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Components of an Optimization Problem

From the perspective of a programmer, we can say that an optimization
problem has the following components:

1 a data type X for the possible solutions (candidate solutions),

2 one (or multiple) functions f ∈ ~f which rate “how good” a candidate
solution is, and

3 a notion of what “good” actually means.
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Solution Space

The first thing we need to know is what we want to find.
From the formal perspective, we say:

Definition (Solution Space X)

The solution space X of an optimization problem is the set containing all
elements x which could be solutions of the problem.

Definition (Candidate Solution x)

A candidate solution x of an optimization problem is an element of the
solution space X of the problem, i.e., a potential solution of the problem.
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Solution Space

From the programmer’s perspective, we can say:

Listing: Solution space X

public class MySolutionSpace extends Object {

...

}

//or, instead , maybe a simple or primitive type

//or an array ...
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❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ solution space X is a data structure whose instances can completely

describe a cookie recipe!
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Java, where each element of the vector represents the amount to use
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❼ A candidate solution x is then one concrete double[] with specific
values for each ingredient
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Objective Function

From the formal perspective, we say:

Definition (Objective Function f)

An objective function f : X 7→ R is a (mathematical) function which is
subject to optimization

❼ Can compute a (real) solution quality value f(x) ∈ R for a given
candidate solution x ∈ X

❼ Usually subject to minimization f(x1) < f(x2) means that x1 is
better than x2

❼ Not necessarily a function as you know it from Maths like
f(x) = x2 + . . . , but may be arbitrary complex, involve complicated
simulations, etc.
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Objective Function

From the programmer’s perspective, we can say:

Listing: Objective Function f

public interface IObjectiveFunction <X> {

public abstract double compute(final X x);

}

❼ the generic parameter X stands for the solution space data structure
X

❼ the function compute implements f(x) where x is an instance of X

❼ as you see: f(x) could be anything, could be deterministic or
randomized, a simple formula, or involve running large programs like
simulations
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Objective Function

❼ You want to find the “best” way to go from the South Campus to
Shanghai’s Bund?

❼ You want to bake the perfect cookie?
❼ let’s say perfect ≡ tastes best? =⇒ for each candidate cookie receipe

❼ print the receipe
❼ bake the cookie
❼ eat the cookie
❼ rate its taste from 0 to 10
❼ Objective function with human interaction! Why not!
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Solution Space and Objective

First steps when solving an optimization problem:

1 Understand the situation and all involved objects, entities, laws,
constraints, etc

2 Define what possible solutions look like, i.e., give a data structure
(programmer’s point of view) or space X (formal point of view)

3 Define a function which rates how good a candidate solution is, how
close it comes to what we really want as solution.

4 These steps are independent of how we will finally solve the problem

5 If you develop an optimization software for a client, it is very
important to discuss these issues with the client and to formally write
them down on paper! The client often does not know exactly what
he/she wants AND you may misunderstand him/her. . .
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Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

Listing: Blueprint of Objective Function for Stone’s Throw Probleml

public final class StoneThrowObjective implements IObjectiveFunction <Number > {

public final double compute(final Number x) {

final double v = x.doubleValue ();

final double d = (((v * v) / 9.80665d) * Math.sin (((2.0d * 15.0d) / 180.0d) *

Math.PI));

return Math.abs (100d - d);

}

}
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Example: Stone’s Throw

Which is the best velocity x with which I should throw a stone (in an
α = 15◦ angle) so that it lands exactly 100m away?
❼ Solution Space: X = R

+

❼ Objective Function: Minimize f(x) = |d(x)− 100m|

d(x) = x
2

g
sin 2α ≈ 0.051s2/m ∗ x2

❼ Actually. . . not necessary!
❼ Problem can easily be solved: minimum of f known, equation is simple
❼ No optimization algorithm needed.
❼ But what if the stone is an irregularly shaped object (like a chair)

and we also include air drag, gravitation, wind, limit forces on the
stone-throwing arm, costs for electricity of moving the joints, wear
of joins, imprecision of movements, make α variable, . . . ?
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Example: Traveling Salesman Problem

A salesman wants to visit n cities in the shortest possible time. No city
should be visited twice and he wants arrive back at the origin by the end
of the tour [1–3].
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Example: Traveling Salesman Problem

A salesman wants to visit n cities in the shortest possible time. No city
should be visited twice and he wants arrive back at the origin by the end
of the tour [1–3].

