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❼ The metal is heated to, like 0.4 * melting temperature

❼ Ions inside metal can move around

❼ Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal → metal becomes more stable

❼ Due to their movement, ions may temporarily assume positions of
high energy

❼ An initial, brittle crystal structure is transformed to a much better
configuration by stepping over good and bad states
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macro state with energy E.
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Metropolis Algorithm

❼ Metropolis [2] wants to simulate this process.

❼ First, we need to understand: What is temperature T?

❼ Each material consists of many different particles

❼ The micro-state of a material is the tuple of the positions and
velocities of all particles – this is uninteresting

❼ With each such state, there is an energy E associated: If many the
particles move around quickly, the energy E is high

❼ Now we consider a value of E as a macro-state of the system and to
each such state, there belong many possible micro-states

❼ A system at temperature T has the probability e
−

E

kB∗T to be in a
macro state with energy E.

❼ In other words: The higher the temperature, the higher the chance to
be in a high-energy state
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form of a Monte Carlo algorithm

❼ pos be the current configuration of the ions and pos′ a possible new
configuration, T be the temperature (decreasing over time)

∆E = E
(

pos′
)

− E (pos) (1)

❼ ∆E is the energy difference between the states

P (∆E) =

{

e
−

∆E

kB∗T if ∆E > 0
1 otherwise

(2)

❼ P (∆E) is the probability that the new state pos′ will be accepted
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Simulated Annealing

❼ Metropolis’ simulation [2] shows how physical systems find states of
low energy.

❼ The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

❼ This could be a remedy for the premature convergence problem of hill
climbing!

❼ Idea developed by Kirkpatrick et al. [3], Černý [4], Jacobs et al. [5, 6], and
Pincus [7] independently:

❼ Simulated Annealing = hill climbing + sometimes accept worse states
following Metropolis’ method [8–11]

❼ ⇒ lower risk of premature convergence
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Simulated Annealing

❼ Modification of the Metropolis procedure:

∆E = f(x′)− f(x) (3)

❼ ∆E is the objective value difference between the new (x′) and old
candidate solution (x)

P (∆E) =

{

e−
∆E

T if ∆E > 0
1 otherwise

(4)

❼ P (∆E) is the probability that the new candidate solution x′ will be
accepted

❼ kB is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

❼ Temperature T reduced according to a specific schedule over the
iterations
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pbest ←− simulatedAnnealing(f)

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t: the current time index
Data: ∆E: the energy (objective value) difference of the pcur.x and pnew.x
Output: pbest: the best individual ever discovered

begin

pcur ←− create and evaluate initial solution
pbest ←− pcur
t←− 1
while ¬shouldTerminate do

pnew ←− derive new solution from pcur
∆E ←− f(pnew)− f(pcur)
if ∆E ≤ 0 then

pcur ←− pnew
if f(pcur.x) < f(pbest.x) then pbest ←− pcur

else

T ←− getTemperature(t)

if {randomly from [0, 1]} < e−
∆E

T then pcur ←− pnew

t←− t+ 1

return pbest
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pbest ←− simulatedAnnealing(f)

Input: f : the objective function to be minimized
Data: pnew: the newly generated individual
Data: pcur: the point currently investigated
Data: T : the temperature of the system which is decreased over time
Data: t: the current time index
Data: ∆E: the energy (objective value) difference of the pcur.x and pnew.x
Output: pbest: the best individual ever discovered

begin

pcur.g ←− create()
pcur.x←− gpm(pcur.g)
pcur.y ←− f(pcur.x)
pbest ←− pcur
t←− 0
while ¬shouldTerminate do

pnew.g ←− mutation(pcur.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
∆E ←− pnew.y − pcur.y
if ∆E ≤ 0 then

pcur ←− pnew
if pcur.y < pbest.y then pbest ←− pcur

else

T ←− getTemperature(t)

if {randomly from [0, 1]} < e−
∆E

T then pcur ←− pnew

t←− t+ 1

return pbest
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Temperature Scheduling

Definition (Temperature Schedule)

The temperature schedule defines how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7→ R

+ maps the current iteration index t to a
(positive) real temperature value T . [12, 13]
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Temperature Scheduling

Definition (Temperature Schedule)

The temperature schedule defines how the temperature parameter T in the
Simulated Annealing process is set. The operator
getTemperature : N1 7→ R

