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Baseline: Test all possible solutions

❼ Let us now start with some very simple ideas for optimization
algorithms.
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❼ Let us now start with some very simple ideas for optimization
algorithms.

❼ First, we know that a computer can only represent finitely many
values in its memory, because its memory is finite

❼ In other words, any search space G or solution space X in practice is
always finite, even if we solve numerical problems defined over Rn

❼ The very baseline, the most primitive optimization algorithm possible,
would therefore simply enumerate all potentical candidate solutions
and return the best one.
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❼ Usually it has exponential complexity: the number of possible
solutions usually rises exponentially with input size

❼ If lower bound y for objective values is known, we can maybe stop

earlier: If an element x
⋆⋆ with f(x

⋆⋆ ) = y is discovered, it is the global
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Exhaustive Enumeration

❼ Exhaustive Enumeration is a method for finite search spaces

❼ It enumerates all possible solutions.

❼ It will definitely find the global optimum x
⋆⋆ .

❼ Usually it has exponential complexity: the number of possible
solutions usually rises exponentially with input size

❼ If lower bound y for objective values is known, we can maybe stop

earlier: If an element x
⋆⋆ with f(x

⋆⋆ ) = y is discovered, it is the global
optimum and we can stop

❼ In general, however, this method is not feasible because it takes too
long
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Exhaustive Enumeration

x̃←− exhaustiveEnumerationfy

Input: f : the objective/fitness function
Input: y: the lowest possible objective value, −∞ if unknown
Data: x: the current candidate solution
Output: x̃: the best currently known solution

begin

x̃←− the first solution in the solution space
while not all solutions checked ∧

(

f(x̃) > f
)

do

x←− next candidate solution
if f(x̃) > f(x) then x̃←− x

return x̃
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1 step-by-step test each point
in the G (or all candidate
solutions)

2 remember the best candidate
solution x̃ encountered

3 after all possible solutions
have been tested or y is
reached: x̃ must be global
optimum
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Summary

❼ Exhaustive enumeration is the most primitive way we can search in
the solution space

❼ It is an exact method that will eventually find the global optimum,
but it will take way too long.

❼ This method is never ever used in practice.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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