Definition (Traveling Salesman Problem)

The goal of the Traveling Salesman Problem (TSP) is to find a cyclic path
of minimum total weight which visits all vertices of a weighted
graph. [1, 2, 4, 5]

Metaheuristic Optimization Thomas Weise 15/60



Example: Traveling Salesman Problem

❼

❼

Metaheuristic Optimization Thomas Weise 16/60



Example: Traveling Salesman Problem

❼ Solution Space:

❼

Metaheuristic Optimization Thomas Weise 16/60



Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

❼

Metaheuristic Optimization Thomas Weise 16/60



Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

Π(Z) = set of all permutations of the elements of the given set Z

❼

Metaheuristic Optimization Thomas Weise 16/60



Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou,Hefei, Shanghai}

Π(Z) = set of all permutations of the elements of the given set Z

Example: Π({123}) = {(1, 2, 3); (1, 3, 2); (2, 1, 3); (2, 3, 1); (3, 1, 2); (3, 2, 1)}

❼
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Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼ Objective Function: Minimize f(x) = dist(Hefei, x[0])+
∑
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Example: Traveling Salesman Problem

❼ Solution Space: X = Π {Beijing,Chengdu,Guangzhou, Shanghai}

Let us assume that the tour always starts and ends in Hefei.

Then, we can simply leave it away ⇒ |X| gets smaller! Good!

❼ Objective Function: Minimize f(x) = dist(Hefei, x[0])+
∑

2

i=0
dist(x[i], x[i+ 1])+

dist(x[3],Hefei)

This formula is not so nice: we cannot simply “solve” it for a minimum x ∈ X.
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Listing: Solution space X

public final class ChinaTSPObjective implements IObjectiveFunction <int[]> {

public final double compute(final int[] x) {

double dist;

dist = ChinaTSPObjective.distance(ChinaTSPObjective.HEFEI , x[0]);

for (int i = 1; i < x.length; i++) {

dist += ChinaTSPObjective.distance(x[i - 1], x[i]);

}

return (dist + ChinaTSPObjective.distance(x[x.length - 1], ChinaTSPObjective.HEFEI));

}

}
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Example: Traveling Salesman Problem

❼ In a TSP, we cannot directly compute the right solution
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Example: Traveling Salesman Problem

❼ In a TSP, we cannot directly compute the right solution

❼ Simply test all possible solutions. . .

x1 Hefei → Beijing → Chengdu → Guangzhou → Shanghai → Hefei 7425km
x2 Hefei → Beijing → Chengdu → Shanghai → Guangzhou → Hefei 7566km
x3 Hefei → Beijing → Guangzhou → Chengdu → Shanghai → Hefei 8311km
x4 Hefei → Beijing → Guangzhou → Shanghai → Chengdu → Hefei 7886km
x5 Hefei → Beijing → Shanghai → Chengdu → Guangzhou → Hefei 7381km
x6 Hefei → Beijing → Shanghai → Guangzhou → Chengdu → Hefei 6815km
x7 Hefei → Chengdu → Beijing → Guangzhou → Shanghai → Hefei 8787km
x8 Hefei → Chengdu → Beijing → Shanghai → Guangzhou → Hefei 7857km
x9 Hefei → Chengdu → Guangzhou → Beijing → Shanghai → Hefei 8602km
x10 Hefei → Chengdu → Shanghai → Beijing → Guangzhou → Hefei 8743km
x11 Hefei → Guangzhou → Beijing → Chengdu → Shanghai → Hefei 8637km
x12 Hefei → Guangzhou → Chengdu → Beijing → Shanghai → Hefei 7566km
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Example: Traveling Salesman Problem

❼ Simply test all possible solutions. . . ??

