
Metaheuristic Optimization
2. The Structure of Optimization

Thomas Weise ➲ 汤卫思

tweise@hfuu.edu.cn ➲ http://iao.hfuu.edu.cn

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn

Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 2/60

w
eb
si
te

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 3/60

Introduction

❼ Goal 1: Learn how to solve different kinds of (optimization) problems.

❼ Goal 2: Learn to use optimization algorithms for that purpose.

❼

Metaheuristic Optimization Thomas Weise 4/60

Introduction

❼ Goal 1: Learn how to solve different kinds of (optimization) problems.

❼ Goal 2: Learn to use optimization algorithms for that purpose.

❼ Need to understand

1 How to define an optimization problem formally.
2 How an optimization algorithm works and what components it has.

Metaheuristic Optimization Thomas Weise 4/60

Introduction

❼ Goal 1: Learn how to solve different kinds of (optimization) problems.

❼ Goal 2: Learn to use optimization algorithms for that purpose.

❼ Need to understand

1 How to define an optimization problem formally.
2 How an metaheuristic optimization algorithm works and what

components it has.

Metaheuristic Optimization Thomas Weise 4/60

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 5/60

Components of an Optimization Problem

From the perspective of a programmer, we can say that an optimization
problem has the following components:

1 a data type X for the possible solutions (candidate solutions)

Metaheuristic Optimization Thomas Weise 6/60

Components of an Optimization Problem

From the perspective of a programmer, we can say that an optimization
problem has the following components:

1 a data type X for the possible solutions (candidate solutions),

2 one (or multiple) functions f ∈ ~f which rate “how good” a candidate
solution is

Metaheuristic Optimization Thomas Weise 6/60

Components of an Optimization Problem

From the perspective of a programmer, we can say that an optimization
problem has the following components:

1 a data type X for the possible solutions (candidate solutions),

2 one (or multiple) functions f ∈ ~f which rate “how good” a candidate
solution is, and

3 a notion of what “good” actually means.

Metaheuristic Optimization Thomas Weise 6/60

Solution Space

The first thing we need to know is what we want to find.

Metaheuristic Optimization Thomas Weise 7/60

Solution Space

The first thing we need to know is what we want to find.
From the formal perspective, we say:

Definition (Solution Space X)

The solution space X of an optimization problem is the set containing all
elements x which could be solutions of the problem.

Metaheuristic Optimization Thomas Weise 7/60

Solution Space

The first thing we need to know is what we want to find.
From the formal perspective, we say:

Definition (Solution Space X)

The solution space X of an optimization problem is the set containing all
elements x which could be solutions of the problem.

Definition (Candidate Solution x)

A candidate solution x of an optimization problem is an element of the
solution space X of the problem, i.e., a potential solution of the problem.

Metaheuristic Optimization Thomas Weise 7/60

Solution Space

From the programmer’s perspective, we can say:

Listing: Solution space X

public class MySolutionSpace extends Object {

...

}

//or, instead , maybe a simple or primitive type

//or an array ...

Metaheuristic Optimization Thomas Weise 8/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a
❼ start location and start time

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a
❼ start location and start time
❼ end location and end time

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a
❼ start location and start time
❼ end location and end time
❼ vehicle to use

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a
❼ start location and start time
❼ end location and end time
❼ vehicle to use
❼ =⇒ we can define one class for a trip part with one member variable

for each of these “decision variables”

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ a ordered list of trip-parts, each having a
❼ start location and start time
❼ end location and end time
❼ vehicle to use
❼ =⇒ we can define one class for a trip part with one member variable

for each of these “decision variables”
❼ =⇒ we can define X use List of such elements

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ A candidate solution x is one instance of List (the data structure X)
which contains a sequence of these elements, with concrete settings of
all variables, i.e., one possible solution of the problem

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ solution space X is a data structure whose instances can completely
describe such a trip

❼ A candidate solution x is one instance of List (the data structure X)
which contains a sequence of these elements, with concrete settings of
all variables, i.e., one possible solution of the problem

❼ You want to bake the perfect cookie?

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)
❼ How much chocolate? (real value ∈ [0, 50]g)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)
❼ How much chocolate? (real value ∈ [0, 50]g)
❼ . . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)
❼ How much chocolate? (real value ∈ [0, 50]g)
❼ . . .
❼ =⇒ we could define X as vector of real numbers, i.e., double[] in

Java, where each element of the vector represents the amount to use
of one ingredient

❼

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)
❼ How much chocolate? (real value ∈ [0, 50]g)
❼ . . .
❼ =⇒ we could define X as vector of real numbers, i.e., double[] in

Java, where each element of the vector represents the amount to use
of one ingredient

❼ A candidate solution x is then one concrete double[] with specific
values for each ingredient

❼

Metaheuristic Optimization Thomas Weise 9/60

Solution Space

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!

❼ How much butter? (real value ∈ [0, 50]g)
❼ How much suggar? (real value ∈ [0, 50]g)
❼ How much flour? (real value ∈ [0, 250]g)
❼ How much honey? (real value ∈ [0, 50]g)
❼ How much chocolate? (real value ∈ [0, 50]g)
❼ . . .
❼ =⇒ we could define X as vector of real numbers, i.e., double[] in

Java, where each element of the vector represents the amount to use
of one ingredient

❼ A candidate solution x is then one concrete double[] with specific
values for each ingredient

❼ solution space = data structure for candidate solution

Metaheuristic Optimization Thomas Weise 9/60

Objective Function

OK. We know what we want to find. Now we need to know whether the
things we find are good or not. . .

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

OK. We know what we want to find. Now we need to know whether the
things we find are good or not. . .
Normally, there is not just good and bad, but many different degrees of
solution quality.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

OK. We know what we want to find. Now we need to know whether the
things we find are good or not. . .
Normally, there is not just good and bad, but many different degrees of
solution quality.
From the formal perspective, we say:

Definition (Objective Function f)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization

❼

❼

❼

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

Now we need to know whether the things we find are good or not. . .
Normally, there is not just good and bad, but many different degrees of
solution quality.
From the formal perspective, we say:

Definition (Objective Function f)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization

❼ Can compute a (real) solution quality value f(x) ∈ R for a given
candidate solution x ∈ X

❼

❼

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

Now we need to know whether the things we find are good or not. . .
Normally, there is not just good and bad, but many different degrees of
solution quality.
From the formal perspective, we say:

Definition (Objective Function f)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization

❼ Can compute a (real) solution quality value f(x) ∈ R for a given
candidate solution x ∈ X

❼ Usually subject to minimization f(x1) < f(x2) means that x1 is
better than x2

❼

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

From the formal perspective, we say:

Definition (Objective Function f)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization

❼ Can compute a (real) solution quality value f(x) ∈ R for a given
candidate solution x ∈ X

❼ Usually subject to minimization f(x1) < f(x2) means that x1 is
better than x2

❼ Not necessarily a function as you know it from Maths like
f(x) = x2 + . . . , but may be arbitrary complex, involve complicated
simulations, etc.

Metaheuristic Optimization Thomas Weise 10/60

Objective Function

From the programmer’s perspective, we can say:

Listing: Objective Function f

public interface IObjectiveFunction <X> {

public abstract double compute(final X x);

}

❼

❼

❼

Metaheuristic Optimization Thomas Weise 11/60

Objective Function

From the programmer’s perspective, we can say:

Listing: Objective Function f

public interface IObjectiveFunction <X> {

public abstract double compute(final X x);

}

❼ the generic parameter X stands for the solution space data structure
X

❼

❼

Metaheuristic Optimization Thomas Weise 11/60

Objective Function

From the programmer’s perspective, we can say:

Listing: Objective Function f

public interface IObjectiveFunction <X> {

public abstract double compute(final X x);

}

❼ the generic parameter X stands for the solution space data structure
X

❼ the function compute implements f(x) where x is an instance of X

❼

Metaheuristic Optimization Thomas Weise 11/60

Objective Function

From the programmer’s perspective, we can say:

Listing: Objective Function f

public interface IObjectiveFunction <X> {

public abstract double compute(final X x);

}

❼ the generic parameter X stands for the solution space data structure
X

❼ the function compute implements f(x) where x is an instance of X

❼ as you see: f(x) could be anything, could be deterministic or
randomized, a simple formula, or involve running large programs like
simulations

Metaheuristic Optimization Thomas Weise 11/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest?

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest? =⇒ go through list of tour-parts and add up their costs,
return total cost

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest? =⇒ go through list of tour-parts and add up their costs,
return total cost

❼ fastest?

