
Metaheuristic Optimization
5. Hill Climbing

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http:/iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http:/iao.hfuu.edu.cn

Outline

1 Hill Climbing

2 Problems: Local Optima

Metaheuristic Optimization Thomas Weise 2/37

w
eb
si
te

Metaheuristics

❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

❼

❼

Metaheuristic Optimization Thomas Weise 3/37

Metaheuristics

❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

1 Start with one (or multiple) initially generated candidate solutions

❼

❼

Metaheuristic Optimization Thomas Weise 3/37

Metaheuristics

❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

1 Start with one (or multiple) initially generated candidate solutions
2 Iteratively refine this/these solution(s) solutions in a loop (change,

combine, etc.)

❼

❼

Metaheuristic Optimization Thomas Weise 3/37

Metaheuristics

❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

1 Start with one (or multiple) initially generated candidate solutions
2 Iteratively refine this/these solution(s) solutions in a loop (change,

combine, etc.)

❼ In Random Sampling, we actually don’t do that, we do not refine
solutions.

❼

Metaheuristic Optimization Thomas Weise 3/37

Metaheuristics

❼ In Lesson 1: Introduction, we have learned the idea of metaheuristics

1 Start with one (or multiple) initially generated candidate solutions
2 Iteratively refine this/these solution(s) solutions in a loop (change,

combine, etc.)

❼ In Random Sampling, we actually don’t do that, we do not refine
solutions.

❼ What could be the easiest possible way to realize the metaheuristic
idea?

Metaheuristic Optimization Thomas Weise 3/37

Local Search

A local search algorithm solves an
optimization problem by iteratively
moving from one candidate solution to
a neighboring candidate solution until a
termination criterion is met. [1–4]

“neighboring” here means: can be
reached by applying a search operation
once.

Metaheuristic Optimization Thomas Weise 4/37

Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/37

Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/37

1 create initial candidate
solution pbest

Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/37

1 create initial candidate
solution pbest

2 derive new solution pnew
from this solution
candidate

Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/37

1 create initial candidate
solution pbest

2 derive new solution pnew
from this solution
candidate

3 if pnew is better than
pbest, set pbest = pnew

Hill Climbing

pbest ←− hillClimbing(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− mutation(pbest.g)
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 5/37

1 create initial candidate
solution pbest

2 derive new solution pnew
from this solution
candidate

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼

❼

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems

❼

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm
2 Implement nullary search operation for Rn

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm
2 Implement nullary search operation for Rn

3 Implement unary search operation for Rn

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm
2 Implement nullary search operation for Rn

3 Implement unary search operation for Rn

4 Implement suitable termination criterion

Metaheuristic Optimization Thomas Weise 6/37

Implementing Hill Climbing

❼ Let us implement and test a hill climber

❼ Common domain: real-valued, continuous optimization problems, i.e.,
tasks defined over Rn)

❼ What do we need?

1 Implement basic hill climbing algorithm
2 Implement nullary search operation for Rn

3 Implement unary search operation for Rn

4 Implement suitable termination criterion
5 Implement objective functions f

Metaheuristic Optimization Thomas Weise 6/37

Implementing HC

Listing: The Hill Climbing Algorithm

public class HC<G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

while (!(this.termination.shouldTerminate ())) {

pnew.g = this.unary.mutate(pstar.g, this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}

Metaheuristic Optimization Thomas Weise 7/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. . .

❼

❼

Metaheuristic Optimization Thomas Weise 8/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼

❼

Metaheuristic Optimization Thomas Weise 8/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = R
n

❼

Metaheuristic Optimization Thomas Weise 8/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼

Metaheuristic Optimization Thomas Weise 8/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

Metaheuristic Optimization Thomas Weise 8/37

Search Space + Operators

Listing: A definition for a Subspace of Rn

public class Rn {

/** the maximum coordinate value */

public final double max;

/** the minimum coordinate value */

public final double min;

/** the dimension */

public final int dim;

}

Metaheuristic Optimization Thomas Weise 9/37

Search Space + Operators

Listing: A nullary search operation in R
n

public final class RnNullaryUniform extends Rn implements

INullarySearchOperation <double[]> {

@Override

public final double [] create(final Random r) {

final double [] g = new double[this.dim];

for (int i = g.length; (--i) >= 0;) {

g[i] = (this.min + (r.nextDouble () * (this.max -

this.min)));

