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the globally optimal solution.
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❼ Tabu Search, introduced by Glover, Glover [1, 2], is another local search
which introduces another, similar approach.
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❼ Tabu Search scans the whole neighborhood of the current solution
and picks the best neighboring solution as next solution.

❼ It will pick this solution even if it is worse than the current solution.

❼ Problem: This can easily lead to cycles (if the current solution is a
local optimum, the search will go to a worse solution and then
immediately back to the previous one, the local optimum).

❼ Solution: Introduce a tabu criterion which forbids certain solutions to
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same decision variables.

❼ Store features of tt most recently visited solutions tt is called tabu
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Aspiration Criterion

❼ Tabu criterion may also prevent previously unseen solutions from
being explored.

❼ Some of these might be better than the best solution we have found
so far, i.e., very interesting regardless whether they are tabu or not. . .

❼ Aspiration criteria: criteria that override the tabu criterion and allow
the search to move to a solution even if it is tabu.
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Putting it Together

pbest ←− tabuSearch(f, tt)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Data: pcur: the current solution
Data: move: the move reaching ptest
Data: moveb: the move reaching pnew
Output: pbest: the best individual ever discovered

begin

pbest.x←− create initial solution
pbest.y ←− f(pbest.x)
pcur.y ←− pbest
tabu←− empty list
while ¬ (shouldTerminate ∨ (pcur 6= ∅)) do

pnew ←− ∅
foreach ptest ∈ neighborhood of pcur do

ptest.y ←− f(ptest.x)
if
((move 6∈ tabu) ∧ ((pnew = ∅) ∨ (ptest.y < pnew.y)))∨
(ptest.y ≤ pbest.y)
then

pnew ←− ptest
moveb ←− move

pcur ←− pnew
if (pcur 6= ∅) then

if pcur.y ≤ pbest.y then pbest ←− pcur

append moveb to tabu

if length of tabu ≥ tt then remove oldest element from tabu

return pbest
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neighborhood of pcur.
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❼ For example, if our candidate
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that can be reached by flipping a
single bit in pcur.x (and this
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❼ We compute the objective value
f(ptest.x) of the initial solution and
remember it in variable ptest.y.
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1 the move move leading to it
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1 it is better than the
currently best acceptable
neighbor pnew or

2 it is the first acceptable
neighbor.

2 or the aspiration criterion kicks
in, which here means that it is
better than the best solution
pbest we have ever seen.
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❼ In this case, we

❼ remember it in variable pnew
and

❼ store the move leading to it
(coming from pcur) in variable
moveb.
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❼ After we have scanned the whole
neighborhood of pcur, we store the
best discovered acceptable solution
pnew in pcur. (This could also be
nothing ∅. . . )
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❼ If we actually found new acceptable
point pcur

❼ We check if it is better than
the best solution pbest we have
ever found and, if so, store it
in pbest.
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❼ If we actually found new acceptable
point pcur

❼ We store the inverse moveb of
the move moveb leading from
the “old” pcur to the “new”
pcur in the tabu list tabu to
prevent us from going back to
the “old” pcur in the next tt
iterations.

❼ If the tabu list tabu is now
longer than the tabu tenure tt,
we delete the oldest element
from it.
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❼ Finally, if we have met the
termination criterion
shouldTerminate or there simply is
no acceptable solution to go to
anymore, we return the best
solution pbest we found so far.
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Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29

x
1
x

2
x

3
x

4

≥1

&≥1

≥1



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/29



Example: MAX-SAT

❼ Satisfiability Problems (SAT) [3]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
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Example: MAX-SAT

❼ Maximum Satisfiability Problems (SAT) [4]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”
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Example: MAX-SAT

❼ Maximum Satisfiability Problems (SAT) [4]:
❼ Given: Formula B in Boolean logic with of n Boolean variables
~x = (x1, x2, . . . , xn), which appear either directly or negated in k “or”
clauses, which are all combined with into one “and”

❼ MAX-SAT Goal [4]: minimize objective function
f(~x) = number of clauses which are false.

❼ f(~x) = 0 =⇒ all clauses are true, SAT problem solved

❼ Candidate solution: string of n bits.
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Tabu Search for MAX-SAT

❼ Let us consider a Tabu Search method for the MAX-SAT problem.