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest? =⇒ go through list of tour-parts and add up their costs,
return total cost

❼ fastest? =⇒ go through list of tour-parts and add up the travel and
waiting times, return total travel time

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest? =⇒ go through list of tour-parts and add up their costs,
return total cost

❼ fastest? =⇒ go through list of tour-parts and add up the travel and
waiting times, return total travel time

❼ a mixture of both?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ What does best mean?

❼ cheapest? =⇒ go through list of tour-parts and add up their costs,
return total cost

❼ fastest? =⇒ go through list of tour-parts and add up the travel and
waiting times, return total travel time

❼ a mixture of both? =⇒ compute costs and time, return maybe
“10*(runtime in hours) + (cost in RMB)”

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best?

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe
❼ bake the cookie

❼

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe
❼ bake the cookie
❼ eat the cookie

❼

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe
❼ bake the cookie
❼ eat the cookie
❼ rate its taste from 0 to 10

❼

Metaheuristic Optimization Thomas Weise 12/60

Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe
❼ bake the cookie
❼ eat the cookie
❼ rate its taste from 0 to 10
❼ Objective function with human interaction! Why not!

Metaheuristic Optimization Thomas Weise 12/60

Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

Metaheuristic Optimization Thomas Weise 13/60

Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

2 Define what possible solutions look like, i.e., give a data structure
(programmer’s point of view) or space X (formal point of view)

Metaheuristic Optimization Thomas Weise 13/60

Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

2 Define what possible solutions look like, i.e., give a data structure
(programmer’s point of view) or space X (formal point of view)

3 Define a function which rates how good a candidate solution is, how
close it comes to what we really want as solution.

Metaheuristic Optimization Thomas Weise 13/60

Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

2 Define what possible solutions look like, i.e., give a data structure
(programmer’s point of view) or space X (formal point of view)

3 Define a function which rates how good a candidate solution is, how
close it comes to what we really want as solution.

4 These steps are independent of how we will finally solve the problem

Metaheuristic Optimization Thomas Weise 13/60

Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

2 Define what possible solutions look like, i.e., give a data structure
(programmer’s point of view) or space X (formal point of view)

3 Define a function which rates how good a candidate solution is, how
close it comes to what we really want as solution.

4 These steps are independent of how we will finally solve the problem

5 If you develop an optimization software for a client, it is very
important to discuss these issues with the client and to formally write
them down on paper! The client often does not know exactly what
he/she wants AND you may misunderstand him/her. . .

Metaheuristic Optimization Thomas Weise 13/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?

❼ Solution Space:
❼ Objective Function:

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?

❼ Solution Space: X = R
+

❼ Objective Function:

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?

❼ Solution Space: X = R
+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

Listing: Blueprint of Objective Function for Stone’s Throw Probleml

public final class StoneThrowObjective implements IObjectiveFunction <Number > {

public final double compute(final Number x) {

final double v = x.doubleValue ();

final double d = (((v * v) / 9.80665d) * Math.sin (((2.0d * 15.0d) / 180.0d) *

Math.PI));

return Math.abs (100d - d);

}

}

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

❼ Actually. . . not necessary!

Listing: Blueprint of Objective Function for Stone’s Throw Probleml

public final class StoneThrowObjective implements IObjectiveFunction <Number > {

public final double compute(final Number x) {

final double v = x.doubleValue ();

final double d = (((v * v) / 9.80665d) * Math.sin (((2.0d * 15.0d) / 180.0d) *

Math.PI));

return Math.abs (100d - d);

}

}

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

❼ Actually. . . not necessary!
❼ Problem can easily be solved: minimum of f known, equation is simple

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

❼ Actually. . . not necessary!
❼ Problem can easily be solved: minimum of f known, equation is simple
❼ No optimization algorithm needed.

Metaheuristic Optimization Thomas Weise 14/60

Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

❼ Actually. . . not necessary!
❼ Problem can easily be solved: minimum of f known, equation is simple
❼ No optimization algorithm needed.
❼ But what if the stone is an irregularly shaped object (like a chair)

and we also include air drag, gravitation, wind, limit forces on the
stone-throwing arm, costs for electricity of moving the joints, wear
of joins, imprecision of movements, make α variable, . . . ?

Metaheuristic Optimization Thomas Weise 14/60

Example: Traveling Salesman Problem

A salesman wants to visit n cities in the shortest possible time. No city
should be visited twice and he wants arrive back at the origin by the end
of the tour [1–3].

Metaheuristic Optimization Thomas Weise 15/60

Example: Traveling Salesman Problem

A salesman wants to visit n cities in the shortest possible time. No city
should be visited twice and he wants arrive back at the origin by the end
of the tour [1–3].

Definition (Traveling Salesman Problem)

The goal of the Traveling Salesman Problem (TSP) is to find a cyclic path
of minimum total weight which visits all vertices of a weighted
graph. [1, 2, 4, 5]

Metaheuristic Optimization Thomas Weise 15/60

Example: Traveling Salesman Problem

❼

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space:

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

Π(Z) = set of all permutations of the elements of the given set Z

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

Π(Z) = set of all permutations of the elements of the given set Z

Example: Π({123}) = {(1, 2, 3); (1, 3, 2); (2, 1, 3); (2, 3, 1); (3, 1, 2); (3, 2, 1)}

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away.

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller!

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼ Objective Function:

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼ Objective Function: Minimize f(x) = dist(Hefei, x[0])+
∑

2

i=0
dist(x[i], x[i+ 1])+

dist(x[3],Hefei)

Metaheuristic Optimization Thomas Weise 16/60

Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼ Objective Function: Minimize f(x) = dist(Hefei, x[0])+
∑

2

i=0
dist(x[i], x[i+ 1])+

dist(x[3],Hefei)

This formula is not so nice: we cannot simply “solve” it for a minimum x ∈ X.

Metaheuristic Optimization Thomas Weise 16/60

Listing: Solution space X

public final class ChinaTSPObjective implements IObjectiveFunction <int[]> {

public final double compute(final int[] x) {

double dist;

dist = ChinaTSPObjective.distance(ChinaTSPObjective.HEFEI , x[0]);

for (int i = 1; i < x.length; i++) {

dist += ChinaTSPObjective.distance(x[i - 1], x[i]);

}

return (dist + ChinaTSPObjective.distance(x[x.length - 1], ChinaTSPObjective.HEFEI));

}

}

Metaheuristic Optimization Thomas Weise 17/60

Example: Traveling Salesman Problem

❼ In a TSP, we cannot directly compute the right solution

Metaheuristic Optimization Thomas Weise 18/60

Example: Traveling Salesman Problem

❼ In a TSP, we cannot directly compute the right solution

❼ Simply test all possible solutions. . .

Metaheuristic Optimization Thomas Weise 18/60

Example: Traveling Salesman Problem

❼ In a TSP, we cannot directly compute the right solution

❼ Simply test all possible solutions. . .

x1 Hefei → Beijing → Chengdu → Guangzhou → Shanghai → Hefei 7425km
x2 Hefei → Beijing → Chengdu → Shanghai → Guangzhou → Hefei 7566km
x3 Hefei → Beijing → Guangzhou → Chengdu → Shanghai → Hefei 8311km
x4 Hefei → Beijing → Guangzhou → Shanghai → Chengdu → Hefei 7886km
x5 Hefei → Beijing → Shanghai → Chengdu → Guangzhou → Hefei 7381km
x6 Hefei → Beijing → Shanghai → Guangzhou → Chengdu → Hefei 6815km
x7 Hefei → Chengdu → Beijing → Guangzhou → Shanghai → Hefei 8787km
x8 Hefei → Chengdu → Beijing → Shanghai → Guangzhou → Hefei 7857km
x9 Hefei → Chengdu → Guangzhou → Beijing → Shanghai → Hefei 8602km
x10 Hefei → Chengdu → Shanghai → Beijing → Guangzhou → Hefei 8743km
x11 Hefei → Guangzhou → Beijing → Chengdu → Shanghai → Hefei 8637km
x12 Hefei → Guangzhou → Chengdu → Beijing → Shanghai → Hefei 7566km

Metaheuristic Optimization Thomas Weise 18/60

Example: Traveling Salesman Problem

❼ Simply test all possible solutions. . . ??

❼ Size of solution space: |X| = 1

2
(n− 1)! ⇐ factorial, not exclamation mark

Metaheuristic Optimization Thomas Weise 18/60

(Figure inspired by [6])

Example: Traveling Salesman Problem

❼ Simply test all possible solutions. . . ??

❼ Size of solution space: |X| = 1

2
(n− 1)!

❼ Algorithm which is better than this exhaustive enumeration needed

Metaheuristic Optimization Thomas Weise 18/60

(Figure inspired by [6])

Example: Traveling Salesman Problem

❼ Simply test all possible solutions. . . ??

❼ Size of solution space: |X| = 1

2
(n− 1)!

