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❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

1 Start with one (or multiple) initially generated candidate solutions
2 Iteratively refine this/these solution(s) solutions in a loop (change,

combine, etc.)

❼ In Random Sampling, we actually don’t do that, we do not refine
solutions.

❼ What could be the easiest possible way to realize the metaheuristic
idea?
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Local Search

A local search algorithm solves an
optimization problem by iteratively
moving from one candidate solution to
a neighboring candidate solution until a
termination criterion is met. [1–4]

“neighboring” here means: can be
reached by applying a search operation
once.
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Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest
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1 create initial candidate
solution pbest

2 derive new solution pnew
from this solution
candidate

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met
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Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm
2 Implement nullary search operation for Rn

3 Implement unary search operation for Rn

4 Implement suitable termination criterion
5 Implement objective functions f
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Implementing HC

Listing: The Hill Climbing Algorithm

public class HC<G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

while (!( this.termination.shouldTerminate ())) {

pnew.g = this.unary.mutate(pstar.g, this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}
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Search Space + Operators

Listing: A definition for a Subspace of Rn

public class Rn {

/** the maximum coordinate value */

public final double max;

/** the minimum coordinate value */

public final double min;

/** the dimension */

public final int dim;

}
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Search Space + Operators

Listing: A nullary search operation in R
n

public final class RnNullaryUniform extends Rn implements

INullarySearchOperation <double[]> {

@Override

public final double [] create(final Random r) {

final double [] g = new double[this.dim];

for (int i = g.length; (--i) >= 0;) {

g[i] = (this.min + (r.nextDouble () * (this.max -

this.min)));

}

return g;

}

}
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Search Space + Operators

Listing: A unary search operation in R
n

public final class RnUnaryNormal extends Rn implements

IUnarySearchOperation <double[]> {

@Override

public final double [] mutate(final double [] genotype , final Random r) {

double d;

final double [] g = genotype.clone();

final int i = r.nextInt(g.length);

do {

d = (g[i] + (r.nextGaussian () * (this.max - this.min) * 0.01d));

} while ((d < this.min) || (d > this.max));

g[i] = d;

return g;

}

}
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Search Space + Operators

Listing: An alternative unary search operation in R
n

public class RnUnaryNormal2 extends Rn implements IUnarySearchOperation <double[]> {

@Override

public double [] mutate(final double [] genotype , final Random r) {

double d;

final double [] g = genotype.clone();

for (int i = g.length; (--i) >= 0;) {

do {

d = (g[i] + (r.nextGaussian () * (this.max - this.min) * 0.01d));

} while ((d < this.min) || (d > this.max));

g[i] = d;

}

return g;

}

}
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(over Rn)

❼ Now let’s implement some objective functions. . . common benchmark
problems for Rn are:

1 f(x) =

n−1
∑

i=0

x
2
i Sphere Function [5–10]

2 f(x) =

n−1
∑

i=0

(

i
∑

j=0

xj

)2

Schwefel’s Problem 1.2 [5, 9]

3 f(x) = max{|xi| ∀i ∈ 0..(n− 1)} Schwefel’s Problem 2.21 [5, 9]

4 f(x) = −

n−1
∑

i=0

(

xi sin
√

|xi|
)

Schwefel’s Problem 2.26 [5, 9]
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Sphere Benchmark Function

Listing: The Sphere Function f(x) =
∑n

i=1 x
2
i

/** the sphere function */

public class Sphere extends Rn implements IObjectiveFunction <double[]> {

@Override

public final double compute(final double [] x) {

double s = 0d;

for (int i = this.dim; (--i) >= 0;) {

s += (x[i] * x[i]);

}

return s;

}

}
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Schwefel’s Function 2.21

Listing: Schwefel’s Function 2.21 f(x) = max{|xi| ∀i ∈ 0..(n− 1)}

/** Schwefel problem 2.21 */

public class Schwefel_2_21 extends Rn implements IObjectiveFunction <double[]> {

@Override

public final double compute(final double [] x) {

double m = 0d;

for (int i = this.dim; (--i) >= 0;) {

final double d = Math.abs(x[i]);

if (d > m) {

m = d;

}

}

return m;

}

}
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Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. . . . . . but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ We have implemented some objective functions. . .

❼

Metaheuristic Optimization Thomas Weise 16/37



Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. . . . . . but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ We have implemented some objective functions. . .

