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❼ Random Sampling is an algorithm which, simply, randomly creates a
new candidate solution, usually by uniformly sampling the search
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Random Sampling Algorithm

pbest ←− randomSampling(f)

Input: f : the objective function subject to minization
Input: [implicit] shouldTerminate: the termination criterion
Data: pnew: the new solution to be tested
Output: pbest: the best individual ever discovered

begin

pbest.g ←− create()
pbest.x←− gpm(pbest.g)
pbest.y ←− f(pbest.x)
while ¬shouldTerminate do

pnew.g ←− create()
pnew.x←− gpm(pnew.g)
pnew.y ←− f(pnew.x)
if pnew.y ≤ pbest.y then pbest ←− pnew

return pbest
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1 create random candidate
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2 create a completely new

random solution pnew

3 if pnew is better than
pbest, set pbest = pnew

4 go back to 2 , until
termination criterion is
met
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❼ Let us implement random sampling for

1 numerical optimization (over Rn) and for
2 combinatorial optimization (e.g., for TSP over permutations).

Metaheuristic Optimization Thomas Weise 5/8



Implementing the Random Sampling

Listing: The Random Sampling Algorithm

public class RandomSampling <G, X> extends OptimizationAlgorithm <G, X> {

public Individual <G, X> solve(final IObjectiveFunction <X> f) {

Individual <G, X> pstar , pnew;

pstar = new Individual <>();

pnew = new Individual <>();

pstar.g = this.nullary.create(this.random);

pstar.x = this.gpm.gpm(pstar.g);

pstar.v = f.compute(pstar.x);

while (!( this.termination.shouldTerminate ())) {

pnew.g = this.nullary.create(this.random);

pnew.x = this.gpm.gpm(pnew.g);

pnew.v = f.compute(pnew.x);

if (pnew.v <= pstar.v) {

pstar.assign(pnew);

}

}

return pstar;

}

}
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Summary
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Summary
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❼ It may even take extremely long to find anything remotely good.

❼ Thus, random sampling is, like exhaustive enumeration, never every
use for optimization.

❼ But this algorithm has two advantages compared to exhaustive
enumeration:

1 We do not need to impose any order on the search space.
2 Everytime we start it, it will look at the candidate solutions in a

different sequence – while exhaustive enumeration, with a poorly
chosen order, will always necessarily take very very long.

❼ Yet, this algorithm is still entirely useless.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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