}

return g;

}

}

Metaheuristic Optimization Thomas Weise 10/37

Search Space + Operators

Listing: A unary search operation in R
n

public final class RnUnaryNormal extends Rn implements

IUnarySearchOperation <double[]> {

@Override

public final double [] mutate(final double [] genotype , final Random r) {

double d;

final double [] g = genotype.clone();

final int i = r.nextInt(g.length);

do {

d = (g[i] + (r.nextGaussian () * (this.max - this.min) * 0.01d));

} while ((d < this.min) || (d > this.max));

g[i] = d;

return g;

}

}

Metaheuristic Optimization Thomas Weise 11/37

Search Space + Operators

Listing: An alternative unary search operation in R
n

public class RnUnaryNormal2 extends Rn implements IUnarySearchOperation <double[]> {

@Override

public double [] mutate(final double [] genotype , final Random r) {

double d;

final double [] g = genotype.clone();

for (int i = g.length; (--i) >= 0;) {

do {

d = (g[i] + (r.nextGaussian () * (this.max - this.min) * 0.01d));

} while ((d < this.min) || (d > this.max));

g[i] = d;

}

return g;

}

}

Metaheuristic Optimization Thomas Weise 12/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼

Metaheuristic Optimization Thomas Weise 13/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ Now let’s implement some objective functions. . .

Metaheuristic Optimization Thomas Weise 13/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ Now let’s implement some objective functions. . . common benchmark
problems for Rn are:

Metaheuristic Optimization Thomas Weise 13/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ Now let’s implement some objective functions. . . common benchmark
problems for Rn are:

1 f(x) =

n−1
∑

i=0

x
2
i Sphere Function [5–10]

2 f(x) =

n−1
∑

i=0

(

i
∑

j=0

xj

)2

Schwefel’s Problem 1.2 [5, 9]

3 f(x) = max{|xi| ∀i ∈ 0..(n− 1)} Schwefel’s Problem 2.21 [5, 9]

4 f(x) = −

n−1
∑

i=0

(

xi sin
√

|xi|
)

Schwefel’s Problem 2.26 [5, 9]

Metaheuristic Optimization Thomas Weise 13/37

Sphere Benchmark Function

Listing: The Sphere Function f(x) =
∑n

i=1 x
2
i

/** the sphere function */

public class Sphere extends Rn implements IObjectiveFunction <double[]> {

@Override

public final double compute(final double [] x) {

double s = 0d;

for (int i = this.dim; (--i) >= 0;) {

s += (x[i] * x[i]);

}

return s;

}

}

Metaheuristic Optimization Thomas Weise 14/37

Schwefel’s Function 2.21

Listing: Schwefel’s Function 2.21 f(x) = max{|xi| ∀i ∈ 0..(n− 1)}

/** Schwefel problem 2.21 */

public class Schwefel_2_21 extends Rn implements IObjectiveFunction <double[]> {

@Override

public final double compute(final double [] x) {

double m = 0d;

for (int i = this.dim; (--i) >= 0;) {

final double d = Math.abs(x[i]);

if (d > m) {

m = d;

}

}

return m;

}

}

Metaheuristic Optimization Thomas Weise 15/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ We have implemented some objective functions. . .

❼

Metaheuristic Optimization Thomas Weise 16/37

Applying Hill Climbing: G = X = R
n

❼ Now we have the algorithm. but still need search operations
and objective function

❼ Here: G = X = [min,max]n

❼ We implement this once, but can re-use it for many other problems
(over Rn)

❼ We have implemented some objective functions. . .

❼ Now we can test our algorithm!

Metaheuristic Optimization Thomas Weise 16/37

Running

Listing: A simple test program for HC on a 5d Sphere function

/** a simple test class applying the hill climber to a function */

public class HCOnSphere {

public static void main(final String [] args) {

final HC <double[], double[]> algorithm;

final Rn searchSpace;

Individual <double[], double[]> result;

algorithm = new HC <>();

searchSpace = new Rn(-10, 10, 5);

algorithm.nullary = new RnNullaryUniform(searchSpace);

algorithm.unary = new RnUnaryNormal(searchSpace);

for (int i = 1; i < 100; i++) {

algorithm.termination = new MaxSteps (1000000);

result = algorithm.solve(new Sphere(searchSpace));

System.out.println("run " + i + " has result quality " + result.v);

}

}

}

Metaheuristic Optimization Thomas Weise 17/37

Applying Hill Climbing: Robocode!

