
Metaheuristic Optimization
4. Random Sampling

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Random Sampling

Metaheuristic Optimization Thomas Weise 2/8

w
e
b
s
it
e

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼ The main problem is that it just needs was too long to be feasible for
any practical application.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼ The main problem is that it just needs was too long to be feasible for
any practical application.

❼ Another disadvantage is that we need to, well, enumerate the possible
solutions, i.e., there must be some kind of order imposed on them.

❼

❼

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼ The main problem is that it just needs was too long to be feasible for
any practical application.

❼ Another disadvantage is that we need to, well, enumerate the possible
solutions, i.e., there must be some kind of order imposed on them.

❼ If the solutions are, e.g., real vectors, there is no natural way to do
this.

❼

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼ The main problem is that it just needs was too long to be feasible for
any practical application.

❼ Another disadvantage is that we need to, well, enumerate the possible
solutions, i.e., there must be some kind of order imposed on them.

❼ If the solutions are, e.g., real vectors, there is no natural way to do
this.

❼ Random Sampling is an algorithm which, simply, randomly creates a
new candidate solution, usually by uniformly sampling the search
space.

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling

❼ Exhaustive Enumeration has several disadvantages.

❼ The main problem is that it just needs was too long to be feasible for
any practical application.

❼ Another disadvantage is that we need to, well, enumerate the possible
solutions, i.e., there must be some kind of order imposed on them.

❼ If the solutions are, e.g., real vectors, there is no natural way to do
this.

❼ Random Sampling is an algorithm which, simply, randomly creates a
new candidate solution, usually by uniformly sampling the search
space. (uniform sampling means that each possible genotype has the
same probability of being chosen)

Metaheuristic Optimization Thomas Weise 3/8

Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 4/8

Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 4/8

1 create random candidate
solution pbest

Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 4/8

1 create random candidate
solution pbest

2 create a completely new

random solution pnew

Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 4/8

1 create random candidate
solution pbest

2 create a completely new

random solution pnew

3 if pnew is better than
pbest, set pbest = pnew

Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest

Metaheuristic Optimization Thomas Weise 4/8

1 create random candidate
solution pbest

2 create a completely new

random solution pnew

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met

Implementing the Random Sampling

❼ Let us implement random sampling

Metaheuristic Optimization Thomas Weise 5/8

Implementing the Random Sampling

❼ Let us implement random sampling for

1 numerical optimization (over Rn) and for

Metaheuristic Optimization Thomas Weise 5/8

Implementing the Random Sampling

❼ Let us implement random sampling for

1 numerical optimization (over Rn) and for
2 combinatorial optimization (e.g., for TSP over permutations).

Metaheuristic Optimization Thomas Weise 5/8

Implementing the Random Sampling

Listing: The Random Sampling Algorithm

public class RandomSampling <G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

while (!(this.termination.shouldTerminate ())) {

pnew.g = this.nullary.create(this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}

Metaheuristic Optimization Thomas Weise 6/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼ But this algorithm has two advantages compared to exhaustive
enumeration

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼ But this algorithm has two advantages compared to exhaustive
enumeration:

1 We do not need to impose any order on the search space.

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼ But this algorithm has two advantages compared to exhaustive
enumeration:

1 We do not need to impose any order on the search space.
2 Everytime we start it, it will look at the candidate solutions in a

different sequence – while exhaustive enumeration, with a poorly
chosen order, will always necessarily take very very long.

❼

Metaheuristic Optimization Thomas Weise 7/8

Summary

❼ Random sampling keeps randomly generating new candidate solutions
while remembering the best one.

❼ If we imagine a large search space with, say, millions of points, then it
is clear that it would take very long to (by pure chance) find the
(maybe only one) best solution this way.

❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼ But this algorithm has two advantages compared to exhaustive
enumeration:

1 We do not need to impose any order on the search space.
2 Everytime we start it, it will look at the candidate solutions in a

different sequence – while exhaustive enumeration, with a poorly
chosen order, will always necessarily take very very long.

❼ Yet, this algorithm is still entirely useless.

Metaheuristic Optimization Thomas Weise 7/8

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 8/8

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

	Outline
	Random Sampling
	Random Sampling
	Random Sampling Algorithm
	Implementing the Random Sampling
	Implementing the Random Sampling
	Summary

	Presentation End