❼ Algorithm which is better than this exhaustive enumeration needed

❼ You will learn quite a lot of these in this lecture!

Metaheuristic Optimization Thomas Weise 18/60

(Figure inspired by [6])

Examples from Last Lesson

❼ What could be suitable solution spaces and objectives for

1 Bin Packing [7]

2 Circuit Layout [8, 9]

3 Find the roots of a function g(x) [10–13]

4 Shortest Path / Routing [14–16]

5 Find mathematical formula fitting to given data [17–19]

6 Job Shop Scheduling [18, 20]

7 Stock Prediction [21–24]

8 Truss Optimization [25–27]

9 Medical Classification [28]

10 Airplane Wing Design [29–32]

Metaheuristic Optimization Thomas Weise 19/60

Further Examples

❼ Antenna design [33–41]

❼ Analog Electrical Circuit Design [42–45]

❼ Interactive Optimization [46–51]

Metaheuristic Optimization Thomas Weise 20/60

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 21/60

What does “good” mean?

❼ We want to find the good solutions for such problems.

❼

Metaheuristic Optimization Thomas Weise 22/60

What does “good” mean?

❼ We want to find the good solutions for such problems.

❼ But what does “good” mean?

Metaheuristic Optimization Thomas Weise 22/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼ In this case high school mathematics tells us what to do and what we
want:

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼ In this case high school mathematics tells us what to do and what we
want:

❼ We want the extrema, the minima and maxima of f

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼ In this case high school mathematics tells us what to do and what we
want:

❼ We want the extrema, the minima and maxima of f

❼ If X ⊆ R, then for every local optimum x⋆ of f , f ′(x⋆) = 0 holds.

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼ In this case high school mathematics tells us what to do and what we
want:

❼ We want the extrema, the minima and maxima of f

❼ If X ⊆ R, then for every local optimum x⋆ of f , f ′(x⋆) = 0 holds.

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) > 0) ⇒ x⋆ is a local minimum

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) < 0) ⇒ x⋆ is a local maximum

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼ In this case high school mathematics tells us what to do and what we
want:

❼ We want the extrema, the minima and maxima of f

❼ If X ⊆ R, then for every local optimum x⋆ of f , f ′(x⋆) = 0 holds.

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) > 0) ⇒ x⋆ is a local minimum

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) < 0) ⇒ x⋆ is a local maximum

❼ sign change of f ′ from − to + ⇒ x⋆ is a local minimum

❼ sign change of f ′ from + to − ⇒ x⋆ is a local maximum

Metaheuristic Optimization Thomas Weise 23/60

What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
x.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 23/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the
minimum material costs.

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

A(r, h) = 2πr2 + 2πrh. the surface: bottom, top, and hull

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

A(r, h) = 2πr2 + 2πrh. the surface: bottom, top, and hull (3)

X = (r, h) : r, h ∈ R
+

. solution space: r and h define a cylinder

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h =
Vd

πr2
=

0.003 55m3

πr2
. resolve 1 and 2 for h

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

0 = 4πr −
2Vd

r2
. solve for extrema

(12)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

2Vd = 4πr3. still solving. . .

(12)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

r
⋆ ≈

3

√

2 ∗ 0.003 55m3

4π
≈ 0.038m ≈ 3.8cm. OK, r is found

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2(4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

r
⋆ ≈ 3.8cm. OK, r is found (8)

h
⋆ = ≈ 7.7cm. now solve for h using 5

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

r
⋆ ≈ 3.8cm. OK, r is found (8)

h
⋆ ≈ 7.7cm. now solve for h using 5 (9)

f
′′(r) = 4π + 4Vdr

−3
. maximum or minimum?

(11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

r
⋆ ≈ 3.8cm. OK, r is found (8)

h
⋆ ≈ 7.7cm. now solve for h using 5 (9)

f
′′(r) = 4π + 4Vdr

−3
. maximum or minimum? (10)

f
′′(r⋆) > 0 ⇒ candidate solution x

⋆ = (r⋆, h⋆) is minimum (11)

Metaheuristic Optimization Thomas Weise 24/60

Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. first derivative of f for r (7)

r
⋆ ≈ 3.8cm. OK, r is found (8)

h
⋆ ≈ 7.7cm. now solve for h using 5 (9)

f
′′(r) = 4π + 4Vdr

−3
. maximum or minimum? (10)

f
′′(r⋆) > 0 ⇒ candidate solution x

⋆ = (r⋆, h⋆) is minimum (11)

Problem solved with high school maths – no optimization algorithm needed.

Metaheuristic Optimization Thomas Weise 24/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

❼ In many cases, we have to live without the formulas from the previous
slide

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

❼ In many cases, we have to live without the formulas from the previous
slide

❼ Even if we can differentiate, we then need to solve the resulting
equation, which is also not always analytically possible

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

❼ In many cases, we have to live without the formulas from the previous
slide

❼ Even if we can differentiate, we then need to solve the resulting
equation, which is also not always analytically possible

❼ Combinatorial optimization: Objective functions don’t have
real-valued arguments (remember the car setup and TSP problem. . .)

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

❼ In many cases, we have to live without the formulas from the previous
slide

❼ Even if we can differentiate, we then need to solve the resulting
equation, which is also not always analytically possible

❼ Combinatorial optimization: Objective functions don’t have
real-valued arguments (remember the car setup and TSP problem. . .)

❼ Other example: Genetic Programming [17], where the solutions are tree
data structures, e.g., representing mathematical formulas

Metaheuristic Optimization Thomas Weise 25/60

What does “good” mean?

Definition (Global Minimum)

There is no element with a smaller objective value than the global
minimum ˇ̌x.

Metaheuristic Optimization Thomas Weise 26/60

What does “good” mean?

Definition (Global Minimum)

A global minimum ˇ̌x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˇ̌x) ≤ f(x)∀x ∈ X.

Metaheuristic Optimization Thomas Weise 26/60

What does “good” mean?

Definition (Global Minimum)

A global minimum ˇ̌x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˇ̌x) ≤ f(x)∀x ∈ X.

Definition (Global Maximum)

There is no element with a larger objective value than the global maximum
ˆ̂x.

Metaheuristic Optimization Thomas Weise 26/60

What does “good” mean?

Definition (Global Minimum)

A global minimum ˇ̌x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˇ̌x) ≤ f(x)∀x ∈ X.

Definition (Global Maximum)

A global maximum ˆ̂x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˆ̂x) ≥ f(x)∀x ∈ X.

Metaheuristic Optimization Thomas Weise 26/60

What does “good” mean?

Definition (Global Minimum)

A global minimum ˇ̌x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˇ̌x) ≤ f(x)∀x ∈ X.

Definition (Global Maximum)

A global maximum ˆ̂x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˆ̂x) ≥ f(x)∀x ∈ X.

Definition (Global Optimum of a Single Objective Function)

Depending on whether the objective function is subject to minimization or
maximization, a global optimum is either a global minimum or a global
maximum.

Metaheuristic Optimization Thomas Weise 26/60

What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima

Metaheuristic Optimization Thomas Weise 27/60

What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima

-100

0

100

200

-10 -5 0 5 10

x XÎ

f(x)

x1

^

x2

^^ ^

Metaheuristic Optimization Thomas Weise 27/60

What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima

-100

0

100

200

-10 -5 0 5 10

x XÎ

f(x)

x1

^

x2

^^ ^

-1

-0.5

0

0.5

1

-10 -5 0 5 10

x0̂x-1
^ x̂ 1

x XÎ

f(x)

^^ ^
1

Metaheuristic Optimization Thomas Weise 27/60

What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima

-100

0

100

200

-10 -5 0 5 10

x XÎ

f(x)

x1

^

x2

^^ ^

-1

-0.5

0

0.5

1

-10 -5 0 5 10

x0̂x-1
^ x̂ 1

x XÎ

f(x)

^^ ^
1

20

40

60

80

100

-10 -5 0 5 10

xÎX

f(x)

X

^̂

Metaheuristic Optimization Thomas Weise 27/60

What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima

-100

0

100

200

-10 -5 0 5 10

x XÎ

f(x)

x1

^

x2

^^ ^

-1

-0.5

0

0.5

1

-10 -5 0 5 10

x0̂x-1
^ x̂ 1

x XÎ

f(x)

^^ ^
1

20

40

60

80

100

-10 -5 0 5 10

xÎX

f(x)

X

^̂

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

Metaheuristic Optimization Thomas Weise 27/60

Examples for “good”

1 Bin Packing

2 Circuit Layout

3 Find the roots of a function g(x)

4 Shortest Path / Routing

5 Find mathematical formula fitting to given data

6 Job Shop Scheduling

7 Stock Prediction

8 Truss Optimization

9 Medical Classification

10 Airplane Wing Design

11 Antenna design

12 Analog Electrical Circuit Design

13 Interactive Optimization

Metaheuristic Optimization Thomas Weise 28/60

Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼

❼

❼

Metaheuristic Optimization Thomas Weise 29/60

Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼ Often, we cannot get the global optimal set. . .

