
Distributed Computing
Homework 5: Web Services

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Big Picture

2 Weather

3 Task

Distributed Computing Thomas Weise 2/22

w
e
b
s
it
e

Overview

• Use Java [1–4] and Axis2 [5–7] to

• Build a Web Service

• Which makes information from a website accessible as module in a
program

• Side effect: learn why HTML and traditional websites are not suitable
for information presentation for computers

Distributed Computing Thomas Weise 3/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

• Follow all the steps of web service creation and integration

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

• Follow all the steps of web service creation and integration

1 service implementation

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

• Follow all the steps of web service creation and integration

1 service implementation
2 service installation

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

• Follow all the steps of web service creation and integration

1 service implementation
2 service installation
3 service client creation

Distributed Computing Thomas Weise 4/22

Big Picture

• Web Services are independent components that offer well-defined
functionality to an application

• Original goal: Allow information and processes designed for human
beings to be accessed and processed by machines

• Realization: Transition from websites as presentation+function units
to websites for presentation and web services for function

• This homework: Take an existing website and make its functionality
available as web service

• Follow all the steps of web service creation and integration

1 service implementation
2 service installation
3 service client creation
4 service usage

Distributed Computing Thomas Weise 4/22

Weather

• There exist various websites that can offer us information about the
current weather at a place

Distributed Computing Thomas Weise 5/22

http://www.timeanddate.com/weather/

Weather

• There exist various websites that can offer us information about the
current weather at a place

• Example: http://www.timeanddate.com/weather/

Distributed Computing Thomas Weise 5/22

http://www.timeanddate.com/weather/

Weather

• There exist various websites that can offer us information about the
current weather at a place

• Example: http://www.timeanddate.com/weather/

• Information provided for a human user as HTML [8, 9]

Distributed Computing Thomas Weise 5/22

http://www.timeanddate.com/weather/

Weather

• There exist various websites that can offer us information about the
current weather at a place

• Example: http://www.timeanddate.com/weather/

• Information provided for a human user as HTML [8, 9]

• We can develop a web service that offers us weather information by
obtaining it from a web site!

Distributed Computing Thomas Weise 5/22

http://www.timeanddate.com/weather/

Weather

• The weather website allows a human user to search for weather at a
given place

Distributed Computing Thomas Weise 6/22

Weather

• The weather website allows a human user to search for weather at a
given place

Distributed Computing Thomas Weise 6/22

Weather

• We are interested in the weather, high and low temperature, as well as humidity

Distributed Computing Thomas Weise 7/22

Weather

• We are interested in the weather, high and low temperature, as well as humidity

Figure: Webpage with interesting information

Distributed Computing Thomas Weise 7/22

Weather

• HTML document contains human-readable information with info inside

Distributed Computing Thomas Weise 8/22

Weather

• HTML document contains human-readable information with info inside

Figure: Webpage + HTML source
Distributed Computing Thomas Weise 8/22

Weather Service

• Implement a webservice which has one function

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/:

• extend the basic class WeatherService

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/:

• extend the basic class WeatherService

• you can use a pre-implemented method
String getWebsite(final Location location) to obtain all the

HTML text of the page corresponding to a given Location

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/:

• extend the basic class WeatherService

• you can use a pre-implemented method
String getWebsite(final Location location) to obtain all the

HTML text of the page corresponding to a given Location

• We can find the relevant information in that (HTML) string by using
e.g., indexOf , or something like JSoup

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/:

• extend the basic class WeatherService

• you can use a pre-implemented method
String getWebsite(final Location location) to obtain all the

HTML text of the page corresponding to a given Location

• We can find the relevant information in that (HTML) string by using
e.g., indexOf , or something like JSoup

• With the information, an answer record is populated which then
returned as service result

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Weather Service

• Implement a webservice which has one function

• that receives a location/place definition as parameter

• and returns a record describing the current weather in that location

• This information is obtained by querying
http://http://www.timeanddate.com/weather/:

• extend the basic class WeatherService

• you can use a pre-implemented method
String getWebsite(final Location location) to obtain all the

HTML text of the page corresponding to a given Location

• We can find the relevant information in that (HTML) string by using
e.g., indexOf , or something like JSoup

• With the information, an answer record is populated which then
returned as service result

• This way, we make an external information source available as
building block for an application!

