the concept of scanning complete neighborhoods and
avoiding to move in a cycle by declaring certain solution features as
“tabu”.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 24/29

Summary

❼ Tabu Search is another highly efficient local search.

❼ It is based on the concept of scanning complete neighborhoods and
avoiding to move in a cycle by declaring certain solution features as
“tabu”.

❼ The concept of search moves here is slightly different from the
algorithms we discussed before and will discuss afterwards, it is
centered around neighborhoods rather than single modifications.

❼

❼

Metaheuristic Optimization Thomas Weise 24/29

Summary

❼ Tabu Search is another highly efficient local search.

❼ It is based on the concept of scanning complete neighborhoods and
avoiding to move in a cycle by declaring certain solution features as
“tabu”.

❼ The concept of search moves here is slightly different from the
algorithms we discussed before and will discuss afterwards, it is
centered around neighborhoods rather than single modifications.

❼ Tabu Search, Simulated Annealing, and many other local search
algorithms can be iterated by making stronger search moves or
restarting them altogether from time to time.

❼

Metaheuristic Optimization Thomas Weise 24/29

Summary

❼ Tabu Search is another highly efficient local search.

❼ It is based on the concept of scanning complete neighborhoods and
avoiding to move in a cycle by declaring certain solution features as
“tabu”.

❼ The concept of search moves here is slightly different from the
algorithms we discussed before and will discuss afterwards, it is
centered around neighborhoods rather than single modifications.

❼ Tabu Search, Simulated Annealing, and many other local search
algorithms can be iterated by making stronger search moves or
restarting them altogether from time to time.

❼ We have also looked into two very well-known, classical problems
from operations research again, Maximum Satisfiability and the
Traveling Salesman Problem.

Metaheuristic Optimization Thomas Weise 24/29

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 25/29

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 26/29

Bibliography I

1. Fred W. Glover. Tabu search – part i. ORSA Journal on Computing, 1(3):190–206, Summer 1989. doi:
10.1287/ijoc.1.3.190. URL http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20I-ORSA.pdf.

2. Fred W. Glover. Tabu search – part ii. ORSA Journal on Computing, 2(1):190–206, Winter 1990. doi:
10.1287/ijoc.2.1.4. URL http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf.

3. Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on sat. In Ian Gent, Hans van Maaren, and
Toby Walsh, editors, SAT2000 – Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers in Artificial
Intelligence and Applications, pages 283–292. Amsterdam, The Netherlands: IOS Press, 2000. URL
http://www.cs.ubc.ca/~hoos/Publ/sat2000-satlib.pdf.

4. Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann
Series in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. ISBN 1558608729 and
978-1558608726. URL http://books.google.de/books?id=3HAedXnC49IC.

5. Bernhard Friedrich Voigt. Der Handlungsreisende – wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und
eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur. Ilmenau, Germany:
Voigt, 1832. Excerpt: “. . . Durch geeignete Auswahl und Planung der Tour kann man oft so viel Zeit sparen, daß wir
einige Vorschläge zu machen haben. . . . Der wichtigste Aspekt ist, so viele Orte wie möglich zu erreichen, ohne einen Ort
zweimal zu besuchen. . . . ”.

6. David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press, February
2007. ISBN 0-691-12993-2 and 978-0-691-12993-8. URL http://books.google.de/books?id=nmF4rVNJMVsC.

7. Federico Greco, editor. Traveling Salesman Problem. Vienna, Austria: IN-TECH Education and Publishing, September
2008. ISBN 978-953-7619-10-7. URL http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B.

8. Eugene Leighton (Gene) Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience,
September 1985. ISBN 0-471-90413-9 and 978-0-471-90413-7. URL http://books.google.de/books?id=BXBGAAAAYAAJ.

9. Pedro Larrañaga, Cindy M. H. Kuijpers, Roberto H. Murga, Iñaki Inza, and Sejla Dizdarevic. Genetic algorithms for the
travelling salesman problem: A review of representations and operators. Journal of Artificial Intelligence Research (JAIR),
13(2):129–170, April 1999. doi: 10.1023/A:1006529012972. URL http:

//www.dca.fee.unicamp.br/~gomide/courses/EA072/artigos/Genetic_Algorithm_TSPR_eview_Larranaga_1999.pdf.

Metaheuristic Optimization Thomas Weise 27/29

http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20I-ORSA.pdf
http://leeds-faculty.colorado.edu/glover/TS%20-%20Part%20II-ORSA-aw.pdf
http://www.cs.ubc.ca/~hoos/Publ/sat2000-satlib.pdf
http://books.google.de/books?id=3HAedXnC49IC
http://books.google.de/books?id=nmF4rVNJMVsC
http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B
http://books.google.de/books?id=BXBGAAAAYAAJ
http://www.dca.fee.unicamp.br/~gomide/courses/EA072/artigos/Genetic_Algorithm_TSPR_eview_Larranaga_1999.pdf
http://www.dca.fee.unicamp.br/~gomide/courses/EA072/artigos/Genetic_Algorithm_TSPR_eview_Larranaga_1999.pdf

Bibliography II

10. I. M. Oliver, D. J. Smith, and John Henry Holland. A study of permutation crossover operators on the traveling salesman
problem. In John J. Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms and
their Applications (ICGA’87), pages 224–230, Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), July
28–31, 1987. Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. (LEA).

11. Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Germany: Springer-Verlag
GmbH, 1996. ISBN 3-540-58090-5, 3-540-60676-9, 978-3-540-60676-5, and 978-3-642-08233-7. URL
http://books.google.de/books?id=vlhLAobsK68C.

12. Wolfgang Banzhaf. The “molecular” traveling salesman. Biological Cybernetics, 64(1):7–14, November 1990. doi:
10.1007/BF00203625. URL https://web.cs.mun.ca/~banzhaf/papers/MolTravelSalesman.pdf.

13. Balamurali Krishna Ambati, Jayakrishna Ambati, and Mazen Moein Mokhtar. Heuristic combinatorial optimization by
simulated darwinian evolution: A polynomial time algorithm for the traveling salesman problem. Biological Cybernetics, 65
(1):31–35, May 1991. doi: 10.1007/BF00197287.

14. Gilbert Syswerda. Schedule optimization using genetic algorithms. In Lawrence Davis, editor, Handbook of Genetic
Algorithms, VNR Computer Library, pages 332–349. Stamford, CT, USA: Thomson Publishing Group, Inc. and New York,
NY, USA: Van Nostrand Reinhold Co., January 1991.

15. John Henry Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence. Ann Arbor, MI, USA: University of Michigan Press, 1975. ISBN 0-472-08460-7 and
978-0-472-08460-9. URL http://books.google.de/books?id=JE5RAAAAMAAJ.

16. John J. Grefenstette. Incorporating problem specific knowledge into genetic algorithms. In Lawrence Davis, editor, Genetic
Algorithms and Simulated Annealing, Research Notes in Artificial Intelligence, pages 42–60. London, UK: Pitman, 1987.

17. David Stifler Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine A. Schevon. Optimization by simulated
annealing: An experimental evaluation. part i, graph partitioning. Operations Research (Oper. Res.), 37(6),
November–December 1989. doi: 10.1287/opre.37.6.865.

18. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine,
220(4598):671–680, May 13, 1983. doi: 10.1126/science.220.4598.671. URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf.

19. David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. Finding tours in the tsp: Finding tours.
Sonderforschungsbereich 303: Sonderforschungsbereich Information und die Koordination Wirtschaftlicher Aktivitäten –
Report 99885, Bonn, North Rhine-Westphalia, Germany: Rheinische Friedrich-Wilhelms-Universität Bonn, 1999. URL
http://www.tsp.gatech.edu/methods/papers/lk_report.ps.

Metaheuristic Optimization Thomas Weise 28/29

http://books.google.de/books?id=vlhLAobsK68C
https://web.cs.mun.ca/~banzhaf/papers/MolTravelSalesman.pdf
http://books.google.de/books?id=JE5RAAAAMAAJ
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://www.tsp.gatech.edu/methods/papers/lk_report.ps

Bibliography III

20. G. A. Croes. A method for solving traveling-salesman problems. Operations Research (Oper. Res.), 6(6):791–812,
November–December 1958. doi: 10.1287/opre.6.6.791. URL http://www.jstor.org/stable/167074.

21. Merrill M. Flood. The traveling-salesman problem. Operations Research (Oper. Res.), 4(1):61–75, February 1956. doi:
10.1287/opre.4.1.61.

22. David B. Fogel. An evolutionary approach to the traveling salesman problem. Biological Cybernetics, 60(2):139–144,
December 1988. doi: 10.1007/BF00202901. URL http://users.on.net/~jivlain/papers/4%20Fogel.pdf.

23. David Lee Applegate, William John Cook, and André Rohe. Chained lin-kernighan for large traveling salesman problems.
INFORMS Journal on Computing (JOC), 15(1):82–92, Winter 2003. URL
http://www2.isye.gatech.edu/~wcook/papers/clk_ijoc.pdf.

Metaheuristic Optimization Thomas Weise 29/29

http://www.jstor.org/stable/167074
http://users.on.net/~jivlain/papers/4%20Fogel.pdf
http://www2.isye.gatech.edu/~wcook/papers/clk_ijoc.pdf

	Outline
	Introduction
	Section Outline
	Introduction

	Tabu Search
	Section Outline
	Move to Best Solution
	Tabu List
	Aspiration Criterion
	Putting it Together

	Example 1: MAX-SAT
	Section Outline
	Example: MAX-SAT
	Tabu Search for MAX-SAT

	Example 2: Traveling Salesman Problem
	Section Outline
	Example: Traveling Salesman Problem
	Neighborhood 1: Swap Operator
	Neighborhood 2: Reverse Operator
	Neighborhood 3: Rotate-Left Operator
	Neighborhood 4: Rotate-Right Operator
	Neighborhoods Summary
	Tabu Search for the TSP

	Iterated Local Search
	Section Outline
	Iterated Local Search

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

