LR B

HEFEI UNIVERSITY

Metaheuristic Optimization
7. Simulated Annealing

Thomas Weise - % &
tweise@hfuu.edu.cn - http://iao.hfuu.edu.cn

Hefei University, South Campus 2 | &J& HIARR /E2R
Faculty of Computer Science and Technology | T+A#uft#

FEHARA

Institute of Applied Optimization | kA& ALHF %AT
230601 Shushan District, Hefei, Anhui, China | T E %#4 &fed &.L[X 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 | ZFH ARAA LR 44% KiE0995



mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

QOutline

@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ Implementation

@ Summary

Metaheuristic Optimization

Thomas Weise



@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ |mplementation

@ Summary



Introduction: Annealing

Metaheuristic Optimization Thomas Weise /



¢ Cold working metal causes/increases defects in crystal structure




¢ Cold working metal causes/increases defects in crystal structure

e After cold working, annealing ' is performed




¢ Cold working metal causes/increases defects in crystal structure

e After cold working, annealing ' is performed

e The metal is heated to, like 0.4 * melting temperature




Cold working metal causes/increases defects in crystal structure

After cold working, annealing " is performed

The metal is heated to, like 0.4 * melting temperature

lons inside metal can move around




Cold working metal causes/increases defects in crystal structure

After cold working, annealing " is performed
The metal is heated to, like 0.4 * melting temperature

lons inside metal can move around

Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal — metal becomes more stable




Cold working metal causes/increases defects in crystal structure

After cold working, annealing " is performed
The metal is heated to, like 0.4 * melting temperature
lons inside metal can move around

Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal — metal becomes more stable

Due to their movement, ions may temporarily assume positions of
high energy




Introduction: Annealing §\

¢ Cold working metal causes/increases defects in crystal structure
o After cold working, annealing ™ is performed

e The metal is heated to, like 0.4 * melting temperature

e lons inside metal can move around

e Metal is slowly cooled down, ions assume low-energy, stable positions
in crystal — metal becomes more stable

e Due to their movement, ions may temporarily assume positions of
high energy

e An initial, brittle crystal structure is transformed to a much better
configuration by stepping over good and bad states

Metaheuristic Optimization Thomas Weise 5/32



metal structure with defects

0000000 0000000
000 0 0000000 00
0000 00000000000
000090000 00 0 000
00000, 00008088000
000000000 ©)

ooogooooooo 00000

00000000000008 8

0000000020000060
000000093°0000000
00000000000000 O

0K=getTemperature(w)

increased movement of atoms ion in low-energy structure
with fewer defects

DdODép Q0000000000000 0O0

00

00

00

000000

006860

edo"g 0866886606666606
dgabgqooppdo Sooo 9995606000600000

ddﬁd@ooopd 000000000000000
559 “%§§§ DO%E 8300830 5556686

GOD

physical role model of
Simulated Annealing




@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ |mplementation

@ Summary



e Metropolis ? wants to simulate this process.




e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 177




e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 7?7

o Each material consists of many different particles (atoms, ions,
molecules, etc.)




Metropolis ' wants to simulate this process.

First, we need to understand: What is temperature 77

Each material consists of many different particles

The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting




Metropolis ' wants to simulate this process.

First, we need to understand: What is temperature 77

Each material consists of many different particles

The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

With each such state, there is an energy E associated




Metropolis Algorithm §\

e Metropolis ? wants to simulate this process.
e First, we need to understand: What is temperature 77
e Each material consists of many different particles

e The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy E associated: If many the
particles move around quickly, the energy E is high and if they don't
move, the energy is low

e Now we consider a value of /' as a macro-state of the system

Metaheuristic Optimization Thomas Weise 8/32



Metropolis Algorithm §\

1AQ

e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 77

e Each material consists of many different particles

¢ The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

¢ Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states

__B_
e A system at temperature T has the probability e *5*7 to be in a
macro state with energy F.

Metaheuristic Optimization Thomas Weise 8/32



Metropolis Algorithm §\

1AQ

e Metropolis ? wants to simulate this process.

e First, we need to understand: What is temperature 77

e Each material consists of many different particles

e The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

e Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states

__E
e A system at temperature 1" has the probability ¢ *5*7 to be in a
macro state with energy E.

ky = 1.380650524 * 1072".J/ K is the Boltzmann constant (1)

Metaheuristic Optimization Thomas Weise 8/32



Metropolis Algorithm §\

1AQ

e Metropolis ? wants to simulate this process.
e First, we need to understand: What is temperature 77
e Each material consists of many different particles

¢ The micro-state of a material is the tuple of the positions and
velocities of all particles — this is uninteresting

e With each such state, there is an energy F associated: If many the
particles move around quickly, the energy E is high

¢ Now we consider a value of E' as a macro-state of the system and to
each such state, there belong many possible micro-states
__B_
e A system at temperature T has the probability e *5*7 to be in a
macro state with energy F.