❼ Size of solution space: |X| = 1

2
(n− 1)! ⇐ factorial, not exclamation mark
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Example: Traveling Salesman Problem

❼ Simply test all possible solutions. . . ??

❼ Size of solution space: |X| = 1

2
(n− 1)!

❼ Algorithm which is better than this exhaustive enumeration needed

❼ You will learn quite a lot of these in this lecture!
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Examples from Last Lesson

❼ What could be suitable solution spaces and objectives for

1 Bin Packing [7]

2 Circuit Layout [8, 9]

3 Find the roots of a function g(x) [10–13]

4 Shortest Path / Routing [14–16]

5 Find mathematical formula fitting to given data [17–19]

6 Job Shop Scheduling [18, 20]

7 Stock Prediction [21–24]

8 Truss Optimization [25–27]

9 Medical Classification [28]

10 Airplane Wing Design [29–32]
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Further Examples

❼ Antenna design [33–41]

❼ Analog Electrical Circuit Design [42–45]

❼ Interactive Optimization [46–51]
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Section Outline

1 Introduction

2 Optimization Problem

3 What is Good?

4 Metaheuristics

5 Putting it Together

6 Summary
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What does “good” mean?

❼ We want to find the good solutions for such problems.

❼
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What does “good” mean? (for X ⊆ R)

❼ Assume that the objective function f is a steady, continuous, and
differentiable function f : R 7→ R with a single real-valued parameter
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❼ Assume that the objective function f is a steady, continuous, and
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❼ In this case high school mathematics tells us what to do and what we
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❼ If X ⊆ R, then for every local optimum x⋆ of f , f ′(x⋆) = 0 holds.

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) > 0) ⇒ x⋆ is a local minimum

❼ (f ′(x⋆) = 0) ∧ (f ′′(x⋆) < 0) ⇒ x⋆ is a local maximum

❼ sign change of f ′ from − to + ⇒ x⋆ is a local minimum

❼ sign change of f ′ from + to − ⇒ x⋆ is a local maximum
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Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the
minimum material costs.
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minimum material costs.

V (r, h) = πr
2
h. . . . . . volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. . . . . . this volume is given: constraint (2)

A(r, h) = 2πr2 + 2πrh. . . . . . the surface: bottom, top, and hull (3)
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+
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h =
Vd

πr2
=

0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h

(11)

Metaheuristic Optimization Thomas Weise 24/60



Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. . . . . . volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. . . . . . this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. . . . . . objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. . . . . . solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. . . . . . 5 in 3

(11)

Metaheuristic Optimization Thomas Weise 24/60



Example: Cheap Cola Can

Task: Construct a cylindrical cola can capable of holding 355mL with the

minimum material costs.

V (r, h) = πr
2
h. . . . . . volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
. . . . . . this volume is given: constraint (2)

f(r, h) = A(r, h) = 2πr2 + 2πrh. . . . . . objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. . . . . . solution space: two dimensional real vectors R
2 (4)

h = Vd

πr2
= 0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h (5)
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2Vd
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. . . . . . solve for extrema
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h = Vd

πr2
= 0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. . . . . . 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. . . . . . first derivative of f for r (7)

r
⋆ ≈

3

√

2 ∗ 0.003 55m3

4π
≈ 0.038m ≈ 3.8cm. . . . . . OK, r is found

(11)
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f(r, h) = A(r, h) = 2πr2 + 2πrh. . . . . . objective function: material cost ≈ surface (3)

X = (r, h) : r, h ∈ R
+

. . . . . . solution space: two dimensional real vectors R
2(4)

h = Vd

πr2
= 0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. . . . . . 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. . . . . . first derivative of f for r (7)

r
⋆ ≈ 3.8cm. . . . . . OK, r is found (8)

h
⋆ = ≈ 7.7cm. . . . . . now solve for h using 5

(11)
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minimum material costs.