❼

❼

Metaheuristic Optimization Thomas Weise 29/60

Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼ Often, we cannot get the global optimal set. . .

❼ . . . but only an approximation X̃ of it.

❼

Metaheuristic Optimization Thomas Weise 29/60

Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼ Often, we cannot get the global optimal set. . .

❼ . . . but only an approximation X̃ of it.

Definition (Optimization Result X̃)

The set X̃ ⊆ X contains output elements x̃ ∈ X of an optimization
process.

❼

Metaheuristic Optimization Thomas Weise 29/60

Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼ Often, we cannot get the global optimal set. . .

❼ . . . but only an approximation X̃ of it.

Definition (Optimization Result X̃)

The set X̃ ⊆ X contains output elements x̃ ∈ X of an optimization
process.

❼ usually we only return one single solution x̃, i.e., X̃ ≡ {x̃}

Metaheuristic Optimization Thomas Weise 29/60

Components of a Optimization Problem

Now we have discussed the basic components of an optimization problem
from a more mathematical point of view.

1 the solution space X,

2 the objective function(s) f : X 7→ R, and

3 the concept of “good” (minimize? maximize? multi-objective?).

Metaheuristic Optimization Thomas Weise 30/60

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 31/60

Situation & Idea

❼ What is the situation?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.

3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?
1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.
3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼ If so, we will do that and are finished. We don’t need an optimization
algorithm.

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?
1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.
3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼ If so, we will do that and are finished. We don’t need an optimization
algorithm.

❼ Often, we cannot.

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?
1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.
3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼ If so, we will do that and are finished. We don’t need an optimization
algorithm.

❼ Often, we cannot.
❼ Often, we can calculate f and have a rough idea of it, but cannot

directly solve it.

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?
1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.
3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼ If so, we will do that and are finished. We don’t need an optimization
algorithm.

❼ Often, we cannot.
❼ Often, we can calculate f and have a rough idea of it, but cannot

directly solve it.

4 Can we simply test all candidate solution x ∈ X?

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?
1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions have?

❼ No. If so, we are already finished.
❼ Instead, we often only have the objective function f which provides a

quality value for each candidate solution x.
3 Can we “directly” solve f for the optima (e.g., by differentiating it)?

❼ If so, we will do that and are finished. We don’t need an optimization
algorithm.

❼ Often, we cannot.
❼ Often, we can calculate f and have a rough idea of it, but cannot

directly solve it.
4 Can we simply test all candidate solution x ∈ X?

❼ No. There are too many. . . (remember the TSP)

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!
❼ And we can modify some existing (previously created) instances x!

❼

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!
❼ And we can modify some existing (previously created) instances x!
❼ And we can maybe even combine existing instances x1 and x2!

❼

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!
❼ And we can modify some existing (previously created) instances x!
❼ And we can maybe even combine existing instances x1 and x2!
❼ If we do this well or can learn how to do this best, we can win!

❼

Metaheuristic Optimization Thomas Weise 32/60

Situation & Idea

❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!
❼ And we can modify some existing (previously created) instances x!
❼ And we can maybe even combine existing instances x1 and x2!
❼ If we do this well or can learn how to do this best, we can win!
❼ This is the idea behind all metaheuristics

Metaheuristic Optimization Thomas Weise 32/60

How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼

f(x)ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions

Metaheuristic Optimization Thomas Weise 33/60

How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼ Iteratively refine the solution(s) in a loop (e.g., by making small
random changes)

f(x)ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions

Metaheuristic Optimization Thomas Weise 33/60

How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼ Iteratively refine the solution(s) in a loop (e.g., by making small
random changes)

f(x)ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions

Metaheuristic Optimization Thomas Weise 33/60

Black-box metaheuristics are a general starting
point for optimization.

How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼ Iteratively refine the solution(s) in a loop (e.g., by making small
random changes)

f(x)ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions

Metaheuristic Optimization Thomas Weise 33/60

Black-box metaheuristics are a general starting
point for optimization.
They can provide good solutions.

How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼ Iteratively refine the solution(s) in a loop (e.g., by making small
random changes)

f(x)ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions

Metaheuristic Optimization Thomas Weise 33/60

Black-box metaheuristics are a general starting
point for optimization.
They can provide good solutions.
But once we have a working software, we always
will include problem-specific knowledge into the
algorithm to get excellent solutions.

Search Space

❼ OK, we have a data structure X for the candidate solutions and an
objective function f : X 7→ R telling us how good they are

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need:
❼ a method for creating an instance of X

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need:
❼ a method for creating an instance of X
❼ a method for changing (and hopefully improving) an instance of X

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need:
❼ a method for creating an instance of X
❼ a method for changing (and hopefully improving) an instance of X

. . . a lot of code that we need to write for each optimization
problem. . .

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need . . . a lot of code that we need to write for
each optimization problem. . . and we did not even talk about how
the metaheuristic algorithm itself works

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need . . . a lot of code that we need to write for
each optimization problem. . .

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!
Example: Finding the roots of a real function g(x) (use real vector)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: a bit string can be translated to a text describing which
features a BMW has

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: a cookie receipe internally can be represented as vector of
real numbers, just translate it to text the grandma can read

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: the shape of an airplane wing can be represented as vector
of real numbers, just translate it to a textual description of the wing

❼

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

❼ Besides the solution space X we can use a search space G

Metaheuristic Optimization Thomas Weise 34/60

Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

❼ Besides the solution space X we can use a search space G an internal

data structure for representing the possible solutions from X

Metaheuristic Optimization Thomas Weise 34/60

Search Space

As a metaphor based on biological genetics, the search space is often called genome, points in the search space are
called genotypes, the solution space (solution space) is called phenome, its elements are called phenotypes, and the
translation between phenotypes and genotypes is called genotype-phenotype-mapping.

Metaheuristic Optimization Thomas Weise 35/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Search Space G

Explored by Optimization Algorithm

Search Space

As a metaphor based on biological genetics, the search space is often called genome, points in the search space are
called genotypes, the solution space (solution space) is called phenome, its elements are called phenotypes, and the
translation between phenotypes and genotypes is called genotype-phenotype-mapping.

Metaheuristic Optimization Thomas Weise 35/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Search Space G

Explored by Optimization Algorithm

GPM

Search Space

As a metaphor based on biological genetics, the search space is often called genome, points in the search space are
called genotypes, the solution space (solution space) is called phenome, its elements are called phenotypes, and the
translation between phenotypes and genotypes is called genotype-phenotype-mapping.

Metaheuristic Optimization Thomas Weise 35/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

Search Space G

Explored by Optimization Algorithm Understood by User and Objective Function

GPM

Solution Space X

Search Space

As a metaphor based on biological genetics, the search space is often called genome, points in the search space are
called genotypes, the solution space (solution space) is called phenome, its elements are called phenotypes, and the
translation between phenotypes and genotypes is called genotype-phenotype-mapping.

Metaheuristic Optimization Thomas Weise 35/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Solution Space X

Search Space

From the programmer’s perspective, we can say:

Listing: Search space G

public class MySearchSpace extends Object {

...

}

//or, instead , maybe a simple or primitive type

//or an array ...

Metaheuristic Optimization Thomas Weise 36/60

Genotype-Phenotype Mapping

Definition (Genotype-Phenotype Mapping)

The genotype-phenotype mapping (GPM) gpm : G 7→ X is a left-total
binary relation which maps the elements of the search space G to elements
in the solution space X.

❼

❼

Metaheuristic Optimization Thomas Weise 37/60

Genotype-Phenotype Mapping

Definition (Genotype-Phenotype Mapping)

The genotype-phenotype mapping (GPM) gpm : G 7→ X is a left-total
binary relation which maps the elements of the search space G to elements
in the solution space X.

❼ if G = X, the genotype-phenotype mapping is (usually) the identity
mapping

❼

Metaheuristic Optimization Thomas Weise 37/60

Genotype-Phenotype Mapping

Definition (Genotype-Phenotype Mapping)

The genotype-phenotype mapping (GPM) gpm : G 7→ X is a left-total
binary relation which maps the elements of the search space G to elements
in the solution space X.