❼ Now we can test our algorithm!
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Running

Listing: A simple test program for HC on a 5d Sphere function

/** a simple test class applying the hill climber to a function */

public class HCOnSphere {

public static void main(final String [] args) {

final HC <double[], double[]> algorithm;

final Rn searchSpace;

Individual <double[], double[]> result;

algorithm = new HC <>();

searchSpace = new Rn(-10, 10, 5);

algorithm.nullary = new RnNullaryUniform(searchSpace);

algorithm.unary = new RnUnaryNormal(searchSpace);

for (int i = 1; i < 100; i++) {

algorithm.termination = new MaxSteps (1000000);

result = algorithm.solve(new Sphere(searchSpace));

System.out.println("run " + i + " has result quality " + result.v);

}

}

}
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Applying Hill Climbing: Robocode!
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Applying Hill Climbing: Robocode!

Robocode [11]:

❼ Programming game in Java

❼ Program the “AI” driving a small battle robot

❼ Goal: Our robot should survive. . . and kill many others!

❼ Let us take a look at that game. . .
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Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!
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Applying ill Climbing: Robocode!
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Tracker.java 10.10.2012

/**
* run: Tracker's main run function
*/
public void run() {
// Set colors
setBodyColor(new Color(128, 128, 50));
setGunColor(new Color(50, 50, 20));
setRadarColor(new Color(200, 200, 70));
setScanColor(Color.white);
setBulletColor(Color.blue);

// Prepare gun
trackName = null; // Initialize to not tracking anyone
setAdjustGunForRobotTurn(true); // Keep the gun still when we turn
gunTurnAmt = 10; // Initialize gunTurn to 10

// Loop forever
while (true) {
// turn the Gun (looks for enemy)
turnGunRight(gunTurnAmt);
// Keep track of how long we've been looking
count++;
// If we've haven't seen our target for 2 turns, look left
if (count > 2) {
gunTurnAmt = -10;

}
// If we still haven't seen our target for 5 turns, look right
if (count > 5) {
gunTurnAmt = 10;

}
// If we *still* haven't seen our target after 10 turns, find another
target
if (count > 11) {
trackName = null;

}
}



Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .
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Applying ill Climbing: Robocode!
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OptiBot.java 11.10.2012

while (true) {
if (this.m_trackName != null) {
if (this.m_rand.nextDouble() < BEHAVIOR[RANDOM_FIRE]) {
this.setFire(map(BEHAVIOR[RANDOM_FIRE_POWER], 3d));

}
}

// turn the Gun (looks for enemy)
this.setTurnGunRight(this.m_gunTurnAmt);
// Keep track of how long we've been looking
this.m_count += map(BEHAVIOR[COUNT_ADDER], 1d);
// If we've haven't seen our target for 2 turns, look left
if (this.m_count > map(BEHAVIOR[COUNT_LIMIT], 2d)) {
this.m_gunTurnAmt = (map(BEHAVIOR[GUN_TURN_AMOUNT_OVER_LIMIT],
-10d));

}
// If we still haven't seen our target for 5 turns, look right
if (this.m_count > (map(BEHAVIOR[COUNT_LIMIT_2], 5d))) {
this.m_gunTurnAmt = map(BEHAVIOR[INIT_GUN_TURN_AMOUNT], 10d);

}
// If we *still* haven't seen our target after 10 turns, find another
// target
if (this.m_count > map(BEHAVIOR[COUNT_LIMIT_RESET_TRACK], 10d)) {
this.m_trackName = null;

}

if (BEHAVIOR[RANDOM_01] > this.m_rand.nextDouble()) {
if (this.getOthers() > 1) {
this.m_trackName = null;

}
}

this.execute();
}



Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .

❼ . . . who knows whether these values are good?

❼ Idea: Turn them into parameters that the hill climber can
configure. . . and maybe add one or two actions

❼ Find the best values for the parameters of that new AI
optibot.OptiBot !
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Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!
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Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼ OK, we can let the Robocode [11] environment run pre-defined battles
via the command line

❼ But how to pass the parameter values to our OptiBot ?

❼ Let OptiBot load a configuration file when it starts!