V (r, h) = πr
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h. . . . . . volume of cylinder (1)

Vd = 355mL = 0.355 ∗ 0.01m3
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+

. . . . . . solution space: two dimensional real vectors R
2 (4)
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= 0.003 55m3

πr2
. . . . . . resolve 1 and 2 for h (5)

f(r) = 2πr2 + 2 ∗ Vdr
−1

. . . . . . 5 in 3 (6)

f
′(r) = 4πr + 2Vd ∗ −r

−2
. . . . . . first derivative of f for r (7)

r
⋆ ≈ 3.8cm. . . . . . OK, r is found (8)

h
⋆ ≈ 7.7cm. . . . . . now solve for h using 5 (9)

f
′′(r) = 4π + 4Vdr

−3
. . . . . . maximum or minimum? (10)

f
′′(r⋆) > 0 ⇒ candidate solution x

⋆ = (r⋆, h⋆) is minimum (11)

Problem solved with high school maths – no optimization algorithm needed.
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What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions
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What does “good” mean? (for X ⊆ R)

❼ Differentiation only possible for differentiable objective functions

❼ Differentiation a bit more complicated for X ⊆ R
n and large n. . .

❼ In many cases, we have to live without the formulas from the previous
slide

❼ Even if we can differentiate, we then need to solve the resulting
equation, which is also not always analytically possible

❼ Combinatorial optimization: Objective functions don’t have
real-valued arguments (remember the car setup and TSP problem. . . )

❼ Other example: Genetic Programming [17], where the solutions are tree
data structures, e.g., representing mathematical formulas
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What does “good” mean?

Definition (Global Minimum)

There is no element with a smaller objective value than the global
minimum ˇ̌x.
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Definition (Global Maximum)

There is no element with a larger objective value than the global maximum
ˆ̂x.
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What does “good” mean?

Definition (Global Minimum)

A global minimum ˇ̌x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˇ̌x) ≤ f(x)∀x ∈ X.

Definition (Global Maximum)

A global maximum ˆ̂x ∈ X of one (objective) function f : X 7→ R is an
input element with f(ˆ̂x) ≥ f(x)∀x ∈ X.

Definition (Global Optimum of a Single Objective Function)

Depending on whether the objective function is subject to minimization or
maximization, a global optimum is either a global minimum or a global
maximum.
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What does “good” mean? (Multiple Optima)

❼ There may be multiple global and local optima
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Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.
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Examples for “good”

1 Bin Packing

2 Circuit Layout

3 Find the roots of a function g(x)

4 Shortest Path / Routing

5 Find mathematical formula fitting to given data

6 Job Shop Scheduling

7 Stock Prediction

8 Truss Optimization

9 Medical Classification

10 Airplane Wing Design

11 Antenna design

12 Analog Electrical Circuit Design

13 Interactive Optimization
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Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼

❼

❼
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Optimization Result

Definition (Global Optimal Set)

The optimal set X
⋆⋆ ⊆ X of an optimization problem is the set that

contains all its globally optimal solutions.

❼ Often, we cannot get the global optimal set. . .

❼ . . . but only an approximation X̃ of it.

Definition (Optimization Result X̃)

The set X̃ ⊆ X contains output elements x̃ ∈ X of an optimization
process.

❼ usually we only return one single solution x̃, i.e., X̃ ≡ {x̃}
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Components of a Optimization Problem

Now we have discussed the basic components of an optimization problem
from a more mathematical point of view.

1 the solution space X,

2 the objective function(s) f : X 7→ R, and

3 the concept of “good” (minimize? maximize? multi-objective?).
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❼ If so, we will do that and are finished. We don’t need an optimization
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❼ Often, we cannot.
❼ Often, we can calculate f and have a rough idea of it, but cannot
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❼ What is the situation?