❼ if G = X, the genotype-phenotype mapping is (usually) the identity
mapping

❼ this is often the case, but not always [25, 52]

Metaheuristic Optimization Thomas Weise 37/60

Genotype-Phenotype Mapping

From the programmer’s perspective, we can say:

Listing: Mapping from search- to solution space: gpm : G 7→ X

public interface IGPM <G, X> {

public abstract X gpm(final G genotype);

}

❼

❼

❼

Metaheuristic Optimization Thomas Weise 38/60

Search Space + GPM

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Solution Space X

Search Space + GPM

❼ G, X, and gpm together are called Representation

❼

❼

❼

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Representation

Solution Space X

Search Space + GPM

❼

❼

❼

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Representation

Solution Space X

Search Space + GPM

❼ The choice of the representation has tremendous impact on the
results!

❼

❼

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Representation

Solution Space X

Search Space + GPM

❼ The choice of the representation has tremendous impact on the
results, e.g.,

❼ It determines which solutions can be found.

❼

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Representation

Solution Space X

Search Space + GPM

❼ The choice of the representation has tremendous impact on the
results, e.g.,

❼ It determines which solutions can be found.
❼ It determines the number of potential solutions.

Metaheuristic Optimization Thomas Weise 39/60

G R=
n

genotype g =

2.1
10.2
5.4
7.0

15.3
30.2

Mix 2.1g honey with
10.2g chocolate and
5.4g eggs and
7.0g sugar and
15.3g flour then
bake for 30.2 minutes.

candidate solution x =

objective function f(x):
grandma bakes the cookie

you eat it
and rate it from 1 to 10

Search Space G Objective Function f
Explored by Optimization Algorithm Understood by User and Objective Function Rates Quality of Solution

GPM

Representation

Solution Space X

Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?

❼

❼

Metaheuristic Optimization Thomas Weise 40/60

Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,

❼

Metaheuristic Optimization Thomas Weise 40/60

Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ An operators which can create a modified copy of an element of G

Metaheuristic Optimization Thomas Weise 40/60

Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ An operators which can create a modified copy of an element of G

Definition (Search Operation)

A search operation receives 0 or more elements from the search space G as
parameter and returns a new genotype.

Metaheuristic Optimization Thomas Weise 40/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼ Nullary =⇒ 0 arguments from G (except from the random number
generator)

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼ Nullary =⇒ 0 arguments from G (except from the random number
generator)

❼ G is a generic data structure to be replaced by the search space G

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼ Nullary =⇒ 0 arguments from G (except from the random number
generator)

❼ G is a generic data structure to be replaced by the search space G

❼ create returns one instance of G .

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼ Nullary =⇒ 0 arguments from G (except from the random number
generator)

❼ G is a generic data structure to be replaced by the search space G

❼ create returns one instance of G .

❼ this could be a random instance or an instance constructed using
some particular algorithm

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼ G is a generic data structure to be replaced by the search space G

❼

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼ G is a generic data structure to be replaced by the search space G

❼ mutate receives one instance of G as parameter.

❼

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼ G is a generic data structure to be replaced by the search space G

❼ mutate receives one instance of G as parameter.

❼ it then returns a modified copy of that instance.

❼

Metaheuristic Optimization Thomas Weise 41/60

Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼ G is a generic data structure to be replaced by the search space G

❼ mutate receives one instance of G as parameter.

❼ it then returns a modified copy of that instance.

❼ the modification is usually small and random

Metaheuristic Optimization Thomas Weise 41/60

Termination Criterion

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ Operators which modify or combines such data structures

❼

❼

❼

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ Operators which modify or combines such data structures
❼ A method that tells us when the algorithm should stop.

❼

❼

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ Operators which modify or combines such data structures
❼ A method that tells us when the algorithm should stop.

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼

❼

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations
3 stop when no further improvement can be detected

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations
3 stop when no further improvement can be detected
4 stop when a sufficiently good solution has been detected
5 . . .

Metaheuristic Optimization Thomas Weise 42/60

Termination Criterion

Listing: Termination Criterion shouldTerminate : 7→ {true, false}

public interface ITerminationCriterion {

public abstract boolean shouldTerminate ();

}

❼

❼

❼

Metaheuristic Optimization Thomas Weise 43/60

Termination Criterion

Listing: Termination Criterion shouldTerminate : 7→ {true, false}

public interface ITerminationCriterion {

public abstract boolean shouldTerminate ();

}

❼ Directly after every time the optimization algorithm has created a
new solution x and computed f(x), it must call shouldTerminate()

❼

❼

Metaheuristic Optimization Thomas Weise 43/60

Termination Criterion

Listing: Termination Criterion shouldTerminate : 7→ {true, false}

public interface ITerminationCriterion {

public abstract boolean shouldTerminate ();

}

❼ Directly after every time the optimization algorithm has created a
new solution x and computed f(x), it must call shouldTerminate()

❼ If shouldTerminate() returns true , the algorithm must immediately
stop

❼

Metaheuristic Optimization Thomas Weise 43/60

Termination Criterion

Listing: Termination Criterion shouldTerminate : 7→ {true, false}

public interface ITerminationCriterion {

public abstract boolean shouldTerminate ();

}

❼ Directly after every time the optimization algorithm has created a
new solution x and computed f(x), it must call shouldTerminate()

❼ If shouldTerminate() returns true , the algorithm must immediately
stop and return the best solution candidate it has seen so far

❼ One could implement ITerminationCriterion and
IObjectiveFunction in the same object to stop once a goal solution
quality was reached.

Metaheuristic Optimization Thomas Weise 43/60

Example Termination Criterion

Listing: A criterion stopping after a given amount of steps.

public class MaxSteps implements ITerminationCriterion {

/** the number of remaining steps */

private int m_remaining;

public MaxSteps(final int steps) {

super();

this.m_remaining = steps;

}

public boolean shouldTerminate () {

return ((--this.m_remaining) < 0);

}

}

Metaheuristic Optimization Thomas Weise 44/60

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 45/60

Putting it Together

❼ An optimization problem is defined by

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f

❼

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs

❼

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼ a mapping gpm that translates the internal representation G to
candidate solutions in X

❼

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼ a mapping gpm that translates the internal representation G to
candidate solutions in X

❼ a termination criterion to know when to stop

❼

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼ a mapping gpm that translates the internal representation G to
candidate solutions in X

❼ a termination criterion to know when to stop

❼ It will give us

❼

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼ a mapping gpm that translates the internal representation G to
candidate solutions in X

❼ a termination criterion to know when to stop

❼ It will give us:
❼ a set of solutions X̃ ⊆ X.

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

❼ An optimization problem is defined by:
❼ a solution space X

❼ (at least) one objective function f
❼ a notion of good (let us assume: minimization)

❼ An optimization algorithm furthermore needs:
❼ a search space G usually the same as X
❼ a nullary search operation to create new points in G

❼ a unary search operation to modify existing points in G

❼ a mapping gpm that translates the internal representation G to
candidate solutions in X

❼ a termination criterion to know when to stop

❼ It will give us:
❼ a usually one of solution x̃ ∈ X.

Metaheuristic Optimization Thomas Weise 46/60

Putting it Together

Then a metaheuristic, black-box optimization looks like:

Metaheuristic Optimization Thomas Weise 47/60

Individual Record

Definition (Individual)

An individual is a record where we can store all information that belongs
to a solution, such as the genotype g ∈ G, the corresponding phenotype
x ∈ X, and the objective value that we get when computing f(x).

Metaheuristic Optimization Thomas Weise 48/60

Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary

Metaheuristic Optimization Thomas Weise 49/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼

❼

❼

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼ A set of search operations that can create, modify, or combine the
elements from G

❼

❼

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼ A set of search operations that can create, modify, or combine the
elements from G

❼ Solution space X with phenotypes x

❼

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼ A set of search operations that can create, modify, or combine the
elements from G

❼ Solution space X with phenotypes x

❼ Genotype-phenotype mapping gpm : G 7→ X

❼

Metaheuristic Optimization Thomas Weise 50/60

Summary

❼ Most metaheuristic optimization algorithms consist of common types
of modules

❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼ A set of search operations that can create, modify, or combine the
elements from G

❼ Solution space X with phenotypes x

❼ Genotype-phenotype mapping gpm : G 7→ X

❼ Objective Functions f : X 7→ R

Metaheuristic Optimization Thomas Weise 50/60

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Metaheuristic Optimization Thomas Weise 51/60

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn

Bibliography

Metaheuristic Optimization Thomas Weise 52/60

Bibliography I

1. David Lee Applegate, Robert E. Bixby, Vašek Chvátal, and William John Cook. The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton, NJ, USA: Princeton University Press, February
2007. ISBN 0-691-12993-2 and 978-0-691-12993-8. URL http://books.google.de/books?id=nmF4rVNJMVsC.