Robocode [11]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/37

image source: [11]

Applying Hill Climbing: Robocode!

Robocode [11]:

❼ Programming game in Java

❼

❼

❼

Metaheuristic Optimization Thomas Weise 18/37

image source: [11]

Applying Hill Climbing: Robocode!

Robocode [11]:

❼ Programming game in Java

❼ Program the “AI” driving a small battle robot

❼

❼

Metaheuristic Optimization Thomas Weise 18/37

image source: [11]

Applying Hill Climbing: Robocode!

Robocode [11]:

❼ Programming game in Java

❼ Program the “AI” driving a small battle robot

❼ Goal: Our robot should survive

❼

Metaheuristic Optimization Thomas Weise 18/37

image source: [11]

Applying Hill Climbing: Robocode!

Robocode [11]:

❼ Programming game in Java

❼ Program the “AI” driving a small battle robot

❼ Goal: Our robot should survive. . . and kill many others!

❼ Let us take a look at that game. . .

Metaheuristic Optimization Thomas Weise 18/37

image source: [11]

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

Metaheuristic Optimization Thomas Weise 19/37

Tracker.java 10.10.2012

/**
* run: Tracker's main run function
*/
public void run() {
// Set colors
setBodyColor(new Color(128, 128, 50));
setGunColor(new Color(50, 50, 20));
setRadarColor(new Color(200, 200, 70));
setScanColor(Color.white);
setBulletColor(Color.blue);

// Prepare gun
trackName = null; // Initialize to not tracking anyone
setAdjustGunForRobotTurn(true); // Keep the gun still when we turn
gunTurnAmt = 10; // Initialize gunTurn to 10

// Loop forever
while (true) {
// turn the Gun (looks for enemy)
turnGunRight(gunTurnAmt);
// Keep track of how long we've been looking
count++;
// If we've haven't seen our target for 2 turns, look left
if (count > 2) {
gunTurnAmt = -10;

}
// If we still haven't seen our target for 5 turns, look right
if (count > 5) {
gunTurnAmt = 10;

}
// If we *still* haven't seen our target after 10 turns, find another
target
if (count > 11) {
trackName = null;

}
}

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .

❼ . . . who knows whether these values are good?

❼

❼

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .

❼ . . . who knows whether these values are good?

❼ Idea: Turn them into parameters that the hill climber can
configure

❼

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

Metaheuristic Optimization Thomas Weise 19/37

OptiBot.java 11.10.2012

while (true) {
if (this.m_trackName != null) {
if (this.m_rand.nextDouble() < BEHAVIOR[RANDOM_FIRE]) {
this.setFire(map(BEHAVIOR[RANDOM_FIRE_POWER], 3d));

}
}

// turn the Gun (looks for enemy)
this.setTurnGunRight(this.m_gunTurnAmt);
// Keep track of how long we've been looking
this.m_count += map(BEHAVIOR[COUNT_ADDER], 1d);
// If we've haven't seen our target for 2 turns, look left
if (this.m_count > map(BEHAVIOR[COUNT_LIMIT], 2d)) {
this.m_gunTurnAmt = (map(BEHAVIOR[GUN_TURN_AMOUNT_OVER_LIMIT],
-10d));

}
// If we still haven't seen our target for 5 turns, look right
if (this.m_count > (map(BEHAVIOR[COUNT_LIMIT_2], 5d))) {
this.m_gunTurnAmt = map(BEHAVIOR[INIT_GUN_TURN_AMOUNT], 10d);

}
// If we *still* haven't seen our target after 10 turns, find another
// target
if (this.m_count > map(BEHAVIOR[COUNT_LIMIT_RESET_TRACK], 10d)) {
this.m_trackName = null;

}

if (BEHAVIOR[RANDOM_01] > this.m_rand.nextDouble()) {
if (this.getOthers() > 1) {
this.m_trackName = null;

}
}

this.execute();
}

Applying ill Climbing: Robocode!