Distributed Computing Thomas Weise 9/22

http://http://www.timeanddate.com/weather/

Listing: The location record (JavaBean) (Location.java).

package weatherService;

import java.io.Serializable;

/** a location specification */

public class Location implements Serializable {

/** the city */

private String m_city;

/** the province */

private String m_province;

/** the country */

private String m_country;

public String getCity () {

return this.m_city;

}

public void setCity(final String city) {

this.m_city = city;

}

Distributed Computing Thomas Weise 10/22

Listing: The weather record (JavaBean) (Weather.java).

package weatherService;

import java.io.Serializable;

/** A weather description */

public class Weather implements Serializable {

/** the weather: is it sunny , cloudy , windy , or ... */

private String m_weather;

/** the temperature high */

private int m_temperatureHigh;

/** the temperature low */

private int m_temperatureLow;

/** the humidity */

private int m_humidity;

public Weather () {

super();

}

*/

public String getWeather () {

return this.m_weather;

}

public void setWeather(final String weather) {

this.m_weather = weather;

}

public int getHighTemperature () {

return this.m_temperatureHigh;

}

public void setHighTemperature(final int temperature) {

this.m_temperatureHigh = temperature;

}

Distributed Computing Thomas Weise 11/22

Homework

• The homework has four parts, listed on the following slides

Distributed Computing Thomas Weise 12/22

Homework

• The homework has four parts, listed on the following slides

• Put everything into an archive called hw05_[your_student_id].zip

(where [your_student_id] is replaced with your student id) and send
it to me.

Distributed Computing Thomas Weise 12/22

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

• The service receives one instance of class Location

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

• The service receives one instance of class Location

• It builds a query to http://www.timeanddate.com/weather/ and
downloads the answer webpage via the pre-defined method
getWebsite

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

• The service receives one instance of class Location

• It builds a query to http://www.timeanddate.com/weather/ and
downloads the answer webpage via the pre-defined method
getWebsite

• From this page, it extracts all the information for the Weather record
(see documentation), i.e., the weather description, the low and high
temperature, and humidity (marked with colored boxes in Figure 2)

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

• The service receives one instance of class Location

• It builds a query to http://www.timeanddate.com/weather/ and
downloads the answer webpage via the pre-defined method
getWebsite

• From this page, it extracts all the information for the Weather record
(see documentation), i.e., the weather description, the low and high
temperature, and humidity (marked with colored boxes in Figure 2)

• The description is stored in an instance of class Weather and returned

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Part I: Service Implementation

• Implement the weather service by filling code into
weatherService/service/WeatherService.java

• The service receives one instance of class Location

• It builds a query to http://www.timeanddate.com/weather/ and
downloads the answer webpage via the pre-defined method
getWebsite

• From this page, it extracts all the information for the Weather record
(see documentation), i.e., the weather description, the low and high
temperature, and humidity (marked with colored boxes in Figure 2)

• The description is stored in an instance of class Weather and returned

• In order to build an Eclipse / Maven project for web services, you
could copy one of my example server-side web service projects, rename
it accordingly (by editing the pom.xml and .project files), delete the
code inside its original src folder, and copy the code from the
homework’s src folder there in place, and edit the services.xml file.

Distributed Computing Thomas Weise 13/22

http://www.timeanddate.com/weather/

Listing: The weather service class (WeatherService.java).

package weatherService;

public class WeatherService {

public Weather getWeather(final Location location) {

final Weather weather;

weather = new Weather ();

try {

WeatherService.getWebsite(location);

// TODO: fill in your code here

} catch (final Throwable error) {

/** ignore */

} finally {

return weather;

}

}

}

Distributed Computing Thomas Weise 14/22

Part II: Service Installation

• Write a suitable services.xml file and put it into a META-INF folder
in your project

Distributed Computing Thomas Weise 15/22

Part II: Service Installation

• Write a suitable services.xml file and put it into a META-INF folder
in your project

• Create a Maven pom.xml file for building the service aar archive

Distributed Computing Thomas Weise 15/22

Part II: Service Installation

• Write a suitable services.xml file and put it into a META-INF folder
in your project

• Create a Maven pom.xml file for building the service aar archive

• Use Maven to build the aar archive

Distributed Computing Thomas Weise 15/22

Part II: Service Installation

• Write a suitable services.xml file and put it into a META-INF folder
in your project

• Create a Maven pom.xml file for building the service aar archive

• Use Maven to build the aar archive

• Install your new service under Axis2 by copying it into the services

folder

• (see the examples in the repository and the lecture slides on how to
do that)

Distributed Computing Thomas Weise 15/22

Part III: Service Client Creation

• Create a new project and Maven pom.xml to build a client for our
web service

Distributed Computing Thomas Weise 16/22

Part III: Service Client Creation

• Create a new project and Maven pom.xml to build a client for our
web service

• Run the project once to generate the client stub classes for calling the
service

Distributed Computing Thomas Weise 16/22

Part III: Service Client Creation

• Create a new project and Maven pom.xml to build a client for our
web service

• Run the project once to generate the client stub classes for calling the
service

• In order to build an Eclipse / Maven project for web services, you
could copy one of my example client-side web service projects, rename
it accordingly (by editing the pom.xml and .project files), replace
the code inside its original src folder with your own code.
Remember that you will need to Maven-build first to generate the
classes for calling the service, and then you can write your code using
them, and then you can compile again to actually build the fat jar.