2. Eugene Leighton (Gene) Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Estimation, Simulation, and Control –
Wiley-Interscience Series in Discrete Mathematics and Optimization. Chichester, West Sussex, UK: Wiley Interscience,
September 1985. ISBN 0-471-90413-9 and 978-0-471-90413-7. URL http://books.google.de/books?id=BXBGAAAAYAAJ.

3. Gregory Z. Gutin and Abraham P. Punnen, editors. The Traveling Salesman Problem and its Variations, volume 12 of
Combinatorial Optimization. Norwell, MA, USA: Kluwer Academic Publishers, 2002. ISBN 0-306-48213-4, 1-4020-0664-0,
and 978-1-4020-0664-7. doi: 10.1007/b101971. URL http://books.google.de/books?id=TRYkPg_Xf20C.

4. Bernhard Friedrich Voigt. Der Handlungsreisende – wie er sein soll und was er zu thun hat, um Aufträge zu erhalten und
eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur. Ilmenau, Germany:
Voigt, 1832. Excerpt: “. . . Durch geeignete Auswahl und Planung der Tour kann man oft so viel Zeit sparen, daß wir
einige Vorschläge zu machen haben. . . . Der wichtigste Aspekt ist, so viele Orte wie möglich zu erreichen, ohne einen Ort
zweimal zu besuchen. . . . ”.

5. Federico Greco, editor. Traveling Salesman Problem. Vienna, Austria: IN-TECH Education and Publishing, September
2008. ISBN 978-953-7619-10-7. URL http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B.

6. Ashish Sabharwal. Combinatorial problems i: Finding solutions. In Silvio Franz, Matteo Marsili, and Haijun Zhou, editors,
2nd Asian-Pacific School on Statistical Physics and Interdisciplinary Applications, Beijing, China, March 3–14, 2008. Triest,
Italy: Abdus Salam International Centre for Theoretical Physics (ICTP), Beijing, China: Chinese Center of Advanced
Science and Technology (CCAST), and Beijing, China: Chinese Academy of Sciences, Kavli Institute of Theoretical Physics
China (KITPC). URL http://www.cs.cornell.edu/~sabhar/tutorials/kitpc08-combinatorial-problems-I.ppt.

7. Michael R. Garey and David Stifler Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Series of Books in the Mathematical Sciences. New York, NY, USA: W. H. Freeman and Company, 1979. ISBN
0-7167-1044-7, 0-7167-1045-5, 978-0-7167-1044-8, and 978-0-7167-1045-5. URL
http://books.google.de/books?id=mdBxHAAACAAJ.

8. Scott Kirkpatrick, Charles Daniel Gelatt, Jr., and Mario P. Vecchi. Optimization by simulated annealing. Science Magazine,
220(4598):671–680, May 13, 1983. doi: 10.1126/science.220.4598.671. URL
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf.

Metaheuristic Optimization Thomas Weise 53/60

http://books.google.de/books?id=nmF4rVNJMVsC
http://books.google.de/books?id=BXBGAAAAYAAJ
http://books.google.de/books?id=TRYkPg_Xf20C
http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B
http://www.cs.cornell.edu/~sabhar/tutorials/kitpc08-combinatorial-problems-I.ppt
http://books.google.de/books?id=mdBxHAAACAAJ
http://fezzik.ucd.ie/msc/cscs/ga/kirkpatrick83optimization.pdf

Bibliography II

9. Tatiana Kalganova and Julian Francis Miller. Evolving more efficient digital circuits by allowing circuit layout evolution and
multi-objective fitness. In Adrian Stoica, Jason D. Lohn, and Didier Keymeulen, editors, Evolvable Hardware – Proceedings
of 1st NASA/DoD Workshop on Evolvable Hardware (EH’99), pages 54–63, Pasadena, CA, USA: Jet Propulsion
Laboratory, California Institute of Technology (Caltech), June 19–21, 1999. Washington, DC, USA: IEEE Computer Society.
doi: 10.1109/EH.1999.785435. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.948.

10. Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 3(2):82–102, July 1999. doi: 10.1109/4235.771163. URL
http://www.u-aizu.ac.jp/~yliu/publication/tec22r2_online.ps.gz.

11. Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evolution strategies. In Richard K. Belew and
Lashon Bernard Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA’91),
pages 2–9, San Diego, CA, USA: University of California (UCSD), July 13–16, 1991. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. URL http://130.203.133.121:8080/viewdoc/summary?doi=10.1.1.42.3375.

12. Kenneth V. Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution – A Practical Approach to Global
Optimization. Natural Computing Series. Basel, Switzerland: Birkhäuser Verlag, 2005. ISBN 3-540-20950-6,
3-540-31306-0, 978-3-540-20950-8, and 978-3-540-31306-9. URL http://books.google.de/books?id=S67vX-KqVqUC.

13. Zbigniew Michalewicz. Genetic algorithms, numerical optimization, and constraints. In Larry J. Eshelman, editor,
Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), pages 151–158., Pittsburgh, PA, USA:
University of Pittsburgh, July 15–19, 1995. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.cs.adelaide.edu.au/~zbyszek/Papers/p16.pdf.

14. Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959. URL
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf.

15. Robert W Floyd. Algorithm 97 (shortest path). Communications of the ACM (CACM), 5(6):345, June 1, 1962. doi:
10.1145/367766.368168.

16. Stephen Warshall. A theorem on boolean matrices. Journal of the Association for Computing Machinery (JACM), 9(1):
11–12, January 1962. doi: 10.1145/321105.321107.

17. John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Bradford Books.
Cambridge, MA, USA: MIT Press, December 1992. ISBN 0-262-11170-5 and 978-0-262-11170-6. URL
http://books.google.de/books?id=Bhtxo60BV0EC. 1992 first edition, 1993 second edition.

Metaheuristic Optimization Thomas Weise 54/60

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.948
http://www.u-aizu.ac.jp/~yliu/publication/tec22r2_online.ps.gz
http://130.203.133.121:8080/viewdoc/summary?doi=10.1.1.42.3375
http://books.google.de/books?id=S67vX-KqVqUC
http://www.cs.adelaide.edu.au/~zbyszek/Papers/p16.pdf
http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
http://books.google.de/books?id=Bhtxo60BV0EC

Bibliography III

18. Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors. Variants of Evolutionary Algorithms for Real-World
Applications. Berlin/Heidelberg: Springer-Verlag, 2011. ISBN 978-3-642-23423-1 and 978-3-642-23424-8. doi:
10.1007/978-3-642-23424-8. URL http://books.google.de/books?id=B2ONePP40MEC.

19. Douglas A. Augusto and Helio Joseé Correa Barbosa. Symbolic regression via genetic programming. In Felipe M. G. França
and Carlos H. C. Ribeiro, editors, Proceedings of the VI Brazilian Symposium on Neural Networks (SBRN’00), pages
173–178, Rio de Janeiro, RJ, Brazil, November 22–25, 2000. Washington, DC, USA: IEEE Computer Society. doi:
10.1109/SBRN.2000.889734.

20. Federico Della Croce, Roberto Tadei, and Giuseppe Volta. A genetic algorithm for the job shop problem. Computers &
Operations Research, 22(1):15–24, January 1995. doi: 10.1016/0305-0548(93)E0015-L.

21. Edward P. K. Tsang, Jin Li, Sheri Marina Markose, Hakan Er, Abdellah Salhi, and Guilia Iori. Eddie in financial decision
making. Journal of Management and Economics, 4(4), November 2000. URL
http://www.bracil.net/finance/papers/Tsang-Eddie-JMgtEcon2000.pdf.

22. Edward P. K. Tsang, Paul Yung, and Jin Li. Eddie-automation – a decision support tool for financial forecasting. Decision
Support Systems, 37(4):559–565, September 2004. doi: 10.1016/S0167-9236(03)00087-3. URL
http://www.bracil.net/finance/papers/TsYuLi-Eddie-Dss2004.pdf.

23. Pu Wang, Edward P. K. Tsang, Thomas Weise, Ke Tang, and Xin Yao. Using gp to evolve decision rules for classification
in financial data sets. In Fuchun Sun, Yingxu Wang, Jianhua Lu, Bo Zhang, Witold Kinsner, and Lotfi A. Zadeh, editors,
Proceedings of the 9th IEEE International Conference on Cognitive Informatics (ICCI’10), pages 722–727, Beijing, China:
Tsinghua University, July 7–9, 2010. Los Alamitos, CA, USA: IEEE Computer Society Press. doi:
10.1109/COGINF.2010.5599820.

24. Pu Wang, Thomas Weise, and Raymond Chiong. Novel evolutionary algorithms for supervised classification problems: An
experimental study. Evolutionary Intelligence, 4(1):3–16, January 12, 2011. doi: 10.1007/s12065-010-0047-7.