❼ Goal: Create a powerful robot via optimization!

❼ Let us look at the code of an example robot: sample.Tracker

❼ It has lots of numerical constants in it. . .

❼ . . . who knows whether these values are good?

❼ Idea: Turn them into parameters that the hill climber can
configure. . . and maybe add one or two actions

❼ Find the best values for the parameters of that new AI
optibot.OptiBot !

Metaheuristic Optimization Thomas Weise 19/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼ OK, we can let the Robocode [11] environment run pre-defined battles
via the command line

❼

❼

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼ OK, we can let the Robocode [11] environment run pre-defined battles
via the command line

❼ But how to pass the parameter values to our OptiBot ?

❼

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼ OK, we can let the Robocode [11] environment run pre-defined battles
via the command line

❼ But how to pass the parameter values to our OptiBot ?

❼ Let OptiBot load a configuration file when it starts!

❼

Metaheuristic Optimization Thomas Weise 20/37

Applying ill Climbing: Robocode!

❼ This is a complex optimization problem!

❼ Because of our parameterization, G ⊂ R
n

❼ But what is the problem/solution space X? And how to evaluate a
candidate solution x ∈ X?

❼ OK, we can let the Robocode [11] environment run pre-defined battles
via the command line

❼ But how to pass the parameter values to our OptiBot ?

❼ Let OptiBot load a configuration file when it starts!

❼ Candidate solutions x = string with text representation of the
double values of the parameters

Metaheuristic Optimization Thomas Weise 20/37

Running

Listing: A Genotype-Phenotype Mapping translating double[] to String

public class RobocodeGPM implements IGPM <double[], String > {

/** the internal string builder */

private final StringBuilder m_sb;

/** the robocode gpm */

public RobocodeGPM () {

super();

this.m_sb = new StringBuilder ();

}

public String gpm(final double [] genotype) {

boolean notfirst = false;

this.m_sb.setLength (0);

for (final double d : genotype) {

if (notfirst) {

this.m_sb.append(✬ ✬);

} else {

notfirst = true;

}

this.m_sb.append(d);

}

return this.m_sb.toString ();

}

}

Metaheuristic Optimization Thomas Weise 21/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

2 Take candidate solution (parameter string) and store it in configuration
file

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

2 Take candidate solution (parameter string) and store it in configuration
file

3 Run Robocode

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

2 Take candidate solution (parameter string) and store it in configuration
file

3 Run Robocode
4 Extract score from a (temporary) result file

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

❼ What is the objective function f : X 7→ R?

❼ The battle score!. . . but how to compute it?

1 clean up all temporary files from previous invocations
2 Take candidate solution (parameter string) and store it in configuration

file
3 Run Robocode
4 Extract score from a (temporary) result file

Metaheuristic Optimization Thomas Weise 22/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode

❼

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode
❼ Round the score, because battles are randomized (and minimize

−score by convention)

❼

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

Configure OptiBot so that it can win against the others!

❼ Search space G: Parameter Values G = R
20

❼ Solution space X: Configuration String (to be stored in a file)

❼ Genotype-phenotype mapping gpm : G 7→ X: simply translate
double[] to String . . .

❼ Objective function
❼ let OptiBot battle 25 times against the best demo-robots:

sample.Tracker , sample.SpinBot , and sample.Walls

❼ via call to Robocode
❼ Round the score, because battles are randomized (and minimize

−score by convention)

❼ Plug this into our existing hill climbing implementation!

Metaheuristic Optimization Thomas Weise 23/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼

❼

❼

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼ All code and things are (of course) included in the sources.zip at

the teaching page

❼

❼

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼ All code and things are (of course) included in the sources.zip at

the teaching page
❼ the hill climbing approach in package

metaheuristicOptimization.examples.robocode

❼

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼ All code and things are (of course) included in the sources.zip at

the teaching page
❼ the hill climbing approach in package

metaheuristicOptimization.examples.robocode

❼ the Robocode libraries and files in folder resources/robocode

Metaheuristic Optimization Thomas Weise 24/37

Applying Hill Climbing: Robocode!

❼ This is a dynamic optimization problem involving a complex
simulation

❼ But we can tackled it with the things we have already implemented!

❼ And subsequently, with the better stuffs we will learn!

