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Introduction: Annealing §\

¢ Cold working metal causes/increases defects in crystal structure
o After cold working, annealing ™ is performed

e The metal is heated to, like 0.4 * melting temperature

e lons inside metal can move around

e Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal — metal becomes more stable

e Due to their movement, ions may temporarily assume positions of
high energy

e An initial, brittle crystal structure is transformed to a much better
configuration by stepping over good and bad states

Metaheuristic Optimization Thomas Weise 5/32



metal structure with defects
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molecules, etc.)
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e Metropolis ? wants to simulate this process.
e First, we need to understand: What is temperature 77
e Each material consists of many different particles

e The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy E associated: If many the
particles move around quickly, the energy E is high and if they don't
move, the energy is low

e Now we consider a value of /' as a macro-state of the system
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e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 77

e Each material consists of many different particles

¢ The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

¢ Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states

__B_
e A system at temperature T has the probability e *5*7 to be in a
macro state with energy F.
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e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 77

e Each material consists of many different particles

e The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

e Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states

__E
e A system at temperature 1" has the probability ¢ *5*7 to be in a
macro state with energy E.

ky = 1.380650524 * 1072".J/ K is the Boltzmann constant (1)
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e Metropolis ? wants to simulate this process.
e First, we need to understand: What is temperature 77
e Each material consists of many different particles

¢ The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

¢ Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states
__B_
e A system at temperature T has the probability e *5*7 to be in a
macro state with energy F.

¢ In other words: The higher the temperature, the higher the chance to
be in a high-energy state

Metaheuristic Optimization Thomas Weise 8/32
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e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)

AE = E (pos') — E (pos) (1)

e AF is the energy difference between the states

__AE
P(AE) _ e *3*T if AE >0 (2)
1 otherwise

e P(AE) is the probability that the new state pos’ will be accepted
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e Metropolis’ simulation @ shows how physical systems find states of
low energy.

e The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

e This could be a remedy for the premature convergence problem of hill
climbing!

o Idea developed by Kirkpatrick et al. ™, Cerny !, Jacobs et al.°, and
Pincus " independently:

e Simulated Annealing = hill climbing 4+ sometimes accept worse states
following Metropolis’ method

[8-11]




Simulated Annealing %\’

Metropolis’ simulation ! shows how physical systems find states of
low energy.

The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

This could be a remedy for the premature convergence problem of hill
climbing!

Idea developed by Kirkpatrick et al.®, Cerny ™, Jacobs et al. ¢, and
Pincus " independently:

Simulated Annealing = hill climbing + sometimes accept worse states
following Metropolis’ method &

= lower risk of premature convergence
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¢ Modification of the Metropolis procedure:
AE = f(2') = f(v) (3)

¢ AFE is the objective value difference between the new (') and old
candidate solution ()

AFE
P(AE) — e_kB*T |f AE>0 (4)
1 otherwise

e P(AE) is the probability that the new candidate solution 2 will be
accepted
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¢ Modification of the Metropolis procedure:
AE = f(') - £(2) 3)

¢ AFE is the objective value difference between the new (') and old

candidate solution ()
AE

P(AE) _ 6_ T if AE >0 (4)
1 otherwise

e P(AF) is the probability that the new candidate solution =’ will be
accepted

e kp is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

Metaheuristic Optimization Thomas Weise 12/32



Simulated Annealing §\

¢ Modification of the Metropolis procedure:
AE = f(2') - f(2) 3)
¢ AFE is the objective value difference between the new (') and old
candidate solution ()

P(AE) e fAE>0 )
1 otherwise

e P(AF) is the probability that the new candidate solution =’ will be
accepted

e kp is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

e Temperature T reduced according to a specific schedule over the
iterations

Metaheuristic Optimization Thomas Weise 12/32



+— simulated Annealing( f)

— Input: f: the objective function to be minimized
Data: : the newly generated individual
Data: p.,: the point currently investigated
Data: 7': the temperature of the system which is decreased over time
Data: t: the current time index
Data: AE: the energy (objective value) difference of the p.,,.xz and T
Output: ppest: the best individual ever discovered

begin 2 o . o .
Peur — create and evaluate initial solution e This is the Slmpllfled algorlthm, see
Poes €7 1w next slide for full algorithm.

while —should Terminate do
<— derive new solution from p.,,
AE «— f(pnew) = f(peur)
if AE <0 then
Pcur $—
if f(/)y,,‘px) < f(pbest.a?) then ppest <— Peur

else
T +— getTemperature(t)

if {randomly from [0,1]} < e~ then Peur —

| te—t+1

return ppest

Metaheuristic Optimization Thomas Weise 13/32
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begin

peur <— create and evaluate initial solution e This is the Slmpllfled algorithm, see
Bese € next slide for full algorithm.
while —should Terminate do
<— derive new solution from p.,, ® Temperature SChedUIe
$fi o {) ( : ) = f(peur) getTemperature: How the
i < 0 then .
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Phest <— simulated Annealing( f)

— Input: f: the objective function to be minimized

Data: : the newly generated individual

Data: p.,: the point currently investigated

Data: 7': the temperature of the system which is decreased over time
Data: t: the current time index

Data: AE: the energy (objective value) difference of the p.,,.xz and

Output: ppest: the best individual ever discovered
begin

Peur <— create and evaluate initial solution
Pbest < Deur

t— 1

while —should Terminate do

<— derive new solution from p.,,

e This is the simplified algorithm, see
next slide for full algorithm.

e Temperature schedule

AE «— f(prew) = f(peur) getTemperature: How the
if AE <0 then .
Peur — temperature 1" decreases over time?
if f(peur-®) < f(pbest-) then Ppest <— peur NS
e 1T ifAE>0
else o P(AE) ES .
T +— getTemperature(t) 1 OtherW|Se
if {randomly from [0,1]} < e~ then Peur —
| t«—1t+1
| return ppes
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Prest <— simulated Annealing( f)