25. Alexandre Devert, Thomas Weise, and Ke Tang. A study on scalable representations for evolutionary optimization of
ground structures. Evolutionary Computation, 20(3):453–472, Fall 2012. doi: 10.1162/EVCO a 00054. URL
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf.

26. Wolfgang Achtziger and Mathias Stolpe. Truss topology optimization with discrete design variables – guaranteed global
optimality and benchmark examples. Structural and Multidisciplinary Optimization, 34(1):1–20, July 2007. doi:
10.1007/s00158-006-0074-2.

Metaheuristic Optimization Thomas Weise 55/60

http://books.google.de/books?id=B2ONePP40MEC
http://www.bracil.net/finance/papers/Tsang-Eddie-JMgtEcon2000.pdf
http://www.bracil.net/finance/papers/TsYuLi-Eddie-Dss2004.pdf
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf

Bibliography IV

27. Fabiano Luis de Sousa and Walter Kenkiti Takahashi. Discrete optimal design of trusses by generalized extremal
optimization. In José Herskovits, Sandro Mazorche, and Alfredo Canelas, editors, Proceedings of the 6th World Congresses
of Structural and Multidisciplinary Optimization (WCSMO6), Rio de Janeiro, RJ, Brazil, May 30–June 3, 2005. Rio de
Janeiro, RJ, Brazil: COPPE Publication. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.8740.

28. Faten Kharbat, Larry Bull, and Mohammed Odeh. Mining breast cancer data with xcs. In Dirk Thierens, Hans-Georg
Beyer, Josh C. Bongard, Jürgen Branke, John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy Deb, Benjamin
Doerr, Tim Kovacs, Sanjeev P. Kumar, Julian Francis Miller, Jason H. Moore, Frank Neumann, Martin Pelikan, Riccardo
Poli, Kumara Sastry, Kenneth Owen Stanley, Thomas Stützle, Richard A. Watson, and Ingo Wegener, editors, Proceedings
of 9th Genetic and Evolutionary Computation Conference (GECCO’07), pages 2066–2073, London, UK: University College
London (UCL), July 7–11, 2007. New York, NY, USA: ACM Press. doi: 10.1145/1276958.1277362. URL
http://www.cs.york.ac.uk/rts/docs/GECCO_2007/docs/p2066.pdf.

29. Shigeru Obayashi. Multidisciplinary design optimization of aircraft wing planform based on evolutionary algorithms. In
IEEE International Conference on Systems, Man, and Cybernetics (SMC’98), volume 4, pages 3148–3153, La Jolla, CA,
USA, October 11–14, 1998. Los Alamitos, CA, USA: IEEE Computer Society Press. doi:
10.1109/ICSMC.1998.726486. URL http://www.lania.mx/~ccoello/obayashi98a.pdf.gz.

30. Akira Oyama. Wing Design Using Evolutionary Algorithm. PhD thesis, Tokyo, Japan: Tokyo University, Department of
Aeronautics and Space Engineering, March 2000. URL http://flab.eng.isas.ac.jp/member/oyama/index2e.html.

31. Miroslav Červenka and Vojtěch Křesálek. Aerodynamic wing optimisation using soma evolutionary algorithm. In Natalio
Krasnogor, Maŕıa Belén Melián-Batista, José Andrés Moreno Pérez, J. Marcos Moreno-Vega, and David Alejandro Pelta,
editors, Proceedings of the 3rd International Workshop Nature Inspired Cooperative Strategies for Optimization
(NICSO’08), volume 236/2009 of Studies in Computational Intelligence, pages 127–138, Puerto de la Cruz, Tenerife,
Spain, November 12–14, 2008. Berlin/Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-03211-0 11.

32. Miroslav Červenka and Ivan Zelinka. Application of evolutionary algorithm on aerodynamic wing optimisation. In
Proceedings of the 2nd European Computing Conference (ECC’08), Malta, September 11–13, 2008. URL
http://www.wseas.us/e-library/conferences/2008/malta/ecc/ecc53.pdf.

Metaheuristic Optimization Thomas Weise 56/60

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.76.8740
http://www.cs.york.ac.uk/rts/docs/GECCO_2007/docs/p2066.pdf
http://www.lania.mx/~ccoello/obayashi98a.pdf.gz
http://flab.eng.isas.ac.jp/member/oyama/index2e.html
http://www.wseas.us/e-library/conferences/2008/malta/ecc/ecc53.pdf

Bibliography V

33. Jason D. Lohn, Gregory S. Hornby, and Derek Linden. An evolved antenna for deployment on nasa’s space technology 5
mission. In Una-May O’Reilly, Gwoing Tina Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic Programming Theory and
Practice II, Proceedings of the Second Workshop on Genetic Programming (GPTP’04), volume 8 of Genetic Programming
Series, pages 301–315, Ann Arbor, MI, USA: University of Michigan, Center for the Study of Complex Systems (CSCS),
May 13–15, 2004. Boston, MA, USA: Kluwer Publishers. doi: 10.1007/b101112. URL
http://ic.arc.nasa.gov/people/hornby/papers/lohn_gptp04.ps.gz.

34. Jason D. Lohn, William F. Kraus, and Derek Linden. Evolutionary optimization of a quadrifilar helical antenna. In IEEE
AP-S International Symposium and USNC/URSI National Radio Science Meeting, San Antonio, TX, USA, June 16–21,
2002. Piscataway, NJ, USA: IEEE Computer Society. URL
http://ti.arc.nasa.gov/people/jlohn/Papers/aps2002.pdf.

35. Jason D. Lohn, Derek Linden, Gregory S. Hornby, William F. Kraus, and Adán Rodŕıguez-Arroyo. Evolutionary design of an
x-band antenna for nasa’s space technology 5 mission. In Jason D. Lohn, editor, The 2003 NASA/DoD Conference on
Evolvable Hardware (EH’03), pages 155–163, Chicago, IL, USA, June 9–11, 2003. Washington, DC, USA: IEEE Computer
Society. doi: 10.1109/EH.2003.1217660.

36. Andrew Lewis, Gerhard Weis, Marcus Randall, Amir Galehdar, and David Thiel. Optimising efficiency and gain of small
meander line rfid antennas using ant colony system. In 10th IEEE Congress on Evolutionary Computation (CEC’09), pages
1486–1492, Trondheim, Norway, May 18–21, 2009. Piscataway, NJ, USA: IEEE Computer Society. doi:
10.1109/CEC.2009.4983118.

37. Hosung Choo, Adrian Hutani, Luiz Cezar Trintinalia, and Hao Ling. Shape optimisation of broadband microstrip antennas
using genetic algorithm. Electronics Letters, 36(25):2057–2058, December 7, 2000. doi: 10.1049/el:20001452.

38. Neela Chattoraj and Jibendu Sekhar Roy. Application of genetic algorithm to the optimization of microstrip antennas with
and without superstrate. Mikrotalasna Revija (Microwave Review), 2(6), November 2006. URL
http://www.mwr.medianis.net/pdf/Vol12No2-06-NChattoraj.pdf.

39. Matthias John and Max J. Ammann. Design of a wide-band printed antenna using a genetic algorithm on an array of
overlapping sub-patches. In Duixian Liu and Brian Gaucher, editors, 2006 IEEE International Workshop on Antenna
Technology: Small Antennas and Novel Metamaterials (iWAT’06), pages 92–95, White Plains, NY, USA: Crowne Plaza
Hotel, 2006. Piscataway, NJ, USA: IEEE Computer Society. URL http://www.ctvr.ie/docs/RF%20Pubs/01608983.pdf.

40. Matthias John and Max J. Ammann. Optimisation of a wide-band printed monopole antenna using a genetic algorithm. In
Loughborough Antennas & Propagation Conference (PAPC’06), pages 237–240. Loughborough, Leicestershire, UK:
Loughborough University, April 11–12, 2006. URL http://www.ctvr.ie/docs/RF%20Pubs/LAPC_2006_MJ.pdf.

Metaheuristic Optimization Thomas Weise 57/60

http://ic.arc.nasa.gov/people/hornby/papers/lohn_gptp04.ps.gz
http://ti.arc.nasa.gov/people/jlohn/Papers/aps2002.pdf
http://www.mwr.medianis.net/pdf/Vol12No2-06-NChattoraj.pdf
http://www.ctvr.ie/docs/RF%20Pubs/01608983.pdf
http://www.ctvr.ie/docs/RF%20Pubs/LAPC_2006_MJ.pdf

Bibliography VI

41. Tian-Li Yu, Scott Santarelli, and David Edward Goldberg. Military antenna design using a simple genetic algorithm and
hboa. In Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz, editors, Scalable Optimization via Probabilistic Modeling –
From Algorithms to Applications, volume 33 of Studies in Computational Intelligence, chapter 12, pages 275–289.
Berlin/Heidelberg: Springer-Verlag, 2006. doi: 10.1007/978-3-540-34954-9.