❼ All code and things are (of course) included in the sources.zip at

the teaching page
❼ the hill climbing approach in package

metaheuristicOptimization.examples.robocode

❼ the Robocode libraries and files in folder resources/robocode

(including OptiBot under resources/robocode/robots/optibot)

Metaheuristic Optimization Thomas Weise 24/37

Running

Listing: A simple test program for HC on the Robocode problem.

public class HCOnRobocode {

public static void main(final String [] args) {

final HC <double[], String > hc = new HC <>();

final Rn rn = new Rn(-1.5d, 1.5d, 20);

hc.gpm = new RobocodeGPM ();

hc.nullary = new RnNullaryUniform(rn);

hc.unary = new RnUnaryNormal2(rn);

hc.termination = new MaxSteps (5000);

System.out.println(hc.solve(new RobocodeObjective ()));

}

}

Metaheuristic Optimization Thomas Weise 25/37

Applying Hill Climbing: Robocode!

Metaheuristic Optimization Thomas Weise 26/37

Applying Hill Climbing: Combinatorial Problems?

❼ How about hill climbers for combinatorial problems?

❼ Let us try, say, to solve a bin packing problem [12]

Metaheuristic Optimization Thomas Weise 27/37

Search Space + Operators

Listing: A nullary search operation Creating Permutations.

public class PermutationNullaryUniform implements INullarySearchOperation <int[]> {

/** the length of the permutations */

public final int n;

@Override

public int[] create(final Random r) {

int i, j, t;

final int[] g = new int[this.n];

for (i = this.n; (--i) >= 0;) {

g[i] = i;

}

for (i = this.n; (--i) >= 0;) {

j = r.nextInt(this.n); // see [13–15]

t = g[j];

g[j] = g[i];

g[i] = t;

}

return g;

}

}

Metaheuristic Optimization Thomas Weise 28/37

Search Space + Operators

Listing: Modify a Permutation by Swapping Elements.

public class PermutationUnarySwap implements IUnarySearchOperation <int[]> {

@Override

public int[] mutate(final int[] p, final Random r) {

int i, j, t;

final int[] g = p.clone();

do {

i = r.nextInt(g.length);

do {

j = r.nextInt(g.length);

} while (j == i);

t = g[i];

g[i] = g[j];

g[j] = t;

} while (r.nextBoolean ());

return g; // return new permutation

}

}

Metaheuristic Optimization Thomas Weise 29/37

Objective Function

Listing: A simple objective function for the Bin Packing problem.

public class BinPackingObjective implements IObjectiveFunction <int[]> {

/** the size of the bins */

public final int binSize;

/** the sizes of the objects */

public final int[] objects;

@Override

public double compute(final int[] x) {

int bins , remainingSize , curSize;

bins = 0; // assume zero bins

remainingSize = 0; // then there also is no space left in them

for (final int i : x) { // iterate over all elements in the permutation

curSize = this.objects[i]; // get size of current element

if (curSize > remainingSize) { // if element does not fit in current bin

anymore

bins ++; // open a new bin

remainingSize = this.binSize; // remaining space = bin size

}

remainingSize -= curSize; // put object in bin: remaining size reduced

}

return bins; // return total number of bins required

}

}
Metaheuristic Optimization Thomas Weise 30/37

Running

Listing: A simple test program for HC on the Bin Packing problem.

public class HCOnBinPacking {

public static void main(final String [] args) {

final HC <int[], int[]> hc = new HC <>();

final BinPackingObjective f = BinPackingObjective.EXAMPLE_PROBLEM;

hc.nullary = new PermutationNullaryUniform(f.objects.length);

hc.unary = new PermutationUnarySwap ();

System.out.println("Hill Climbing");

for (int i = 1; i < 100; i++) {

hc.termination = new MaxSteps (100000);

final Individual <int[], int[]> res = hc.solve(f);

System.out.println(res.v);

}

}

}

Metaheuristic Optimization Thomas Weise 31/37

Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼

Metaheuristic Optimization Thomas Weise 32/37

Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼ What problem could occur if we always and only accept better
candidate solutions?

Metaheuristic Optimization Thomas Weise 32/37

Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼ What problem could occur if we always and only accept better
candidate solutions?