❼ Neighborhood of candidate solution x: other bit strings assignments
which differ in exactly one bit

❼ Tabu feature: variables

❼ Tabu criterion: flipping the same variable again is forbidden for tt
iterations

❼ Aspiration criterion: if flipping the variable would lead to a new
best-so-far solution, we will accept it even if it is tabu

Metaheuristic Optimization Thomas Weise 12/29
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❼ set V of nv nodes v ∈ V ,
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Example: Traveling Salesman Problem

❼ Example: Traveling Salesman Problem (TSP): Find a cyclic path of
minimal costs that visits a set of cities V [5–8]

❼ Symmetric problem instance defined as:
❼ set V of nv nodes v ∈ V ,
❼ set E = V × V of undirected edges e = vi vj , and
❼ cost function to compute the cost of traveling along an edge e ∈ E

❼ Candidate solutions x ∈ X: permutations of the nv nodes

❼ Objective function f is the total tour cost:

f(x) =

nv−1
∑

i=1

cost(xi xi+1) + cost(xnv
x1) (1)
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❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7)

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move: delete three edges

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): rotate the subsequence between indexes i and
j in permutation x one step to the right [9, 11, 14, 22]

❼ (A,B,C,D,E,F,G,H,I)

❼ rotateRight1(x, 3, 7) = (A,B,G,C,D,E,F,H,I)

❼ Possible 3-opt move: delete three edges and add three edges

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the right [9, 11, 14, 22]

❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhood 4: Rotate-Right Operator

❼ rotateRight(x, i, j): Two ways to rotate the subsequence between
indexes i and j in permutation x one step to the right [9, 11, 14, 22]

❼ x = (A,B,C,D,E,F,G,H,I)

❼ rotateRight2(x, 3, 7) = (I,A,B,D,E,F,C,G,H)

❼

Metaheuristic Optimization Thomas Weise 18/29



Neighborhoods Summary

❼ For a candidate solution x

❼

❼

Metaheuristic Optimization Thomas Weise 19/29



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼

❼

Metaheuristic Optimization Thomas Weise 19/29



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1)

❼

Metaheuristic Optimization Thomas Weise 19/29



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x)



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x) = −cost(deleted edges)



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼

Metaheuristic Optimization Thomas Weise 19/29

∆f = f(x′)− f(x) = −cost(deleted edges) + cost(added edges)



Neighborhoods Summary

❼ For a candidate solution x and an index tuple (i, j), we have learned
that there are seven modification operations

❼ We always can compute f(x′) in O(1):

❼ So if we choose one of these neighborhoods for our Tabu Search, we
can scan the neighborhood of a solution by testing all indices i, j and
for each neighbor (which is in O

(

n2
v

)

), we get the corresponding tour
length/objective value basically for free. . .
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❼ Idea 1:
❼ Tabu feature: edges
❼ Tabu criterion: adding a removed edge is not allowed.

❼ Idea 2:
❼ Tabu feature: indexes i, j
❼ Tabu criterion: using the same indexes i and j again is not allowed

❼ Idea 3:
❼ Tabu feature: objective value
❼ Tabu criterion: creating a tour with the same length as a previously

visited one is not allowed

❼ Many ideas are possible. . .

❼ Aspiration criterion: if the new tour would be a new best-so-far
solution, we will accept it even if it is tabu
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remembering pbest, oft course) =⇒ This is very harsh, as we throw
away a potentially good solution structure.

❼ Soft restart: Apply a modification to pcur which the current search
moves cannot do, i.e., move outside of the current neighborhood of
pcur without throwing it away completely.

❼ This is a common method for local search, not just for Tabu Search.

❼ It can also be applied to Simulated Annealing, or to Hill Climbers if,
e.g., they do not find improvements for several steps.

❼ Such searches are called Iterated Local Search (ILS) [4]

❼ They have astonishingly great performance, and several of the best
application-specific optimization methods are based on them [4, 23].
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Summary

❼ Tabu Search is another highly efficient local search.

❼ It is based on the concept of scanning complete neighborhoods and
avoiding to move in a cycle by declaring certain solution features as
“tabu”.

❼ The concept of search moves here is slightly different from the
algorithms we discussed before and will discuss afterwards, it is
centered around neighborhoods rather than single modifications.

❼ Tabu Search, Simulated Annealing, and many other local search
algorithms can be iterated by making stronger search moves or
restarting them altogether from time to time.

❼ We have also looked into two very well-known, classical problems
from operations research again, Maximum Satisfiability and the
Traveling Salesman Problem.
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