+ maps the current iteration index t to a
(positive) real temperature value T . [12, 13]

getTemperature(t) ∈ (0,+∞) ∀t ∈ N1 (5)

getTemperature(0) = T start > 0 (6)

lim
t→+∞

getTemperature(t) = 0 (7)

The temperature schedule allows for a smooth transition of SA algorithm
behavior from “like Random Walk” (high temperature) to “like hill
climbing” (low temperature).
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Temperature Scheduling
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getTemperatureln(t) =

{

T start if t < 3
T start/ ln t otherwise

getTemperatureexp(t) = (1− ǫ)t ∗ T start

getTemperaturepoly(t) =

(

1−
t

t

)α

∗ T start



Temperature Scheduling: Setup

❼ Logarithmic Scheduling
❼ T start: use a value larger than the greatest difference of the objective

value of a local minimum and its best neighboring candidate solution
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Temperature Scheduling: Setup

❼ Logarithmic Scheduling
❼ T start: use a value larger than the greatest difference of the objective

value of a local minimum and its best neighboring candidate solution

❼ Exponential Scheduling
❼ determine ǫ ∈ (0, 1) by experiment

❼ Polynomial Scheduling
❼ α is a constant, maybe 1, 2, or 4
❼ an upper iteration limit t after which the temperature should become

zero

❼ Adaptive Scheduling
❼ Example: T = β ∗ (f(pcur.x)− f(x̃)) every m steps, β determined by

experiment

❼ Often: Adjust temperature only every m ∈ N1 steps

Metaheuristic Optimization Thomas Weise 18/32



Temperature Scheduling: Convergence

❼ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems
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Temperature Scheduling: Convergence

❼ If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

❼ . . . but the number of function evaluations needed to find the
optimum with P → 1 is still higher than what an exhaustive
enumeration would need [14]

❼ . . . which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA [15]. . .

❼ Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

❼ Simulated Annealing turns into Simulated Quenching [13]

❼ Here: Restarting good in order avoid premature convergence
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Implementation

❼ Add a new interface for temperature scheduling

❼ Implement Simulated Annealing according to the algorithm

❼ Implement some temperature schedules
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Temperature Scheduling

From the programmer’s perspective, we can say:

Listing: Temperature Schedule getTemperature

public interface ITemperatureSchedule {

public abstract double getTemperature(final int t);

}
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Simulated Annealing Algorithm

Listing: Simulated Annealing

public class SA<G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pcur , pnew , pbest;

double deltaE , T;

int t;

pcur = new Individual <>();

pnew = new Individual <>();

pbest = new Individual <>();

t = 1;

pcur.g = this.nullary.create(this.random);

pcur.x = this.gpm.gpm(pcur.g);

pcur.v = f.compute(pcur.x);

pbest.assign(pcur);

while (!( this.termination.shouldTerminate ())) {

pnew.g = this.unary.mutate(pcur.g, this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

deltaE = (pnew.v - pcur.v);

if (deltaE <= 0d) {

pcur.assign(pnew);

if (pnew.v < pbest.v) {

pbest.assign(pnew);

}

} else {

T = this.temperature.getTemperature(t);

if (this.random.nextDouble () < Math.exp(-deltaE / T)) {

pcur.assign(pnew);

}

}

t++;

}

return pbest;

}
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The Logarithmic Temperature Schedule

Listing: The Logarithmic Temperature Schedule

public class Logarithmic implements ITemperatureSchedule {

public double getTemperature(final int t) {

if (t < 3) {

return this.Ts;

}

return (this.Ts / Math.log(t));

}

}
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The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponential implements ITemperatureSchedule {

public double getTemperature(final int t) {

return (this.Ts * Math.pow ((1d - this.epsilon), t));

}

}
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The Polynomial Temperature Schedule

Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {

public double getTemperature(final int t) {

return (this.Ts * Math.pow(Math.max(0d, (1d - (t / this.tmax))),//

this.alpha));

}

}
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Summary

❼ Annealing is a physical process in metallurgy where low-energy
configurations are found

❼ This process is simulated with the Metropolis algorithm

❼ which serves as role model for an optimization algorithm: simulated
annealing

❼ Different temperature schedules

❼ Convergence to global optimum is guaranteed for many problems and
logarithmic schedules . . . but very slow

❼ Simulated quenching is faster but loses guaranteed optimality
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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