1 We have a potentially extremely large set X of solutions.
2 Do we know exactly what features good (or the best) solutions

have? NO
3 Can we “directly” solve f for the optima (e.g., by differentiating

it)? NO
4 Can we simply test all candidate solution x ∈ X? NO

❼ So what can we do?
❼ We know the data structure for elements of X.
❼ So we can randomly create instances x!
❼ And we can modify some existing (previously created) instances x!
❼ And we can maybe even combine existing instances x1 and x2!
❼ If we do this well or can learn how to do this best, we can win!
❼ This is the idea behind all metaheuristics
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How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼

f(x )ÎX

black box

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t)

f
(x

)
1

(3,3)

(0,2)(0,0) (0,1) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2)

pop(t+1)

3. based on this information:
decide how to create
new candidate solutions

2. compute objective values
of candidate solutions

1. set of candidate solutions

4. new solutions become
current solutions
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How a Metaheuristic Works

❼ Start with one (or multiple) initially generated candidate solutions
(we call this set of solutions “population” pop)

❼ Iteratively refine the solution(s) in a loop (e.g., by making small
random changes)
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Black-box metaheuristics are a general starting
point for optimization.
They can provide good solutions.
But once we have a working software, we always
will include problem-specific knowledge into the
algorithm to get excellent solutions.
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❼ OK, we have a data structure X for the candidate solutions and an
objective function f : X 7→ R telling us how good they are
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❼ We now want to create instances of X and then “improve” them
iteratively

❼ This means that we need:
❼ a method for creating an instance of X
❼ a method for changing (and hopefully improving) an instance of X

. . . a lot of code that we need to write for each optimization
problem. . .
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Search Space

❼ We now want to create instances of X and then “improve” them
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❼ This means that we need . . . a lot of code that we need to write for
each optimization problem. . . and we did not even talk about how
the metaheuristic algorithm itself works
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R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
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Example: Finding the roots of a real function g(x) (use real vector)
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problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: a bit string can be translated to a text describing which
features a BMW has
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Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: a cookie receipe internally can be represented as vector of
real numbers, just translate it to text the grandma can read

❼
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❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
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❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

Example: the shape of an airplane wing can be represented as vector
of real numbers, just translate it to a textual description of the wing
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Search Space

❼ We now want to create instances of X and then “improve” them
iteratively

❼ Idea: Sometimes, we can use well-known data structures for X, e.g.,
R
n ≡ double[]

❼ If we know good operators for Rn, we can re-use them for all
problems that have X ≡ R

n!

❼ What if X is not any well-known data structure?

❼ Try to see if there is a well-known data structure G that can be
translated to X

❼ Besides the solution space X we can use a search space G an internal

data structure for representing the possible solutions from X
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Search Space

As a metaphor based on biological genetics, the search space is often called genome, points in the search space are
called genotypes, the solution space (solution space) is called phenome, its elements are called phenotypes, and the
translation between phenotypes and genotypes is called genotype-phenotype-mapping.
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Search Space

From the programmer’s perspective, we can say:

Listing: Search space G

public class MySearchSpace extends Object {

...

}

//or, instead , maybe a simple or primitive type

//or an array ...
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Genotype-Phenotype Mapping

Definition (Genotype-Phenotype Mapping)

The genotype-phenotype mapping (GPM) gpm : G 7→ X is a left-total
binary relation which maps the elements of the search space G to elements
in the solution space X.

❼

❼
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Genotype-Phenotype Mapping

Definition (Genotype-Phenotype Mapping)

The genotype-phenotype mapping (GPM) gpm : G 7→ X is a left-total
binary relation which maps the elements of the search space G to elements
in the solution space X.

❼ if G = X, the genotype-phenotype mapping is (usually) the identity
mapping

❼ this is often the case, but not always [25, 52]
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Genotype-Phenotype Mapping

From the programmer’s perspective, we can say:

Listing: Mapping from search- to solution space: gpm : G 7→ X

public interface IGPM <G, X> {

public abstract X gpm(final G genotype);

}

❼

❼

❼
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Search Space + GPM

❼ G, X, and gpm together are called Representation
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Search Space + GPM

❼ The choice of the representation has tremendous impact on the
results!