42. John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. Automatic design of analog electrical circuits
using genetic programming. In Hugh Cartwright, editor, Intelligent Data Analysis in Science, volume 4 of Oxford Chemistry
Masters, chapter 8, pages 172–200. New York, NY, USA: Oxford University Press, Inc., June 2000. URL
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_2000_idas.html.

43. John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane. The design of analog circuits by means of
genetic programming. In Peter John Bentley, editor, Evolutionary Design by Computers, chapter 16, pages 365–385. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., May 1999. URL
http://www.genetic-programming.com/jkpdf/edc1999.pdf.

44. Jason D. Lohn and Silvano P. Colombano. Automated analog circuit synthesis using a linear representation. In Moshe
Sipper, Daniel Mange, and Andrés Pérez-Uribe, editors, Proceedings of the Second International Conference on Evolvable
Systems: From Biology to Hardware (ICES’98), volume 1478/1998 of Lecture Notes in Computer Science (LNCS), pages
125–133, Lausanne, Switzerland, September 23–25, 1999. Berlin, Germany: Springer-Verlag GmbH. URL
http://ti.arc.nasa.gov/people/jlohn/bio.html.

45. Lyudmila Zinchenko, Matthias Radecker, and Fabio Bisogno. Application of the univariate marginal distribution algorithm
to mixed analogue - digital circuit design and optimisation. In Mario Giacobini, Anthony Brabazon, Stefano Cagnoni,
Gianni A. Di Caro, Rolf Drechsler, Muddassar Farooq, Andreas Fink, Evelyne Lutton, Penousal Machado, Stefan Minner,
Michael O’Neill, Juan Romero, Franz Rothlauf, Giovanni Squillero, Hideyuki Takagi, A. Şima Uyar, and Shengxiang Yang,
editors, Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2007: EvoCoMnet, EvoFIN, EvoIASP,
EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTransLog (EvoWorkshops’07), volume 4448/2007 of Lecture Notes
in Computer Science (LNCS), pages 431–438, València, Spain, April 11–13, 2007. Berlin, Germany: Springer-Verlag GmbH.
doi: 10.1007/978-3-540-71805-5 48.

46. Hideyuki Takagi. Interactive evolutionary computation: Fusion of the capacities of ec optimization and human evaluation.
Proceedings of the IEEE, 89(9):1275–1296, September 2001. doi: 10.1109/5.949485. URL
http://www.design.kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html.

Metaheuristic Optimization Thomas Weise 58/60

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_2000_idas.html
http://www.genetic-programming.com/jkpdf/edc1999.pdf
http://ti.arc.nasa.gov/people/jlohn/bio.html
http://www.design.kyushu-u.ac.jp/~takagi/TAKAGI/IECsurvey.html

Bibliography VII

47. Jeanine Graf and Wolfgang Banzhaf. Interactive evolution of images. In John Robert McDonnell, Robert G. Reynolds, and
David B. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Programming (EP’95), Bradford
Books, pages 53–65, San Diego, CA, USA, March 1–2, 1995. Cambridge, MA, USA: MIT Press. URL
http://citeseer.ist.psu.edu/110968.html.

48. Brad Johanson and Riccardo Poli. Gp-music: An interactive genetic programming system for music generation with
automated fitness raters. Technical Report CSRP-98-13, Birmingham, UK: University of Birmingham, School of Computer
Science, 1998. URL http://graphics.stanford.edu/~bjohanso/gp-music/tech-report/.

49. Colin G. Johnson and Riccardo Poli. Gp-music: An interactive genetic programming system for music generation with
automated fitness raters. In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max H. Garzon, David Edward Goldberg, Hitoshi Iba, and Rick L. Riolo, editors, Proceedings of the Third Annual
Genetic Programming Conference (GP’98), pages 181–186, Madison, WI, USA: University of Wisconsin, July 22–25, 1998.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. URL
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/johanson_1998_GP-Music.html.

50. Joshua R. Smith. Designing biomorphs with an interactive genetic algorithm. In Richard K. Belew and Lashon Bernard
Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA’91), pages 535–538, San
Diego, CA, USA: University of California (UCSD), July 13–16, 1991. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. URL http://web.media.mit.edu/~jrs/biomorphs.pdf.

51. Lothar Thiele, Kaisa Miettinen, Pekka J. Korhonen, and Julian Molina. A preference-based interactive evolutionary
algorithm for multiobjective optimization. HSE Working Paper W-412, Helsinki, Finland: Helsinki School of Economics
(HSE, Helsingin kauppakorkeakoulu), January 2007. URL http://hsepubl.lib.hse.fi/pdf/wp/w412.pdf.

52. Thomas Weise, Ke Tang, and Alexandre Devert. A developmental solution to (dynamic) capacitated arc routing problems
using genetic programming. In Terence Soule and Jason H. Moore, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’12), pages 831–838, Philadelphia, PA, USA: Doubletree by Hilton Hotel Philadelphia
Center City, July 7–11, 2012. New York, NY, USA: Association for Computing Machinery (ACM). doi:
10.1145/2330163.2330278.

53. Felix Streichert. Evolutionäre algorithmen: Implementation und anwendungen im asset-management-bereich (evolutionary
algorithms and their application to asset management). Master’s thesis, Stuttgart, Germany: Universität Stuttgart, Institut
A für Mechanik, August 2001. URL http://www-ra.informatik.uni-tuebingen.de/mitarb/streiche.

Metaheuristic Optimization Thomas Weise 59/60

http://citeseer.ist.psu.edu/110968.html
http://graphics.stanford.edu/~bjohanso/gp-music/tech-report/
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/johanson_1998_GP-Music.html
http://web.media.mit.edu/~jrs/biomorphs.pdf
http://hsepubl.lib.hse.fi/pdf/wp/w412.pdf
http://www-ra.informatik.uni-tuebingen.de/mitarb/streiche

Bibliography VIII

54. Parag C. Pendharkar and Gary J. Koehler. A general steady state distribution based stopping criteria for finite length
genetic algorithms. European Journal of Operational Research (EJOR), 176(3):1436–1451, February 2007. doi:
10.1016/j.ejor.2005.10.050.

55. Karin Zielinski and Rainer Laur. Stopping criteria for constrained optimization with particle swarms. In Bogdan Filipič and
Jurij Šilc, editors, Proceedings of the Second International Conference on Bioinspired Optimization Methods and their
Applications (BIOMA’06), Informacijska Družba (Information Society), pages 45–54, Ljubljana, Slovenia: Jožef Stefan
International Postgraduate School, October 9–10, 2006. Ljubljana, Slovenia: Jožef Stefan Institute. URL
http://www.item.uni-bremen.de/staff/zilli/zielinski06stopping_PSO.pdf.

56. Karin Zielinski and Rainer Laur. Stopping criteria for a constrained single-objective particle swarm optimization algorithm.
Informatica, 31(1):51–59, 2007. URL http://www.item.uni-bremen.de/staff/zilli/zielinski07informatica.pdf.

Metaheuristic Optimization Thomas Weise 60/60

http://www.item.uni-bremen.de/staff/zilli/zielinski06stopping_PSO.pdf
http://www.item.uni-bremen.de/staff/zilli/zielinski07informatica.pdf

	Outline
	Introduction
	Section Outline
	Introduction

	Optimization Problem
	Section Outline
	Components of an Optimization Problem
	Solution Space
	Solution Space
	Solution Space
	Objective Function
	fragile,containsverbatim
	Objective Function
	Solution Space and Objective
	Example: Stone's Throw
	Example: Traveling Salesman Problem
	Example: Traveling Salesman Problem
	Example: Traveling Salesman Problem
	Examples from Last Lesson
	Further Examples

	What is Good?
	Section Outline
	What does good mean?
	What does good mean? (for XR)
	Example: Cheap Cola Can
	What does good mean? (for XR)
	What does good mean?
	What does good mean? (Multiple Optima)
	Examples for good
	Optimization Result
	Components of a Optimization Problem

	Metaheuristics
	Section Outline
	Situation & Idea
	How a Metaheuristic Works
	Search Space
	Search Space
	Search Space
	Genotype-Phenotype Mapping
	Genotype-Phenotype Mapping
	Search Space + GPM
	Search Operations
	Search Operations
	Termination Criterion
	Termination Criterion
	Example Termination Criterion

	Putting it Together
	Section Outline
	Putting it Together
	Putting it Together
	Individual Record

	Summary
	Section Outline
	Summary

	Presentation End
	Bibliography