Distributed Computing Thomas Weise 16/22

Part IV: Service Utilization

• Now create code that actually calls the service by using these classes

Distributed Computing Thomas Weise 17/22

Part IV: Service Utilization

• Now create code that actually calls the service by using these classes:
• Make a program whose main method takes three command line

parameters (the stuff in String[] args): the city name, province,

and country

Distributed Computing Thomas Weise 17/22

Part IV: Service Utilization

• Now create code that actually calls the service by using these classes:
• Make a program whose main method takes three command line

parameters (the stuff in String[] args): the city name, province,

and country
• This program should fill in a Location record with this information

and then call your web service using the automatically generated
service client stub code

Distributed Computing Thomas Weise 17/22

Part IV: Service Utilization

• Now create code that actually calls the service by using these classes:
• Make a program whose main method takes three command line

parameters (the stuff in String[] args): the city name, province,

and country
• This program should fill in a Location record with this information

and then call your web service using the automatically generated
service client stub code

• It should print the information about the received weather record to
the standard output (System.out)

Distributed Computing Thomas Weise 17/22

Part IV: Service Utilization

• Now create code that actually calls the service by using these classes:
• Make a program whose main method takes three command line

parameters (the stuff in String[] args): the city name, province,

and country
• This program should fill in a Location record with this information

and then call your web service using the automatically generated
service client stub code

• It should print the information about the received weather record to
the standard output (System.out)

• Modify your Maven pom.xml to build a “fat jar” with all the required
libaries and classes inside and to run your main class

Distributed Computing Thomas Weise 17/22

Submission

Submit the following things:

• your zip -compressed folder with both Eclipse projects (client and

server side)

• the aar with the service

• the fat jar of the client

Distributed Computing Thomas Weise 18/22

Installing and Using Axis2

• See the lecture and the documentation of the examples repository!

Distributed Computing Thomas Weise 19/22

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 20/22

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 21/22

Bibliography I

1. James Gosling, William Nelson Joy, Guy Lewis Steele Jr., and Gilad Bracha. The Java™ Language Specification. The Java
Series. Upper Saddle River, NJ, USA: Prentice Hall International Inc., Santa Clara, CA, USA: Sun Microsystems Press
(SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd edition, May 2005. ISBN 0-321-24678-0 and
978-0321246783. URL http://java.sun.com/docs/books/jls/.

2. James Gosling and Henry McGilton. The java language environment – a white paper. Technical report, Santa Clara, CA,
USA: Sun Microsystems, Inc., May 1996. URL http://java.sun.com/docs/white/langenv/.

3. Santa Clara, CA, USA: Sun Microsystems, Inc. Java™ 2 Platform Standard Edition 5.0 – API Specification, October 19,
2010.

4. Herbert Schildt. Java 2: A Beginner’s Guide. Essential Skills for First-Time Programmers. Maidenhead, England, UK:
McGraw-Hill Ltd., 2002. ISBN 0072225130 and 9780072225136. URL http://books.google.de/books?id=YWDJJGYaLG4C.

5. Deepal Jayasinghe. Quickstart Apache Axis2. Birmingham, UK: Packt Publishing Limited, 2008. ISBN 1847192866 and
9781847192868. URL http://books.google.de/books?id=wVdyNwAACAAJ.

6. Kent Ka Iok Tong. Developing Web Services with Apache Axis2. Charleston, SC, USA: BookSurge, 2008. ISBN 9993792918
and 9789993792918. URL http://books.google.de/books?id=O15OPwAACAAJ.

7. Apache Axis2/Java. Forest Hill, MD, USA: Apache Software Foundation, 2012. URL
http://axis.apache.org/axis2/java/core/.

8. Dave Raggett, Arnaud Le Hors, and Ceriel J. H. Jacobs. HTML 4.01 Specification. W3C Recommendation. MIT/CSAIL
(USA), ERCIM (France), Keio University (Japan): World Wide Web Consortium (W3C), December 24, 1999. URL
http://www.w3.org/TR/1999/REC-html401-19991224.

9. Murray Altheim and Shane McCarron. XHTML™ 1.1 – Module-based XHTML – Second Edition. W3C Recommendation.
MIT/CSAIL (USA), ERCIM (France), Keio University (Japan): World Wide Web Consortium (W3C), November 23, 2010.
URL http://www.w3.org/TR/2010/REC-xhtml11-20101123.

Distributed Computing Thomas Weise 22/22

http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/white/langenv/
http://books.google.de/books?id=YWDJJGYaLG4C
http://books.google.de/books?id=wVdyNwAACAAJ
http://books.google.de/books?id=O15OPwAACAAJ
http://axis.apache.org/axis2/java/core/
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/2010/REC-xhtml11-20101123

	Outline
	Overview
	Big Picture
	Big Picture

	Weather
	Weather
	Weather
	Weather
	Weather
	Weather Service
	
	

	Task
	Homework
	Part I: Service Implementation
	
	Part II: Service Installation
	Part III: Service Client Creation
	Part IV: Service Utilization
	Submission
	Installing and Using Axis2

	Presentation End
	Bibliography