¢ In other words: The higher the temperature, the higher the chance to
be in a high-energy state

Metaheuristic Optimization Thomas Weise 8/32



e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm




e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)




e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)

AE = E (pos') — E (pos) (1)




e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)

AE = E (pos') — E (pos) (1)

e AF is the energy difference between the states




e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)

AE = E (pos') — E (pos) (1)

e AF is the energy difference between the states

P(AE) = {

__AE
e *T if AE >0 (2)
1 otherwise




e Based on this, Metropolis ? develops a simulation for annealing in
form of a Monte Carlo algorithm

e pos be the current configuration of the ions and pos’ a possible new
configuration, T' be the temperature (decreasing over time)

AE = E (pos') — E (pos) (1)

e AF is the energy difference between the states

__AE
P(AE) _ e *3*T if AE >0 (2)
1 otherwise

e P(AE) is the probability that the new state pos’ will be accepted



@ Introduction

@ Metropolis Algorithms
© Simulated Annealing
@ Temperature Scheduling

@ |mplementation

@ Summary



e Metropolis’ simulation @ shows how physical systems find states of
low energy.




e Metropolis’ simulation @ shows how physical systems find states of
low energy.

e The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.




e Metropolis’ simulation @ shows how physical systems find states of
low energy.

e The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

e This could be a remedy for the premature convergence problem of hill
climbing!




e Metropolis’ simulation @ shows how physical systems find states of
low energy.

e The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

e This could be a remedy for the premature convergence problem of hill
climbing!

o Idea developed by Kirkpatrick et al. ™, Cerny !, Jacobs et al.°, and
Pincus " independently:




e Metropolis’ simulation @ shows how physical systems find states of
low energy.

e The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

e This could be a remedy for the premature convergence problem of hill
climbing!

o Idea developed by Kirkpatrick et al. ™, Cerny !, Jacobs et al.°, and
Pincus " independently:

e Simulated Annealing = hill climbing 4+ sometimes accept worse states
following Metropolis’ method

[8-11]




Simulated Annealing %\’

Metropolis’ simulation ! shows how physical systems find states of
low energy.

The (simulated) physical system escapes local optima by accepting
worse solutions from time to time.

This could be a remedy for the premature convergence problem of hill
climbing!

Idea developed by Kirkpatrick et al.®, Cerny ™, Jacobs et al. ¢, and
Pincus " independently:

Simulated Annealing = hill climbing + sometimes accept worse states
following Metropolis’ method &

= lower risk of premature convergence

Metaheuristic Optimization Thomas Weise 11/32



e Modification of the Metropolis procedure:

AE = f(z') = f(2) (3)

e AF is the objective value difference between the new (') and old
candidate solution ()




¢ Modification of the Metropolis procedure:
AE = f(2') = f(v) (3)

¢ AFE is the objective value difference between the new (') and old
candidate solution ()

AFE
P(AE) — e_kB*T |f AE>0 (4)
1 otherwise

e P(AE) is the probability that the new candidate solution 2 will be
accepted




Simulated Annealing §\

¢ Modification of the Metropolis procedure:
AE = f(') - £(2) 3)

¢ AFE is the objective value difference between the new (') and old

candidate solution ()
AE

P(AE) _ 6_ T if AE >0 (4)
1 otherwise

e P(AF) is the probability that the new candidate solution =’ will be
accepted

e kp is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

Metaheuristic Optimization Thomas Weise 12/32



Simulated Annealing §\

¢ Modification of the Metropolis procedure:
AE = f(2') - f(2) 3)
¢ AFE is the objective value difference between the new (') and old
candidate solution ()