❼
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❼ The choice of the representation has tremendous impact on the
results, e.g.,

❼ It determines which solutions can be found.
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Search Space + GPM

❼ The choice of the representation has tremendous impact on the
results, e.g.,

❼ It determines which solutions can be found.
❼ It determines the number of potential solutions.

Metaheuristic Optimization Thomas Weise 39/60
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Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?
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Search Operations

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ An operators which can create a modified copy of an element of G

Definition (Search Operation)

A search operation receives 0 or more elements from the search space G as
parameter and returns a new genotype.
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Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼
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}
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Search Operations

From the programmer’s perspective, we can say:

Listing: Nullary search operation searchOp : ∅ 7→ G

public interface INullarySearchOperation <G> {

public abstract G create(final Random r);

}

❼ Nullary =⇒ 0 arguments from G (except from the random number
generator)

❼ G is a generic data structure to be replaced by the search space G

❼ create returns one instance of G .

❼ this could be a random instance or an instance constructed using
some particular algorithm
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Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}
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Search Operations

From the programmer’s perspective, we can say:

Listing: Unary search operation searchOp : G 7→ G

public interface IUnarySearchOperation <G> {

public abstract G mutate(final G parent , //

final Random r);

}

❼ Unary =⇒ 1 argument from G (plus a random number generator)

❼ G is a generic data structure to be replaced by the search space G

❼ mutate receives one instance of G as parameter.

❼ it then returns a modified copy of that instance.

❼ the modification is usually small and random
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Termination Criterion

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ Operators which modify or combines such data structures
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Termination Criterion

❼ So, we have X, f , G, and gpm. . . what else do we need?
❼ An operation which creates instances of data structure G,
❼ Operators which modify or combines such data structures
❼ A method that tells us when the algorithm should stop.

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼

❼

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion

Definition (Termination Criterion)

When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations
3 stop when no further improvement can be detected

Metaheuristic Optimization Thomas Weise 42/60



Termination Criterion
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When the termination criterion function becomes true, the optimization
process will stop and return its results.

❼ Termination criterion may utilize all information gathered by the
optimization algorithm so far

❼ Many different criteria possible [53–56]:

1 maximum computation time
2 maximum number of objective function evaluations
3 stop when no further improvement can be detected
4 stop when a sufficiently good solution has been detected
5 . . .
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Termination Criterion

Listing: Termination Criterion shouldTerminate : 7→ {true, false}

public interface ITerminationCriterion {

public abstract boolean shouldTerminate ();

}

❼ Directly after every time the optimization algorithm has created a
new solution x and computed f(x), it must call shouldTerminate()

❼ If shouldTerminate() returns true , the algorithm must immediately
stop and return the best solution candidate it has seen so far

❼ One could implement ITerminationCriterion and
IObjectiveFunction in the same object to stop once a goal solution
quality was reached.
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Example Termination Criterion

Listing: A criterion stopping after a given amount of steps.

public class MaxSteps implements ITerminationCriterion {

/** the number of remaining steps */

private int m_remaining;

public MaxSteps(final int steps) {

super();

this.m_remaining = steps;

}

public boolean shouldTerminate () {

return ((--this.m_remaining) < 0);

}

}
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Putting it Together

Then a metaheuristic, black-box optimization looks like:
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Individual Record

Definition (Individual)

An individual is a record where we can store all information that belongs
to a solution, such as the genotype g ∈ G, the corresponding phenotype
x ∈ X, and the objective value that we get when computing f(x).
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❼ Most often, specific sets and transformations are involved

❼ Search space G with genotypes g

❼ A set of search operations that can create, modify, or combine the
elements from G

❼ Solution space X with phenotypes x

❼ Genotype-phenotype mapping gpm : G 7→ X

❼ Objective Functions f : X 7→ R
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