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❼ Based on this idea, the hill climber generates modified copies of the
current solution and accepts them if they are better than the old
solution.

❼ What would happen if we would always accept them?
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Random Walks

pbest ←− randomWalk(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
pnew ←− pbest
while ¬shouldTerminate do

pnew.g ←− mutation(pnew.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest
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1 create initial candidate
solution pbest (also store
it in pnew)

2 derive new solution pnew
from pnew

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met
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Random Walks

❼ Let us implement a random walk for

1 numerical optimization (over Rn) and for
2 combinatorial optimization (e.g., for TSP over permutations).
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Implementing the Random Walk

Listing: The Random Walk Algorithm

public class RandomWalk <G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

pnew.assign(pstar);

while (!( this.termination.shouldTerminate ())) {

pnew.g = this.unary.mutate(pnew.g, this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}
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When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼ Comparison with algorithms that do not use this information!

Metaheuristic Optimization Thomas Weise 8/12



Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼

❼

Metaheuristic Optimization Thomas Weise 9/12



Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼ Hence, their performance is much worse, similar to random sampling.

❼

Metaheuristic Optimization Thomas Weise 9/12



Summary

❼ Random walks are like hill climbers, with the exception that they do
not use the objective function to guide the search direction.

❼ Hence, their performance is much worse, similar to random sampling.

❼ This means that the idea of expection some sort of “gradient” in the
search space towards better solutions is reasonable.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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