P(AE) e fAE>0 )
1 otherwise

e P(AF) is the probability that the new candidate solution =’ will be
accepted

e kp is eliminated from the equation since it is useless for optimization
and just makes the acceptance probability of solutions with worse
objective values hard to understand

e Temperature T reduced according to a specific schedule over the
iterations

Metaheuristic Optimization Thomas Weise 12/32



+— simulated Annealing( f)

— Input: f: the objective function to be minimized
Data: : the newly generated individual
Data: p.,: the point currently investigated
Data: 7': the temperature of the system which is decreased over time
Data: t: the current time index
Data: AE: the energy (objective value) difference of the p.,,.xz and T
Output: ppest: the best individual ever discovered

begin 2 o . o .
Peur — create and evaluate initial solution e This is the Slmpllfled algorlthm, see
Poes €7 1w next slide for full algorithm.

while —should Terminate do
<— derive new solution from p.,,
AE «— f(pnew) = f(peur)
if AE <0 then
Pcur $—
if f(/)y,,‘px) < f(pbest.a?) then ppest <— Peur

else
T +— getTemperature(t)

if {randomly from [0,1]} < e~ then Peur —

| te—t+1

return ppest

Metaheuristic Optimization Thomas Weise 13/32



Phest <— simulated Annealing( f)

— Input: f: the objective function to be minimized
Data: : the newly generated individual
Data: p.,: the point currently investigated
Data: 7': the temperature of the system which is decreased over time
Data: t: the current time index
Data: AE: the energy (objective value) difference of the p.,,.xz and T
Output: ppest: the best individual ever discovered

begin

peur <— create and evaluate initial solution e This is the Slmpllfled algorithm, see
Bese € next slide for full algorithm.
while —should Terminate do
<— derive new solution from p.,, ® Temperature SChedUIe
$fi o {) ( : ) = f(peur) getTemperature: How the
i < 0 then .
Peur +— temperature T' decreases over time?

if f(peur®) < f(Dbest-x) then prest <— peur

else
T +— getTemperature(t)
if {randomly from [0,1]} < e~ then Peur —

| te—t+1

return ppest

Metaheuristic Optimization Thomas Weise 13/32



Phest <— simulated Annealing( f)

— Input: f: the objective function to be minimized

Data: : the newly generated individual

Data: p.,: the point currently investigated

Data: 7': the temperature of the system which is decreased over time
Data: t: the current time index

Data: AE: the energy (objective value) difference of the p.,,.xz and

Output: ppest: the best individual ever discovered
begin

Peur <— create and evaluate initial solution
Pbest < Deur

t— 1

while —should Terminate do

<— derive new solution from p.,,

e This is the simplified algorithm, see
next slide for full algorithm.

e Temperature schedule

AE «— f(prew) = f(peur) getTemperature: How the
if AE <0 then .
Peur — temperature 1" decreases over time?
if f(peur-®) < f(pbest-) then Ppest <— peur NS
e 1T ifAE>0
else o P(AE) ES .
T +— getTemperature(t) 1 OtherW|Se
if {randomly from [0,1]} < e~ then Peur —
| t«—1t+1
| return ppes
Metaheuristic Optimization Thomas Weise 13/32




Prest <— simulated Annealing( f)

Input: f: the objective function to be minimized

Data: : the newly generated individual

Data: p.,: the point currently investigated

Data: the temperature of the system which is decreased over time
Data: t: the current time index

Data: AE: the energy (objective value) difference of the pc...z and 7
Output: ppest: the best individual ever discovered

begin
Peur-g — create()
c <— gpm(peur-g)

e Full algorithm

while —should Terminate do
.g — mutation(pc,.g)
@ +— gpm(pnen-g)
Y f(pren-x)
AE +— Y — PeurY
if AE <0 then
Peur +—
if peury < Poest.y then ppese ¢— peus

else
T +— getTemperature(t)

if {randomly from [0,1]} < e~ then ., «—

| t«—t+1

return ppes

Metaheuristic Optimization Thomas Weise 14/32



@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ |mplementation

@ Summary






getTemperature(t) € (0, +00) vVt e Ny




getTemperature(t) € (0, +00) vVt e Ny (5)
getTemperature(0) = Tspart > 0




getTemperature(t) € (0, +00) vVt e Ny (5)
getTemperature(0) = Tspart > 0 (6)
lim getTemperature(t) = 0 (7)

t—4o00




Temperature Scheduling %\,

The temperature schedule defines how the temperature parameter 71" in the
Simulated Annealing process is set. The operator

getTemperature : Ny — RT maps the current iteration index ¢ to a
(positive) real temperature value T'. "> %!

getTemperature(t) € (0, +00) vVt e Ny (5)
getTemperature(0) = Tspart > 0 (6)
0 (7)

li et T Fat
lm getTemperature(t)
The temperature schedule allows for a smooth transition of SA algorithm
behavior from “like Random Walk” (high temperature) to “like hill
climbing” (low temperature).