Metaheuristic Optimization Thomas Weise 32/37

Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼ What problem could occur if we always and only accept better
candidate solutions?

Metaheuristic Optimization Thomas Weise 32/37

Hill Climbing: Problems

❼ Hill climbers will “move” through the search space towards better
candidate solutions

❼ What problem could occur if we always and only accept better
candidate solutions?

Definition (Premature Convergence)

An optimization process has prematurely converged to a local optimum if it is no

longer able to explore other parts of the search space than the area currently being

examined and there exists another region that contains a superior solution [16, 17].

Metaheuristic Optimization Thomas Weise 32/37

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 33/37

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼

❼

❼

Metaheuristic Optimization Thomas Weise 33/37

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼

❼

Metaheuristic Optimization Thomas Weise 33/37

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼

Metaheuristic Optimization Thomas Weise 33/37

When is optimization effective?

❼ Now we have: first simple metaheuristic algorithm

❼ Is it good?

❼ When is optimization efficient?

❼ When the information we get, e.g., from objective function
evaluation, is used efficiently

❼ Comparison with algorithms that do not use this information!

Metaheuristic Optimization Thomas Weise 33/37

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http:/iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 34/37

mailto:tweise@hfuu.edu.cn
mailto:http:/iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 35/37

Bibliography I

1. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (AIMA). Upper Saddle River, NJ, USA:
Prentice Hall International Inc. and Upper Saddle River, NJ, USA: Pearson Education, 2nd edition, December 20, 2002.
ISBN 0-13-080302-2, 0-13-790395-2, 8120323823, 978-0-13-080302-3, 978-0-13-790395-5, and 9788120323827. URL
http://books.google.de/books?id=5mfMAQAACAAJ.

2. Deniz Yuret and Michael de la Maza. Dynamic hill climbing: Overcoming the limitations of optimization techniques. In
Selahattin Kuru, editor, Proceedings of the Second Turkish Symposium on Artificial Intelligence and Neural Networks
(Tuärk Yapay Zeka ve Yapay Sinir Ağları Sempozyumu) (TAINN’93), pages 208–212, Istanbul, Turkey: Boğaziçi

Üniversitesi, June 24–25, 1993. URL http://www.denizyuret.com/pub/tainn93.html.
3. James C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control –

Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience, first
edition, June 2003. ISBN 0-471-33052-3, 0-471-72213-8, 978-0-471-33052-3, and 978-0-471-72213-7. URL
http://books.google.de/books?id=f66OIvvkKnAC.

4. Richard O. Duda, Peter Elliot Hart, and David G. Stork. Pattern Classification. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience, 2nd
edition, November 2000. ISBN 0-471-05669-3 and 978-0-471-05669-0. URL
http://books.google.de/books?id=YoxQAAAAMAAJ.

5. Thomas Weise. Global Optimization Algorithms – Theory and Application. Germany: it-weise.de (self-published), 2009.
URL http://www.it-weise.de/projects/book.pdf.

6. Ponnuthurai Nagaratnam Suganthan, Nikolaus Hansen, J. J. Liang, Kalyanmoy Deb, Ying-Ping Chen, Anne Auger, and
Santosh Tiwari. Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization.
KanGAL Report 2005005, Kanpur, Uttar Pradesh, India: Kanpur Genetic Algorithms Laboratory (KanGAL), Department of
Mechanical Engineering, Indian Institute of Technology Kanpur (IIT), May 2005. URL
http://www.iitk.ac.in/kangal/papers/k2005005.pdf.

7. Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, Ann Arbor, MI,
USA: University of Michigan, August 1975. URL http://cs.gmu.edu/~eclab/kdj_thesis.html.

8. L. Darrell Whitley, Soraya B. Rana, John Dzubera, and Keith E. Mathias. Evaluating evolutionary algorithms. Artificial
Intelligence, 85(1-2):245–276, August 1996. doi: 10.1016/0004-3702(95)00124-7. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.134.