Input: f: the objective function to be minimized

Data: : the newly generated individual

Data: p.,: the point currently investigated

Data: the temperature of the system which is decreased over time
Data: t: the current time index

Data: AE: the energy (objective value) difference of the pc...z and 7
Output: ppest: the best individual ever discovered

begin
Peur-g — create()
c <— gpm(peur-g)

e Full algorithm

while —should Terminate do
.g — mutation(pc,.g)
@ +— gpm(pnen-g)
Y f(pren-x)
AE +— Y — PeurY
if AE <0 then
Peur +—
if peury < Poest.y then ppese ¢— peus

else
T +— getTemperature(t)

if {randomly from [0,1]} < e~ then ., «—

| t«—t+1

return ppes
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getTemperature(0) = Tspart > 0 (6)
lim getTemperature(t) = 0 (7)

t—4o00




Temperature Scheduling %\,

The temperature schedule defines how the temperature parameter 71" in the
Simulated Annealing process is set. The operator

getTemperature : Ny — RT maps the current iteration index ¢ to a
(positive) real temperature value T'. "> %!

getTemperature(t) € (0, +00) vVt e Ny (5)
getTemperature(0) = Tspart > 0 (6)
0 (7)

li et T Fat
lm getTemperature(t)
The temperature schedule allows for a smooth transition of SA algorithm
behavior from “like Random Walk” (high temperature) to “like hill
climbing” (low temperature).

Metaheuristic Optimization Thomas Weise 16/32



Tstart |f t < 3
et Temperature, (t) = :
T g p i (t) { Tstart/Int  otherwise
N~ getTemperature..,(t) = (1 — €)' * Tstart
08Tst i -
z aN
\'\\ getTemperaturepoy (t) = (1 - => * Tstart
0.6Ts} A '\\. linear scaling
N (i.e., polynomial with a=1)
“\ \\.
exponentially '~
| o ponen .
0.4T; / ...... with £=0.025 .
logarithmically - '
02Tt polynomial .
©-.. with o=2 -
exponentially el
withe=0.0s Tt
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e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution

Exponential Scheduling
e determine € € (0,1) by experiment

Polynomial Scheduling
e (v is a constant, maybe 1, 2, or 4
e an upper iteration limit ¢ after which the temperature should become
zero

Adaptive Scheduling

e Example: T = B (f(peur-x) — f(Z)) every m steps, B determined by
experiment

Often: Adjust temperature only every m € Ny steps
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e If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

e ...but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %

e ...which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA ) .
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Temperature Scheduling: Convergence

If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

... but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %

... which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA ) .

Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

Simulated Annealing turns into Simulated Quenching [

Here: Restarting good in order avoid premature convergence

Metaheuristic Optimization Thomas Weise 19/32
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Add a new interface for temperature scheduling

Implement Simulated Annealing according to the algorithm

e Implement some temperature schedules
Test




Temperature Scheduling %\’

From the programmer’s perspective, we can say:

Listing: Temperature Schedule

public interface ITemperatureSchedule {

public abstract double getTemperature(final int t);
}

Metaheuristic Optimization Thomas Weise 22/32



Simulated Annealing Algorithm

=

Listing: Simulated Anneali

public class SA<G, X> extends OptimizationAlgorithm<G, X> {
public Individual<G, X> solve(final IObjectiveFunction<X> f) {
Individual<G, X> pcur, pnew, pbest;
double deltaE, T;
int t;

peur = new Individual<>Q);
pnew = new Individual<>Q;
pbest = new Individual<>();

t =15

pcur.g = this.nullary.create(this.random);
peur.x this.gpm.gpm(pcur.g);

peur.v f.compute (pcur.x);

pbest.assign(pcur);

while (!(this.termination.shouldTerminate())) {

pnew.g = this.unary.mutate(pcur.g, this.random);
pnew.x = this.gpm.gpm(pnew.g);
pnew.v = f.compute(pnew.x);

deltaE = (pnew.v - pcur.v);

if (deltaE <= 0d) {
pcur.assign(pnew) ;
if (pnew.v < pbest.v) {
pbest.assign(pnew) ;

}
} else {
T = this.temperature.getTemperature(t);
if (this.random.nextDouble() < Math.exp(-deltaE / T)) {
pcur.assign(pnew);

}
tt;
}

return pbest;

¥
} Metaheuristic Optimization Thomas Weise
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The Logarithmic Temperature Schedule %\’
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Listing: The Logarithmic Temperature Schedule

public class Logarithmic implements ITemperatureSchedule {
public double getTemperature(final int t) {
if (¢ < 3) {
return this.Ts;
}
return (this.Ts / Math.log(t));
}

}

Metaheuristic Optimization Thomas Weise 24/32



The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponential implements ITemperatureSchedule {
public double getTemperature(final int t) {
return (this.Ts * Math.pow((1d - this.epsilon), t));
¥
}

Metaheuristic Optimization Thomas Weise
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The Polynomial Temperature Schedule %\’
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Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {
public double getTemperature(final int t) {
return (this.Ts * Math.pow(Math.max(0d, (1d - (t / this.tmax))),//
this.alpha));

Metaheuristic Optimization Thomas Weise 26/32
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Summary %\

¢ Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm

e which serves as role model for an optimization algorithm: simulated
annealing

e Different temperature schedules

e Convergence to global optimum is guaranteed for many problems and
logarithmic schedules ... but very slow

e Simulated quenching is faster but loses guaranteed optimality

Metaheuristic Optimization Thomas Weise 28/32
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