Metaheuristic Optimization Thomas Weise 16/32



Tstart |f t < 3
et Temperature, (t) = :
T g p i (t) { Tstart/Int  otherwise
N~ getTemperature..,(t) = (1 — €)' * Tstart
08Tst i -
z aN
\'\\ getTemperaturepoy (t) = (1 - => * Tstart
0.6Ts} A '\\. linear scaling
N (i.e., polynomial with a=1)
“\ \\.
exponentially '~
| o ponen .
0.4T; / ...... with £=0.025 .
logarithmically - '
02Tt polynomial .
©-.. with o=2 -
exponentially el
withe=0.0s Tt
0 20 40 60 8




e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution




e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution

e Exponential Scheduling
e determine € € (0,1) by experiment




e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution

e Exponential Scheduling
e determine € € (0,1) by experiment
¢ Polynomial Scheduling

e (v is a constant, maybe 1, 2, or 4
e an upper iteration limit ¢ after which the temperature should become

Zero




e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution

e Exponential Scheduling
e determine € € (0,1) by experiment
¢ Polynomial Scheduling

e (v is a constant, maybe 1, 2, or 4
e an upper iteration limit ¢ after which the temperature should become
zero

¢ Adaptive Scheduling

e Example: T = B (f(peur-x) — f(Z)) every m steps, B determined by
experiment



e Logarithmic Scheduling

o Tgart: use a value larger than the greatest difference of the objective
value of a local minimum and its best neighboring candidate solution

Exponential Scheduling
e determine € € (0,1) by experiment

Polynomial Scheduling
e (v is a constant, maybe 1, 2, or 4
e an upper iteration limit ¢ after which the temperature should become
zero

Adaptive Scheduling

e Example: T = B (f(peur-x) — f(Z)) every m steps, B determined by
experiment

Often: Adjust temperature only every m € Ny steps



o If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems




o If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

e ...but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %




Temperature Scheduling: Convergence %\’

1AQ

e If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

e ...but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %

e ...which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA ) .

Metaheuristic Optimization Thomas Weise 19/32



Temperature Scheduling: Convergence %\

If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

... but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %

... which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA ) .

Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

Simulated Annealing turns into Simulated Quenching [

Metaheuristic Optimization Thomas Weise 19/32



Temperature Scheduling: Convergence

If temperature decreases slowly (e.g., logarithmically), convergence to
the global optimum has been proven for various optimization problems

... but the number of function evaluations needed to find the
optimum with P — 1 is still higher than what an exhaustive
enumeration would need %

... which makes sense because otherwise we could solve
NP-complete problems efficiently and exactly with SA ) .

Faster cooling schedules (e.g., exponential ones) lose guaranteed
convergence but progress much faster

Simulated Annealing turns into Simulated Quenching [

Here: Restarting good in order avoid premature convergence

Metaheuristic Optimization Thomas Weise 19/32



@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ mplementation

@ Summary



e Add a new interface for temperature scheduling




e Add a new interface for temperature scheduling

e Implement Simulated Annealing according to the algorithm




e Add a new interface for temperature scheduling

e Implement Simulated Annealing according to the algorithm

e Implement some temperature schedules




Add a new interface for temperature scheduling

Implement Simulated Annealing according to the algorithm

e Implement some temperature schedules
Test




Temperature Scheduling %\’

From the programmer’s perspective, we can say:

Listing: Temperature Schedule

public interface ITemperatureSchedule {

public abstract double getTemperature(final int t);
}

Metaheuristic Optimization Thomas Weise 22/32



Simulated Annealing Algorithm

=

Listing: Simulated Anneali

public class SA<G, X> extends OptimizationAlgorithm<G, X> {
public Individual<G, X> solve(final IObjectiveFunction<X> f) {
Individual<G, X> pcur, pnew, pbest;
double deltaE, T;
int t;

peur = new Individual<>Q);
pnew = new Individual<>Q;
pbest = new Individual<>();

t =15

pcur.g = this.nullary.create(this.random);
peur.x this.gpm.gpm(pcur.g);

peur.v f.compute (pcur.x);

pbest.assign(pcur);

while (!(this.termination.shouldTerminate())) {

pnew.g = this.unary.mutate(pcur.g, this.random);
pnew.x = this.gpm.gpm(pnew.g);
pnew.v = f.compute(pnew.x);

deltaE = (pnew.v - pcur.v);

if (deltaE <= 0d) {
pcur.assign(pnew) ;
if (pnew.v < pbest.v) {
pbest.assign(pnew) ;

}
} else {
T = this.temperature.getTemperature(t);
if (this.random.nextDouble() < Math.exp(-deltaE / T)) {
pcur.assign(pnew);

}
tt;
}

return pbest;

¥
} Metaheuristic Optimization Thomas Weise

23/32




The Logarithmic Temperature Schedule %\’

1AQ

Listing: The Logarithmic Temperature Schedule

public class Logarithmic implements ITemperatureSchedule {
public double getTemperature(final int t) {
if (¢ < 3) {
return this.Ts;
}
return (this.Ts / Math.log(t));
}

}

Metaheuristic Optimization Thomas Weise 24/32



The Exponential Temperature Schedule

Listing: The Exponential Temperature Schedule

public class Exponential implements ITemperatureSchedule {
public double getTemperature(final int t) {
return (this.Ts * Math.pow((1d - this.epsilon), t));
¥
}

Metaheuristic Optimization Thomas Weise

25/32



The Polynomial Temperature Schedule %\’

1AQ

Listing: The Polynomial Temperature Schedule

public class Polynomial implements ITemperatureSchedule {
public double getTemperature(final int t) {
return (this.Ts * Math.pow(Math.max(0d, (1d - (t / this.tmax))),//
this.alpha));

Metaheuristic Optimization Thomas Weise 26/32



@ Introduction

@ Metropolis Algorithms
® Simulated Annealing
@ Temperature Scheduling

@ |mplementation

@ summary



e Annealing is a physical process in metallurgy where low-energy
configurations are found




e Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm




e Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm

e which serves as role model for an optimization algorithm: simulated
annealing




e Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm

e which serves as role model for an optimization algorithm: simulated
annealing

e Different temperature schedules




e Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm

e which serves as role model for an optimization algorithm: simulated
annealing

e Different temperature schedules

e Convergence to global optimum is guaranteed for many problems and
logarithmic schedules ... but very slow




Summary %\

¢ Annealing is a physical process in metallurgy where low-energy
configurations are found

e This process is simulated with the Metropolis algorithm

e which serves as role model for an optimization algorithm: simulated
annealing

e Different temperature schedules

e Convergence to global optimum is guaranteed for many problems and
logarithmic schedules ... but very slow

e Simulated quenching is faster but loses guaranteed optimality

Metaheuristic Optimization Thomas Weise 28/32



il
Thank you

Thomas Weise [i% 2 &]
tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Metaheuristic Optimization

Thomas Weise

Caspar David Fried
hitp:/fen.wikip


mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn




Bibliography |

W

>
<

1. F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon Materials Series.
Amsterdam, The Netherlands: Elsevier Science Publishers B.V., 2004. ISBN 0080441645 and 9780080441641. URL
http://books.google.de/books?id=52G1loa7HxGsC.

2. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Nicholas Rosenbluth, Augusta H. Teller, and Edward Teller.
Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087-1092, June 1953.
doi: 10.1063/1.1699114. URL http://sc.fsu.edu/~beerli/mcmc/metropolis-et-al-1953.pdf.

3. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine,
220(4598):671-680, May 13, 1983. doi: 10.1126/science.220.4598.671. URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf.

4. Vladimir Cerny. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal
of Optimization Theory and Applications, 45(1):41-51, January 1985. doi: 10.1007/BF00940812. URL
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf. Communicated by S. E. Dreyfus. Also: Technical
Report, Comenius University, Mlynska Dolina, Bratislava, Czechoslovakia, 1982.

5. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. ACM SIGMICRO
Newsletter, 13(4):143-148, December 1982.

6. Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. Monte carlo techniques in code optimization. In International
Symposium on Microarchitecture — Proceedings of the 15th Annual Workshop on Microprogramming (MICRO 15), pages
143-146, Palo Alto, CA, USA, October 5-7, 1982. Piscataway, NJ, USA: IEEE (Institute of Electrical and Electronics
Engineers).

7. Martin Pincus. A monte carlo method for the approximate solution of certain types of constrained optimization problems.
Operations Research (Oper. Res.), 18(6):1225-1228, November—December 1970.

8. Peter Salamon, Paolo Sibani, and Richard Frost. Facts, Conjectures, and Improvements for Simulated Annealing, volume 7
of SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics (SIAM), 2002. ISBN 0898715083 and 9780898715088. URL
http://books.google.de/books?id=jhAld1YvClcC.

9. Peter J. M. van Laarhoven and Emile H. L. Aarts, editors. Simulated Annealing: Theory and Applications, volume 37 of
Mathematics and its Applications. Norwell, MA, USA: Kluwer Academic Publishers, 1987. ISBN 90-277-2513-6,
978-90-277-2513-4, and 978-90-481-8438-5. URL http://books.google.de/books?id=-IgUab6Dp_IC.

Metaheuristic Optimization Thomas Weise 31/32


http://books.google.de/books?id=52Gloa7HxGsC
http://sc.fsu.edu/~beerli/mcmc/metropolis-et-al-1953.pdf
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf
http://mkweb.bcgsc.ca/papers/cerny-travelingsalesman.pdf
http://books.google.de/books?id=jhAldlYvClcC
http://books.google.de/books?id=-IgUab6Dp_IC

Bibliography 11

1AQ

e

10.

11.

12.

13.

14.

15.

Lawrence Davis, editor. Genetic Algorithms and Simulated Annealing. Research Notes in Artificial Intelligence. London,
UK: Pitman, 1987. ISBN 0273087711, 0934613443, 9780273087717, and 978-0934613446. URL
http://books.google.de/books?id=edf SSAAACAAJ.

James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control —
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience, first
edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 978-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f660IvvkKnAC.

William T. Vettering, Saul A. Teukolsky, William H. Press, and Brian P. Flannery. Numerical Recipes in C++ — Example
Book — The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, second edition, February 7, 2002.
ISBN 0521750342 and 978-0521750349. URL http://books.google.de/books?id=gwijz-0yIYEC.

Lester Ingber. Simulated annealing: Practice versus theory. Mathematical and Computer Modelling, 18(11):29-57,
November 1993. doi: 10.1016/0895-7177(93)90204-C. URL http://www.ingber.com/asa93_sapvt.pdf.

Andreas Nolte and Rainer Schrader. A note on the finite time behaviour of simulated annealing. Mathematics of
Operations Research (MOR), 25(3):476-484, August 2000. doi: 10.1287/moor.25.3.476.12211. URL
http://www.zaik.de/~paper/unzip.html?7file=2zaik1999-347.ps. Revised version from March 1999.

Edgar Anderson. The irises of the gaspé peninsula. Bulletin of the American Iris Society, 59:2-5, 1935.

Metaheuristic Optimization Thomas Weise 32/32


http://books.google.de/books?id=edfSSAAACAAJ
http://books.google.de/books?id=f66OIvvkKnAC
http://books.google.de/books?id=gwijz-OyIYEC
http://www.ingber.com/asa93_sapvt.pdf
http://www.zaik.de/~paper/unzip.html?file=zaik1999-347.ps

	Outline
	Introduction
	Section Outline
	Introduction: Annealing
	Introduction: Annealing
	Introduction: Annealing

	Metropolis Algorithms
	Section Outline
	Metropolis Algorithm
	Metropolis Algorithm

	Simulated Annealing
	Section Outline
	Simulated Annealing
	Simulated Annealing

	Temperature Scheduling
	Section Outline
	Temperature Scheduling
	Temperature Scheduling
	Temperature Scheduling: Setup
	Temperature Scheduling: Convergence

	Implementation
	Section Outline
	Implementation
	Temperature Scheduling
	Simulated Annealing Algorithm
	The Logarithmic Temperature Schedule
	The Exponential Temperature Schedule
	The Polynomial Temperature Schedule

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