Metaheuristic Optimization Thomas Weise 36/37

http://books.google.de/books?id=5mfMAQAACAAJ
http://www.denizyuret.com/pub/tainn93.html
http://books.google.de/books?id=f66OIvvkKnAC
http://books.google.de/books?id=YoxQAAAAMAAJ
http://www.it-weise.de/projects/book.pdf
http://www.iitk.ac.in/kangal/papers/k2005005.pdf
http://cs.gmu.edu/~eclab/kdj_thesis.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.134

Bibliography II

9. Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 3(2):82–102, July 1999. doi: 10.1109/4235.771163. URL
http://www.u-aizu.ac.jp/~yliu/publication/tec22r2_online.ps.gz.

10. Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooperative coevolution. Information
Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal, 178(15), August
1, 2008. doi: 10.1016/j.ins.2008.02.017. URL http://nical.ustc.edu.cn/papers/yangtangyao_ins.pdf.

11. Robocode: Build the best – destroy the rest! Fairfax, VA, USA: SourceForge, 2012. URL
http://robocode.sourceforge.net/.

12. Michael R. Garey and David Stifler Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Series of Books in the Mathematical Sciences. New York, NY, USA: W. H. Freeman and Company, 1979. ISBN
0-7167-1044-7, 0-7167-1045-5, 978-0-7167-1044-8, and 978-0-7167-1045-5. URL
http://books.google.de/books?id=mdBxHAAACAAJ.

13. Sir Ronald Aylmer Fisher and Frank Yates. Statistical Tables for Biological, Agricultural and Medical Research. London,
UK: Oliver and Boyd and New York, NY, USA: Macmillan Publishers Co., 3rd edition, 1938. ISBN 0-02-844720-4,
0-05-000872-2, 0-582-44525-6, and 978-0582445253. URL
http://digital.library.adelaide.edu.au/dspace/handle/2440/10701.

14. Richard Durstenfeld. Algorithm 235: Random permutation. Communications of the ACM (CACM), 7(7):420, July 1964.
doi: 10.1145/364520.364540.

15. Donald Ervin Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming (TAOCP). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1969. ISBN 0-201-89684-2, 8177583352, 978-0-201-89684-8, and
978-8177583359. URL http://books.google.de/books?id=OtLNKNVh1XoC.

16. Rasmus K. Ursem. Models for Evolutionary Algorithms and Their Applications in System Identification and Control
Optimization. PhD thesis, Århus, Denmark: University of Aarhus, Department of Computer Science, April 1, 2003. URL
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf.

17. James David Schaffer, Larry J. Eshelman, and Daniel Offutt. Spurious correlations and premature convergence in genetic
algorithms. In Bruce M. Spatz and Gregory J. E. Rawlins, editors, Proceedings of the First Workshop on Foundations of
Genetic Algorithms (FOGA’90), pages 102–112, Bloomington, IN, USA: Indiana University, Bloomington Campus, July
15–18, 1990. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Metaheuristic Optimization Thomas Weise 37/37

http://www.u-aizu.ac.jp/~yliu/publication/tec22r2_online.ps.gz
http://nical.ustc.edu.cn/papers/yangtangyao_ins.pdf
http://robocode.sourceforge.net/
http://books.google.de/books?id=mdBxHAAACAAJ
http://digital.library.adelaide.edu.au/dspace/handle/2440/10701
http://books.google.de/books?id=OtLNKNVh1XoC
http://www.daimi.au.dk/~ursem/publications/RKU_thesis_2003.pdf

	Outline
	Metaheuristics
	Hill Climbing
	Local Search
	Hill Climbing
	Implementing Hill Climbing
	Implementing HC
	Applying Hill Climbing: G=X=Rn
	Search Space + Operators
	Search Space + Operators
	Search Space + Operators
	Search Space + Operators
	Applying Hill Climbing: G=X=Rn
	Sphere Benchmark Function
	Schwefel's Function 2.21
	Applying Hill Climbing: G=X=Rn
	Running
	Applying Hill Climbing: Robocode!
	Applying ill Climbing: Robocode!
	Applying ill Climbing: Robocode!
	Running
	Applying Hill Climbing: Robocode!
	Applying Hill Climbing: Robocode!
	Applying Hill Climbing: Robocode!
	Running
	Applying Hill Climbing: Robocode!
	Applying Hill Climbing: Combinatorial Problems?
	Search Space + Operators
	Search Space + Operators
	Objective Function
	Running

	Problems: Local Optima
	Hill Climbing: Problems
	When is optimization effective?

	Presentation End
	Bibliography