❼ Candidate solutions x = string with text representation of the
double values of the parameters
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Running

Listing: A Genotype-Phenotype Mapping translating double[] to String

public class RobocodeGPM implements IGPM <double[], String > {

/** the internal string builder */

private final StringBuilder m_sb;

/** the robocode gpm */

public RobocodeGPM () {

super();

this.m_sb = new StringBuilder ();

}

public String gpm(final double [] genotype) {

boolean notfirst = false;

this.m_sb.setLength (0);

for (final double d : genotype) {

if (notfirst) {

this.m_sb.append(✬ ✬);

} else {

notfirst = true;

}

this.m_sb.append(d);

}

return this.m_sb.toString ();

}

}
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Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

1 clean up all temporary files from previous invocations
2 Take candidate solution (parameter string) and store it in configuration

file
3 Run Robocode
4 Extract score from a (temporary) result file

Metaheuristic Optimization Thomas Weise 22/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode

❼

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode
❼ Round the score, because battles are randomized (and minimize

−score by convention)

❼

Metaheuristic Optimization Thomas Weise 23/37



Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode
❼ Round the score, because battles are randomized (and minimize

−score by convention)

❼ Plug this into our existing hill climbing implementation!
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Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼ All code and things are (of course) included in the sources.zip at

the teaching page
❼ the hill climbing approach in package

metaheuristicOptimization.examples.robocode

❼ the Robocode libraries and files in folder resources/robocode

(including OptiBot under resources/robocode/robots/optibot )
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Running

Listing: A simple test program for HC on the Robocode problem.

public class HCOnRobocode {

public static void main(final String [] args) {

final HC <double[], String > hc = new HC <>();

final Rn rn = new Rn(-1.5d, 1.5d, 20);

hc.gpm = new RobocodeGPM ();

hc.nullary = new RnNullaryUniform(rn);

hc.unary = new RnUnaryNormal2(rn);

hc.termination = new MaxSteps (5000);

System.out.println(hc.solve(new RobocodeObjective ()));

}

}
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Applying Hill Climbing: Robocode!
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Applying Hill Climbing: Combinatorial Problems?

❼ How about hill climbers for combinatorial problems?

❼ Let us try, say, to solve a bin packing problem [12]
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Search Space + Operators

Listing: A nullary search operation Creating Permutations.

public class PermutationNullaryUniform implements INullarySearchOperation <int[]> {

/** the length of the permutations */

public final int n;

@Override

public int[] create(final Random r) {

int i, j, t;

final int[] g = new int[this.n];

for (i = this.n; (--i) >= 0;) {

g[i] = i;

}

for (i = this.n; (--i) >= 0;) {

j = r.nextInt(this.n); // see [13–15]

t = g[j];

g[j] = g[i];

g[i] = t;

}

return g;

}

}
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Search Space + Operators

Listing: Modify a Permutation by Swapping Elements.

public class PermutationUnarySwap implements IUnarySearchOperation <int[]> {

@Override

public int[] mutate(final int[] p, final Random r) {

int i, j, t;

final int[] g = p.clone();

do {

i = r.nextInt(g.length);

do {

j = r.nextInt(g.length);

} while (j == i);

t = g[i];

g[i] = g[j];

g[j] = t;

} while (r.nextBoolean ());

return g; // return new permutation

}

}
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Objective Function

Listing: A simple objective function for the Bin Packing problem.

public class BinPackingObjective implements IObjectiveFunction <int[]> {

/** the size of the bins */

public final int binSize;

/** the sizes of the objects */

public final int[] objects;

@Override

public double compute(final int[] x) {

int bins , remainingSize , curSize;

bins = 0; // assume zero bins

remainingSize = 0; // then there also is no space left in them

for (final int i : x) { // iterate over all elements in the permutation

curSize = this.objects[i]; // get size of current element

if (curSize > remainingSize) { // if element does not fit in current bin

anymore

bins ++; // open a new bin

remainingSize = this.binSize; // remaining space = bin size

}

remainingSize -= curSize; // put object in bin: remaining size reduced

}

return bins; // return total number of bins required

}

}
Metaheuristic Optimization Thomas Weise 30/37



Running

Listing: A simple test program for HC on the Bin Packing problem.

public class HCOnBinPacking {

public static void main(final String [] args) {

final HC <int[], int[]> hc = new HC <>();

final BinPackingObjective f = BinPackingObjective.EXAMPLE_PROBLEM;

hc.nullary = new PermutationNullaryUniform(f.objects.length);

hc.unary = new PermutationUnarySwap ();

System.out.println("Hill Climbing");

for (int i = 1; i < 100; i++) {

hc.termination = new MaxSteps (100000);

final Individual <int[], int[]> res = hc.solve(f);

System.out.println(res.v);

}

}

}
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Hill Climbing: Problems
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Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼ What problem could occur if we always and only accept better
candidate solutions?

Definition (Premature Convergence)

An optimization process has prematurely converged to a local optimum if it is no

longer able to explore other parts of the search space than the area currently being

examined and there exists another region that contains a superior solution [16, 17].
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When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm
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When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼ Comparison with algorithms that do not use this information!
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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